
Open Home Networks: the TEAHA approach

Hylke W. van Dijk

Hans J. Scholten

University of Twente

Enschede, The Netherlands

h.w.vandijk@utwente.nl

j.scholten@utwente.nl

Álvaro Tobalina

Vı́ctor Garcı́a Muñoz

Telefónica I+D

Madrid, Spain

alvarotv@tid.es

vmgm@tid.es

Stéphane Milanini

Antonio Kung

Trialog

Paris, France

stephane.milanini@trialog.com

antonio.kung@trialog.com

Abstract— The current trend for home appliances is network-
ing. Although more and more of these appliances are networked,
there is not a standard way of interaction, which restrains
the development of services for in-home networks. The lack of
standardisation is partly due to a legacy of business interests;
white goods, audio video equipment, security, and personal digital
appliances all have a different background and have different
business models.

Rather than profound standardisation we propose secure
seamless interworking of technologies, applications, and business
interests. In this paper we present an architecture which is
embedded in legacy technology. Our approach combines known
design patterns, augments existing technology, and facilitates
so-called business clusters. Further, we discuss a prototype
implementation that integrates as an example OSGI, ZIGBEE,
and UPNP technology with CECED (white goods) business
interests. The work reported in this paper has been executed
in an international industrial project1: TEAHA.

I. INTRODUCTION

Modern homes are equipped with many electronic appli-

ances. Nowadays many of these appliances can communicate

in one way of another with other appliances: modern home ap-

pliances are networked. Creative minds can think of uncount-

able exciting applications and services by simply combining

the huge potential of these networked appliances. However in

practise implementing these applications is cumbersome and

often requires a great deal of application specific glue.

Standardisation of interfaces and standardisation of proto-

cols may help to ease the development of novel applications

and services. A profound standardisation process, however,

will be too time consuming and too inflexible to serve the

industrial needs of today. The alignment of historically very

different appliances and their networked solution is a difficult

task because of the large installed base, the existing portfolio

and market shares, and simply because solutions have been

optimised for their typical application area. As an example,

there is no need to implement high-data throughput remote

control devices for controlling audio-video appliances over

infra-red. An additional problem is that compliance to a new

standard involves significant investments and it is hard to es-

timate the return value for unproven services. Standardisation

efforts serve an inherently static purpose, typically induced

1This work is sponsored in part by the European Commission (IST-507029
priority 2.3.1.8)

from a predefined business model that brings together partners

with mutual interests. In case of home appliances there are

many fields of interests, such as white goods, audio-video,

telecommunications, and house monitoring and control that all

use their own, often proprietary, set of protocols. This makes

it hard to define commonalities, while at the same time we

can envision many novel emerging services and applications,

disrupting existing business models and coalitions.

In the TEAHA project we envision a distributed home

gateway that allows for seamless interworking of technol-

ogy domains and business clusters. Devices in a technology

domain share a mutual technology for communication and

interaction, e.g., TCP/IP. Similarly appliances and services in

a business cluster share a mutual interest, business wise or

otherwise, however they are defined independently from the

applied technology. Domains and clusters are formally defined

a priori, yet the TEAHA architecture allows them to participate

in the home network, by providing them seamless access to

other domains and clusters as well as facilitating semantic

translation of protocols.

TEAHA [23] is a European project with partners from indus-

try and academia. In TEAHA we took a pragmatic approach.

The TEAHA architecture and prototype implementation reuses

existing and proven technology, including the implementation

and fine tuning of known design patterns.

This paper is organised as follows. We start with articulating

the general requirements for any architecture to accomplish the

goals as set forth above. Then we introduce the building blocks

in Section II. Section III describes the architecture in detail

and presents implementation details. We discuss the resulting

system in Section V. This section also includes future and

related work. Section VI finally concludes this paper.

The main contributions of this paper are:

• creating an architecture for seamless interworking,

• that integrates basic building blocks,

• and assess its feasibility in a commercial setting.

In this paper we propose an architecture and assess its feasi-

bility by means of (preliminary) profiling. Our assessment is

in view of embedding the system in home appliances, which

are constrained by their resources as well as the associated

costs for updating the installed base.

A. Requirements

The overall goal of the project is to create seamless inter-

working among services from different technology domains

and to facilitate controlled interaction among services from

different business clusters. In order to accomplish this generic

goal, a feasible architecture shall embed legacy devices and

legacy services. Seamless interworking requires a form of

semantic abstraction in order to bridge the different underlying

technologies, including their applied protocols. In addition it

requires application specific syntactic transformations to let

different business models interact.

Interaction alone, is usually insufficient for a successful

business alliance. There are at least two additional constraints

to create a controlled interaction: security and near zero-

configuration. Security involves the secured interaction among

services and users; communicating parties must be able to

rely on the authenticity of their peers and may require

encryption of their data with an agreed protection level to

prevent eavesdropping. A service system that implements near

zero-configuration allows for dynamically grafting, pruning,

and updating of services almost without human intervention.

Because of the security and near zero-configuration aspects,

the architecture shall provide hooks to guarantee a policing

mechanism when desired. The mechanism details, e.g, the

encryption method, shall be specified on a session basis with

an authenticated source, authenticated destination, a control-

lable duration (time or the number of discrete events), and a

security level (plain, authenticated, or encrypted). In particular

the application developer should indicate that policing is

required but the implementation must be transparent. Near

zero-configuration has to be accomplished in order to prepare

the system for changes with a small burden on the end user

of the system.

Special care has to be taken into the flexibility of the frame-

work. Business opportunities come and go; time-to-market is

as important as timely adaptation to changing business needs.

The business clusters must be flexible in defining and updating

their agreed protocol.

Finally, the architecture and corresponding implementation

shall support the following identified business clusters

• Tele service providers: UPNP programming model and

OSGI [1] based triple play (Telephone, Broadband Inter-

net, and television)

• CECED [21]: white goods business cluster

• DLNA [22]: digital living network alliance for the audio-

video business cluster

Typical technology domains include

• Wired Ethernet (IEEE 802.3)

• Wireless Ethernet (IEEE 802.11.x)

• Wireless personal area networks (IEEE 802.15.{1,4})

• EHS [14], low data-rate power line communication.

II. CONCEPTS

In this section we introduce individual concepts and compo-

nents of the architecture. The first subsections describe com-

munication concepts, gradually introducing a more semantical

T−I

D2

D1 D3

Sb
Sa

Sc

Sb
Sa

Sc Sb
Sa

Sc

T−I.D2.Sa

T−I.D2.Sb

T−I.D2.Sc

T−I.D1.Sb

T−I.D1.Sc

T−I.D3.Sa

T−I.D3.Sb

T−I.D3.Sc

T−I.D1.Sa

U2

U1

U3

Figure 1: Technology domain

interpretation. The last section presents a number of frequently

used design patterns in the prototype implementation of Sec-

tion III.

A. Ubiquitous Access

Ubiquitous access bridges technology domains and au-

thenticates services and users. Bridging is conceptually ac-

complished by providing service access points in the virtual

domain of potential users. The subsequently binding of users

and services is traditionally the field of service discovery [10].

For the authentication of services and users we use a two

stage approach. The first stage connects services or users to

devices in a unique way, the second stage relies on a tamper

proof secure engine of a device; sometimes referred to as a

trusted module. A well known implementation of authenticated

device to device protocol is the Diffie-Hellman station-to-

station protocol [4].

Consider the diagram of Figure 1. Here we have a technol-

ogy domain T-Iwith devices D1 to D3, each providing a set

of services. The objective is to create the situation of the right-

hand side of the diagram, where users U1 through U3 have

ubiquitous access to these services. The accomplishment must

be independent from the specific service discovery technology

of domain T-Ibut with proper access regulation in place.

1) Service discovery: The diagram of Figure 2 presents

an example of a generic model for service discovery. It is

an extended version of a client-server model with a service

agreement, see e.g. [20].

In this model, a manager retrieves service descriptions

from a service (e.g. Sa). At a certain time instance a user

(e.g. U1) puts a request to its managerial network, which

consists of reachable explicit managers (e.g. M 1) and implicit

managers of reachable services (e.g. Sc). Given the current

available set of descriptions the manager establishes a match,

which is returned to the user as an offer. The match making

processes involves a translation of service descriptions into

the operation space of the user followed with an optimisation

process. The translated service descriptions form the operation

space, whereas the request holds the constraints under which

U1

Sc

Se M1

M2

Sa Sb

Sd

Figure 2: Hierarchically structured model for Service

Discovery.

the multi dimensional optimisation must be performed. The re-

sulting offer is a set of Pareto optimal operation points; Pareto

optimal points are those points in the operation space for which

no points exist that are more optimal in all dimensions. In the

use phase of the process the user provides an agreement to the

manager, which in turn configures the service for use according

to the current agreement.

The example model of Figure 2 includes two popular

complementary discovery models: a broadcast and a directory

based model. In the broadcast model, users contact every

manager/service in reach to discover their services. In a

directory based model, services register with a directory man-

ager, whereupon users query the directory manager to retrieve

service information. Hybrid models are used to increase the

efficacy and agility of service discovery. For instance, in a

situation with relatively static services and a reliable network,

a directory based service discovery is known to be efficient

(in terms of network load). In a more dynamic situation where

services enter and leave the network frequently, the broadcast

model gives the best coverage. In a situation with many

communication deficiencies but a reasonable static service

network, maintaining a network of directories (and backup

directories) shows good results [18].

The typical situation for a TEAHA application is an in-home

network, with a relatively static service network and a rea-

sonably reliable communication network. The virtual domain

of Figure 1 therefore uses a single directory to store service

references. In case of supporting multiple technical domains

it is the responsibility of the directory to delegate, whenever

appropriate, service discovery requests from a user to the

respective technology domains. Note that the single directory

is a concept, its implementation may well be by means of a

distributed directory in which the individual directories form

a peer network as found in GSD [2].

2) Secure interworking: Service managers (and user man-

agers) use a security engine to facilitate authenticated and

possibly encrypted communication among a service and a

user. In fact security becomes an integral part of the service

discovery process, as explained in the following scenario.

Let K be a service that actively searches for a service M .

Service M will acknowledge the request provided that service

K can be authenticated (is properly registered). Once accepted

component

security

S

E

R

V

I

C

E

M

 Ping, data)

Search(Session Id,

 Pong, data)

Accept(Session Id,

 secured data)

Transfer(Session Id,

component

security

S

E

R

V

I

C

E

K

4

5

21

3

4

Figure 3: Secure service discovery.

they decide to exchange messages in a secure way. The

scenario is outlined in the diagram of Figure 3, which is an

implementation of the station-to-station protocol [4] with a

piggybacking service discovery protocol.

The steps are as follows: service K sends a Search request

that includes a so-called Ping message. The Ping entails

the key agreement request of service K and an authenticity

proof, which allows service M to verify that service K posed

the request. Once authenticated, service M replies with an

Accept message that includes a Pong message. The Pong

entails the key agreement response of service M and an

authentication proof. After the (authenticated) receipt of the

Pong message services K and M share a secret session key,

which can be calculated from the exchanged key agreement

information. The session key is used to encrypt data messages

in the further communication (Transfer) among services K

and M .

Given an authenticated user and an authenticated service,

the system must decide upon the interaction method. In case

of TEAHA this decision tree is implemented by means of a

hierarchical registry. New services and users get registered2

with a directed registry tree. Each service and user comes with

a level at which it is entered. A user has access to services that

are reachable while descending the hierarchy of the (acyclic)

registry tree. Users who are allowed to register at the root

of the registry gain access to all services. The access method

(plain, authenticated or encrypted) depends on the weight of

the path from the user vertex to the service vertex.

More fine grain control can be gained when we associate

roles to users and services. This way services and users can

virtually appear at multiple instances in the tree, which gives

users access to multiple clusters of services and services can

appear in multiple clusters. The weight of the path from a user

to a service is a maximum operation over the edge weights in

the path; each edge is associated an ordered weight from the

increasing set: plain, authenticated, encrypted.

As an example of a registry tree consider the tree of

Figure 4. Here the rootuser has access to all services. User

U1 for instance can compose applications that involve services

Sb through Se. User U3 and user U1 both can gain access

to service Se, yet U1 requires authentication whereas U3 has

direct access; provided of course that the users successfully

located the service before.

2The registration process and corresponding configuration management is
an unsolved issue.

Root

R1

plain

U1

R2

plain

U2

R3

plain

U3

R4

plainauth. auth.

Sa

encr

auth.

Sb

encr

Se

auth.

Sc

auth.

Sd

auth.

plain

Sf

plain

Sg

auth.

Figure 4: Registry tree example.

Sa Sb Sc Sd

Sa

Sb

Sc

Sd

D1
D2 D3

context

manager

Domain

Figure 5: Surrogates.

B. Domain extension

In the previous subsection we have presumed seamless

interoperability of services, users, and their managers. Here

we extend the virtual domain by introducing surrogates and

transformers. A surrogate is a representation of a service (its

subject) in a remote technology domain. Surrogates mimic

the original interface of their subject service. Transformers go

beyond surrogates in the sense that they adapt the interface of

their subject. In this case the adaption is defined by a business

cluster.

1) Surrogates: A surrogate provides an interface to a re-

mote object. The typical case has been drawn in Figure 5.

Here the Dom ain m anager acts as the interface between

the context and the technical domain in which service Sa

through Sd reside. Whenever the domain manager detects a

new service it registers a service with the context with a similar

interface (set of methods and fields) as the interface on the

technology domain.

Service Sa through Sd can now be discovered and deployed

by any user in the context domain. However, the user must be

If: I0

getId()

If: I0.0

getId()

start()

stop()

If: I0.0.0

stop()

start()

getId()

setId()

If: I0.1

getId()

helo()

If: I0.1.0

helo()

getId()

imap()

If: I0.0.0

stop()

start()

getId()

reset()

Figure 6: Transformer interface hierarchy.

familiar with the protocol of the technology domain in order

to successfully interact with the actual service.

2) Transformers: A transformer extends a surrogate in that

it adapts the interface of the surrogate to provide an interface

that is more natural to the user in the context domain of

Figure 5.

Transformers are typically hierarchically structured. Con-

sider as an example Figure 6. Here we show an interface that

can be implemented by an adapter. The most straightforward

interface only implements a getId() method. Depending

on the precise nature of the service in the technology domain

(e.g. see Figure 5) the domain manager selects an appropriate

adapter to enrich the available functionality in the context

domain. As an example suppose the technology domain pro-

vides a mail transport agent (MTA). Then depending on the

capability of the MTA we can enrich the adapter with a

plain ping, a query method, helo, or we may even retrieve

messages from the service via the imap protocol.

In addition to the service itself, the objective of the business

cluster can play a role in selecting an appropriate adapter. As

an example, in the lower branch of Figure 6 the business

cluster may opt for an adapter with either the reset of

setId functionality.

C. Interoperability

So far we established interworking but only to the point

where either the native technology domain of the service

defines the interface (surrogates) or the business cluster defines

the interface (transformer). In this section we regard TEAHA

as a business cluster. TEAHA is a consortium of telecom-

munications operators, audio/video manufacturers, and white

good manufacturers. The consortium has been inspired by

the upcoming UPNP standard for the definition of a business

cluster interaction model. The TEAHA business cluster uses an

event-based programming model and an XML based attribute

value pair model to describe services, including their interfaces

Service

anonymous

object

registered

service

distributed

object

Event

ActionEvent

method

args

[return listener]

[return method]

EventListener

newEvent(Event);

Peergroup Peer

specialises
[dispatches]

distributes
invoke

method

offered

Figure 7: TEAHA programming model.

and their capabilities.

Figure 7 outlines the TEAHA programming model. The

model supports a network of peergroups in which events

are dispatched and distributed. A peer group that receives an

event distributes copies of the event to its peers, which maybe

a peer group again.

Peers handle events. A particular event is an

ActionEvent which specifies a method that is to be

invoked on the subject of a peer. The event also specifies

a return event and the peer group to which this event has

to be dispatched by the handling peer. An ActionEvent

essentially creates a synchronous method call between a user

and a service. Special care has to be taken in order to prevent

out of order processing and overtaking of events by the peer

group network. A robust method using relative clocks has

been described in [15].

D. Patterns

In this section we review a selection of design patterns that

we use to implement the introduced concepts.

1) Proxy pattern: The proxy pattern, [5] and Figure 8a,

guards a subject. A client uses a proxy object in the same

way as the actual subject. The proxy then decides either to

invoke the real subject or to raise an exception, for instance

in case of a security violation.

2) Factory pattern: The factory pattern, see [5] and Fig-

ure 8b, creates a dynamic way of creating real products. The

actual product will match a set of predefined attributes. In our

case we use a factory method to create a proxied subject if

policing is required.

3) Composite pattern: The composite pattern, [5] and Fig-

ure 8c, creates a recursive set of components. Invoking the

operation method Op() on a composite results in an avalanche

of operation invocations of its children. Invocation of Op()

on an entity does the actual work.

4) Custodian pattern: A custodian pattern, see [11] and

Figure 8d, is a pair of access and exit points. Together they

implement a policing functionality. Since the user and the

service will never communicate directly the custodian can

enforce the implemented protocol. Custodian access points and

exit points are in fact proxy implementations, which create

transparency for their clients: a user and a service.
5) Driver Extension Pattern: OSGI [1] defines a device

attachment algorithm to enable flexible attachment of extended

drivers to idle devices. The algorithms locates drivers and then

gets a matching value. It consequently selects and attaches the

driver that reports the highest matching value. The pattern is

also known as an extension framework [8].

III. INTEGRATION

The base platform for our prototype implementation is a ser-

vice platform, which allows for dynamic loading, unloading,

and configuration of services [8]. The OSGI middleware [1]

provides a small core that allows the different components of a

project to cooperate seamlessly inside a Java Virtual Machine.

We refer to this core as the OSGI context. OSGI is an obvious

choice to create a near zero-configuration service platform

(see also Section II-A) because of its mechanism for the

deployment of services; it goes beyond the concepts of devices

and it allows for different components of the control software,

while it unites everything in a single service directory. At

the same time the OSGI context facilitates the implementation

of software applications for various sources. Currently OSGI

includes features such as a driver search system, which is an

essential ingredient for supporting flexible business models.

A. Ubiquitous access

Applications, services, and users that reside in the same

context will be able to interact. Whether a service repre-

sentation is a surrogate or transformer is irrelevant in this

discussion. Policing however requires a single point of access.

In Figure 8d we described the general – distributed – case,

which requires separate access and exit points. Here we

describe the simple case with one OSGI context.

Figure 9 outlines the approach. The directory represents the

OSGI context, a TEAHA user is an authenticated user and a

TEAHA m anageris an authenticated manager of services; their

authentication is securely stored in their wallet. Plain users

and m anagers cannot show proper identification, however,

we still would like them to interwork securely with TEAHA

users and TEAHA m anagers.

Here the plain m anagerwould register a service a with

the OSGI context, whereas a TEAHA m anagerwould register

a service B with the TEAHA context. In turn the manager

registers a factory method (see Section II-D) with the OSGI

context. When a user requires a reference to the service B, the

factory method will dispatch a proxy (see Section II-D) of the

actual service. Access to service B is now controlled by the

proxy, implementing effectively policing, as required.

Similarly, a TEAHA usermay request policed access to a

service. In case of a TEAHA user that requests a reference

to – the uncontrolled – service a through the TEAHA context,

the context will return a proxy of service a, similar to the

aforementioned factory method.

The simple custodian has been implemented using a proxy

pattern. Each time an authenticated user accesses an authen-

ticated service, the custodian queries a policing registry to

<<interface>>

Subject

+ method()

Proxy

+ method()
RealSubject

+ method()

Client

(a) Proxy.

<<component>>

Creator

+ FactoryMethod()

+ setAttributes()

<<interface>>

Product

CreatorA

+ FactoryMethod()

CreatorB

+ FactoryMethod()

<<component>>

Product

(b) Factory.

Component

+Op()

+Add(Component)

Component

+Op()

Component

+Op(); for all

+Add(Component)

Client

(c) Composite.

point

access

point

exit

User Service

(d) Custodian.

Figure 8: Design patterns.

TEAHA

user

a b B A

Directory

B

Plain

user

Plain

manager

C

o

n

t

e

x

t

TEAHA

TEAHA

manager

a

a

wallet

wallet

Figure 9: TEAHA secure service discovery

determine the desired protocol for interaction and the status of

the current session. The user and service credentials are stored

in the respective secure engines of the devices on which the

user and service processes are executed, whereas the session

status data is securely stored in secure engine of the device on

which the custodian executes. Because of the single point of

access, session management becomes feasible, without being

intrusive or expensive.

B. Domain extension

Following Section II-B the implementation of different tech-

nology domains uses the model of surrogates and transformers

with the help of the tools provided by the OSGI platform. Here

we will present two different implementations, one for UPNP

and another for ZIGBEE.

1) UPNP : UPNP is a well known standard that has been

adopted by many vendors recently. Its use relies on the creation

of drivers and control points. In [1, pp 503–528] a group of

interfaces is defined to ease the implementation of a base

driver, which is a bundle of Java classes. Some vendors

developed proprietary base drivers but open source distribu-

tions are readily available. In TEAHA we adopted an existing

one. The base driver creates and registers services with the

OSGI directory, i.e., creating the surrogates for this technology

domain. The current implementation uses a tracker of OSGI

services (see [1, pp 391–402]) that for each surrogate registers

a new TEAHA service that in addition follows the necessary

requirements to fit the TEAHA programming model. With this

extended interface a new service becomes a transformer of the

UPNP domain.

2) ZIGBEE : ZIGBEE [24] is a set of protocols designed to

be used by small low-energy wireless communication devices.

A special purpose module has been used to connect the ZIGBEE

protocol through a RS-232 protocol to an OSGI gateway.

The ZIGBEE driver that registers services has been designed

and implemented into OSGI. The driver operates in two

stages. First it registers a surrogate that provides some basic

information about the newly discovered device in the ZIGBEE

net. This representation follows the set of specifications for a

device as described in [1, pp 223–252] and has the necessary

methods to transmit data to the serial port, but it does not

implement device specific methods. Second the driver searches

for a plug-in, as a suitable transformer. When found, the device

is registered and a link is created with the corresponding

surrogate or transformer, depending the capabilities of the

selected plug in.

3) Cluster plug-in: The cluster plug-in implements the

driver extension pattern to select dynamically the best match-

ing cluster plug-in. In our prototype we created an extension

manager that is integrated with an EHS driver. EHS is a

power line communication protocol. The base driver works

similar to the drivers described in the UPNP and ZIGBEE

subsections above. It creates surrogate services that represent

devices hooked on to the EHS power line.

In this case the surrogate implements an extendible transfer

interface. The diagram of Figure 10 outlines an example of

the extension in case of a CECED business cluster.

In the diagram the base driver, EHS proxy, queries the

context to locate an EHS cluster chooser. In the example it

locates a cluster chooser with three business clusters: CECED,

FM and AV. The base driver offers each of the clusters a

reference of the surrogate while calling their match method.

In turn the cluster object will query internally a hierarchy of

plug-ins providing them access to the surrogate. The better

the match, the more information can be retrieved from the

surrogate. The best match is a tree of plug-ins specifying the

details of the surrogate and therefore opening the opportunity

to use the service in more depth.

The depth of the match tree depends on two parameters: the

functional match and the business protocol match. The func-

D1 D2 D3 D4

EHS Cluster Chooser

Context

Service

D

CECED

WM

Indesit

WIL 133

EHS

proxy

CECED FM AV

Wm.

Ov.

Ind. Aeg Sie.

WIL 133

creates

registers

uses

Figure 10: TEAHA cluster plug-in example

tion match specifies whether a surrogate exposes an interface

(functionality) that a plug-in can exploit, whereas the business

protocol match regulates whether the plug-in is allowed to

participate in the extension, security wise. Note that the actual

policing is done as described in Section III-A.

An alternative view reveals that the tree of plug-ins repre-

sents a hierarchy of business clusters. At the top we have

CECED, an alliance of white good manufacturers. Within

in this cluster we recognise a cluster of washing machines,

WM. This cluster is split up along manufacturers and finally

along the cluster of a specific type. In this case the hierarchy

adds more and more functionality. At CECED level we can

identify, start, and stop the EHS device, at washing machine

level we can read the phase of the current washing cycle.

The manufacturer level opens up a functionality to update

the firmware and finally at type level we give access to

type specific functionality such as controlling the automatic

detergent dispenser.

C. Interoperability

The programming model and corresponding XML descrip-

tion of services closely follows the UPNP model. This is a

strategic choice for industrial partners. Note that, although the

details differ this model has many similarities with ZIGBEE

protocol and service profiles as well as the CECED protocol

and service description.

The programming model uses events for communication

among services. Events are distributed in peer group. Peers

register with a peer group to receive events and peers interact

with service objects; they effectively implement the composite

pattern. Thus a peer that receives an asynchronous action event

(see Figure 7) will invoke the specified action synchronously.

If requested the peer will thereupon return an action event to

the specified peer (or peer group).

Root

sub

A

B

A

B

CC

ConsoleCons.

Figure 11: Short message system

Peers implement the proxy pattern for their services. It is

irrelevant for a peer whether a service is a plain object or a

registered service. The proxy pattern hides this. If a registered

OSGI service is used then it is also policed.

Peers also have an XML description of the service they

represent. On demand they will offer that. The description is

a simple attribute value tuple. If the peer has been registered as

a service, policing is also in place for the service description

query. Our attribute, value tuple are consistent with the UPNP

XML service description, although we do not mandate a full

specification. Recall that many service descriptions are based

on attribute, value tuples and queries on that. Examples include

ZIGBEE, SLP, CECED. Others, such as SDP and GSD make

use of a URN.

IV. PROTOTYPE EXPERIMENTS

In this section we present two prototype applications to

demonstrate the feasibility of our architecture. A short message

system (SMS) demonstrates the programming model and the

interaction with the UPNP technology domain, whereas a

clock synchronisation application demonstrates the business

cluster plug-in technology interacting with the EHS technology

domain.

The efficacy and agility of this prototype implementation

has been derived from the prototype applications. The efficacy

models the amount of used resources to execute the appli-

cations in terms of memory and processing bandwidth. The

agility models the lag between the occurrence and completion

of two events. The latter is an important parameter to assess

the type (and quality) of applications that can be controlled

by the current implementation.

A. SMS system

In this application we consider a short message system with

three terminals A, B, and C . The terminals are accessible

through their respective peers, which in turn have been regis-

tered with peer groups: rootor sub (Figure 11).

In addition the application has a console, which is accessible

through a console peer in case we request an acknowledge-

ment. All peers and peer groups in the application have been

Surrogate Surrogate Surrogate

EHS

CECED

CLOCK

EHS

TEAHA

bell

Figure 12: Clock synchronisation system

registered with the context. Thus from the console we can

disseminate a message to any peer group or peer; in case of an

acknowledgement we specify the control peer as the receiving

peer, presenting the console as a terminal.

Further to the SMS terminals, any UPNP service that gets

registered through UPNP driver becomes available through the

TEAHA programming model. In effect one can send an action

event from the console user to a UPNP service, while the actual

dispatch of the event is policed by the custodian of the UPNP

transformer.

B. Clock synchronisation

In this application we consider a “bell” service that acts as

the master clock of the system. The bell service locates all

possible clocks in the system and sends them their current

time. One of the clocks in this application is a clock on

the EHS power line communication technology that will be

registered under the flag of the CECED business cluster.

The diagram of Figure 12 outlines the setup of the clock

application. In the event that a clock becomes available on

the EHS bus this event will be observed by the EHS driver.

In turn the driver will query the EHS-CECED chooser to

locate an appropriate plug-in for this service; in this case a

generic clock plug-in suffices. The bellis a separate service

that runs in the background. Once in a while it becomes

active and locates all clocks and surrogates (or transformers)

that registered a clock interface. Subsequently the bellservice

invokes the setTime() method to inform the clocks of the

current accurate time.

C. Preliminary Profiling

Preliminary profiling of the prototype applications is done

on a PC (1186 bogo Mips, 512 MByte) running a recent Linux

kernel, Java 1.4, and Oscar 1.5 as the OSGI implementation.

Furthermore the OSGI framework is equipped with log4j

logging service, SWT widgets, jetty web server for service

configuration and RxTxcomm for serial communication.

The typical prototype application shows a residential mem-

ory set of 12.6 MByte, while using up 212 MByte of memory

maximum. These figures include the Java virtual machine and

OSGI framework. The required amount of CPU resources were

measured up to 18.5 % maximum of the available bogo Mips,

which equals to 220 bogo Mips.

In order to test the agility of the system we profiled a

series of experiments. First the programming model was tested

by sending around log messages as in the SMS prototype

application. The time elapsed between sending a message

and the subsequent reception turns out to be measurable at

ms. scale; 1 ms. maximum. The reason for this delay is

due to the length of method invocation chain because of

the frequent use of the proxy pattern and the corresponding

reflection in Java. Interestingly, we found a severe penalty for

abnormal situations. In the implementation we rely on the Java

exception handling to detect distribution of events that cannot

be handled by the respective peers. This situation occurs if

we disseminate an action event in the system peer group.

Obviously not all registered peers implement the requested

action and hence raise an exception. We typically measured

an additional penalty of 20 ms.

A second experiment involves the use of the secure engine.

The secure engine participates in the security protocol; it stores

credentials and signs and encrypts messages on request. Part of

the secure engine is a tamper proof module. In our experiments

we used an integrated USB smart-card and reader for this

purpose (Gem eSeal @ 5 MHz.). The initial connection to

the card is slow (typical delay 400 ms.), reading credentials

(8 Bytes) from the card takes about 22 ms., while 3-DES

encrypting of 64 bits takes 35 ms, excluding the data transfer.

RSA signature generation is slow (250 ms.), but it is only

required during session set up and service registration.

A third experiment involves the UPNP and ZIGBEE drivers,

measuring the time elapsed between the event that new hard-

ware is detected by the driver and a surrogate has been effec-

tive installed. The results for the UPNP devices (an emulated

clock and a light device) were consecutively 991, 110, 2624,

301, 80, and 150 ms., whereas for the ZIGBEE devices (an

emulated washing machine controller) we measured 100, 251,

and 80 ms. The non-deterministic character of the measure-

ments can partly be accounted to the platform. Although we

emulated UPNP devices they participate in a domain with real

devices that all compete for registration. This interferes with

the registration of the light and clock services, e.g, the driver

waits for time outs. The emulated ZIGBEE devices show less

variation, however it can be expected that the lag when using

the actual service on the target technology has more variation

because of technology dependent delays.

A fourth and final experiment involves the cluster plug-

in selection and subsequent use as described in the clock

synchronisation example. In this experiment we emulated an

EHS bus with several devices switched on and off. In this case

the EHS/CECED chooser offered a plug-in for each device. We

measured lags of 1070 ± 40 ms; subsequent use of the clock

device was fast: 1 ms.

V. DISCUSSION

In this section we discuss the proposed architecture and

implementation for seamless interworking among technology

domains an for enabling business models. We discuss the

virtues of the proposed solution, known solutions from lit-

erature, and possible future enhancements.

A. Lessons

The identified issues and highlights with the proposed solu-

tion in this paper are structured along the degree of integration:

from architecture via implementation to performance.

1) Architecture: The requirement that legacy technology

must be supported turns out to be the driving requirement on

the architecture. As a result the architecture is a set of building

blocks that is made available to the application engineer. For

instance the programming model is a library that generates a

particular view on the installed base. This view subsequently

allows the engineer to use installed services either by their

native interface or by the TEAHA programming model.

Policy management remains a difficult topic. We found

that once policies have been properly registered, they can be

enforced through the custodian pattern. However this bypasses

the actual management of the policies, which involves system

configuration by the human user. A complicating factor in

this respect is that policies are enforced by business clusters.

One of the fundamental issues is to decide on the priority of

policy management: the human owner or the business owner.

A simple solution in our case is to make the business owner

explicit in the policy hierarchy of Figure 4.

2) Implementation: Implementing and integrating the pro-

posed architecture went reasonable smooth. Our understanding

of concepts and choice of reference implementations turned

out to be sound. In particular the OSGI service platform, UPNP,

and the framework extension technology are very useful.

Because of the development platform (PC based Java Virtual

Machine) there is a danger of over dimensioning the system;

adding too much functionality, being too flexible, and even

installing redundant functionality. From a maintenance point of

view, this is a highly undesirable situation. On the other hand,

business models and legacy technology bring their own culture

of doing things. Providing this culture with the necessary

modules (bundles in case of OSGI) is often desirable and

adheres to our strategy of enriching the system with modules

rather than enforcing a TEAHA way of working.

3) Performance: The performance of the preliminary proto-

type, although functional correct, is neither fast nor low profile.

The residential gateway is a mere PC, but we are currently

in the process of porting the architecture to platforms with

more limited resources, in particular an XScale a StrongArm

platform.

The use of Java limits the use of the platform for real-time

control. Real-time data streaming has never been considered;

our platform is a control-only system. The preliminary pro-

filing figures suggest that synchronisation is possible at deci

seconds (10
−1) rather than milli seconds (10

−3). While this is

sufficient to control white goods like washing machines and

ovens, it might pose problems for regulating streaming audio

and video applications.

Applications should be aware of the time synchronisation

limits. For instance the clock application requires to estimate

the delay time from the bell service to the actual clock device.

The bell service may then account for the extra delay in order

to provide a more accurate time. The observed undeterministic

character of the delays is a complicating factor here.

B. Related work

There are a number of initiatives that target seamless

interworking among different technologies. Neither of these

initiatives exceeded the level of technology interworking, it

is unclear whether and how we can raise the interworking to

the level of business clusters. We feel however that they are

important enough to be discussed in brief here.

In [6], [12], [19] architectures based on OSGI gateways are

presented. They provide a clear overview of add-on technology

for OSGI and alternatives like HAVI, .NET, and MHP.

In [9] a home networking platform is presented based

on Jini. Jini bridges (federates) technology through down-

loadable proxies. One particularly interesting aspect is their

use of surrogates that off-load the burden from tiny devices of

running a Java virtual machine.

In [16], [17] two architectures based on CORBA are pre-

sented. While the aforementioned, as well as our solution,

concentrate on controlling services and devices in the home

environment, CORBA based architecture also process the data

themselves. The CORBA inter object request broker protocol

provides interoperability between different technologies. They

enforce a programming model, unlike in our approach where

the programming model is optional. Especially in [16] the

architecture describes a solution to implement a connection

based CORBA protocol over an intrinsically connection less

IEEE 1394 protocol.

As a final example, in [13] an architecture based in SOAP

is described. This architecture is a service aggregater rather

than a home network. Nevertheless, SOAP is one of the

underpinning technologies of .NET.

There are only a few papers that describe experimenting

with a service platform supported with figures. In fact we only

found one, [17], which we discussed above.

Integrated security is another important topic. While modern

middleware provides many ways of securing transactions and

methods for authorisation [7], their configuration is usually

left unspecified. The lack of a proper configuration scheme

conflicts with our requirement for near zero-configuration.

In [17] the authors propose and experience with a policy

hierarchy, similar to the one we proposed in this paper.

In [7] the security methods and implementations for three

major distributed component systems are evaluated: CORBA,

J2EE, and .NET. In view of our requirements there are a few

highlights. J2EE and .NET do not provide a standard method

for non-repudiation, which is an anomaly in case of business

clusters. Further, the standard authorisation methods of J2EE

and .NET rely on predefined roles, which is too inflexible

for our purposes. The close relation of .NET with Microsoft

Windows is a concern because of the required support for

legacy technology.

C. Future work

While developing the architecture and implementing the

prototype we necessarily took a number of design decisions

that limit the scope of our results. In this section we present a

couple of issues that we plan to work on in the (near) future.

The presented architecture uses a single directory for service

location. A virtual, physically distributed, directory yields an

improvement of high practical value. Think of the intuitive

way that a service can be registered and managed by the

human end user. Another example is the opportunity to locate

technology drivers in close range of the actual appliances. We

are working on such a distributed version. The problem here

is that the custodians, which enforce (and guarantee) policing,

become distributed too. In this work we consider JXME as a

candidate for creating a peer network of gateways.

Our architecture uses a hierarchy for registering the policies

by which services and users interact. In practical situations

the registry data will be distributed over multiple devices. We

consider an approach that uses a visitor and traveller pattern

[3], to query the distributed registry. In addition, registration

configuration must be integrated.

When services are dynamically created and used, QOS be-

comes an issue, because service deployment needs resources.

We consider an ARC [20] approach for dynamic interworking

of service.

Privacy becomes an issue now that more and more services

share resources. Potential burglers, for instance, can easily

deduct whether someone is present in a home by monitoring

the gateway activity.

VI. CONCLUSION

In this paper we presented an architecture for seamless

interworking of technologies and appliances for dedicated

business clusters. This concepts goes beyond the state of the

art of seamless interworking among technology domains.

For the successful application of business clusters it is

important that the interworking among appliances can be

regulated. We proposed to organise the policy registration hier-

archically, in order to make intuitive configuration possible for

the human end user. Policing of interactions is implemented by

adopting a known design pattern: the custodian pattern. In fact

the entire architecture combines proven patterns and proven

technology, which smoothened the development process of a

prototype.

We also presented preliminary profiling figures from exper-

iments we conducted with a prototype implementation. The

prototype demonstrates the feasibility of seamless and con-

trolled interworking among technology domains. The profiling

figures suggest that an OSGI based implementation is, under

constraints, feasible for commercial application. The eventual

gateway platform approaches that of an embedded PC and the

application domain must not require real-time accuracy better

than 100 ms.

ACKNOWLEDGEMENT

The authors wish to thank the partners of the TEAHA project

for their contribution. In particular we appreciate the vivid

discussions with Victor Poznanski (Sharp Ltd.), Tim Wilson

(Sharp Ltd.), Ardjan Zwartjes (University Twente) and Danny

De Cock (Katholieke Universiteit Leuven).

REFERENCES

[1] T. O. Alliance. OSGi Service Platform, Release 3. IOS Press, 2003.
also available from www.osgi.org.

[2] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. GSD: a novel group-
based service discovery protocol for MANETS. In Mobile and Wireless

Communications Network, 2002. 4th International Workshop on, pages
140–144, 2002.

[3] A. v. Deursen and J. Visser. Source model analysis using the JJTraveler
visitor combinator framework. Software: Practice and Experience,
34(14):1345–1379, 2004.

[4] W. Diffie, P. C. Oorschot, and M. J. Wiener. Authentication and authen-
ticated key exchanges. Designs, Codes and Cryptography (Historical

Archive), 2:107–125, June 1992.
[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[6] L. Gong. A software architecture for open service gateways. Internet

Computing, IEEE, 5:64–70, 2001.
[7] G. Gousios, E. Aivaloglou, and S. Gritzalis. Distributed component

architectures security issues. Computer Standards & Interfaces, 27:269–
284, March 2005.

[8] O. Gruber, B. Hargrave, J. McAffer, P. Rapicault, and T. Watson. The
eclipse 3.0 platform: Adopting osgi technology. IBM Systems Journal,
44(2):289–299, 2005.

[9] R. Gupta, S. Talwar, and D. P. Agrawal. Jini home networking: a step
toward pervasive computing. Computer, 35:34–40, 2002.

[10] E. Guttman, C. E. Perkins, J. Veizades, and M. Day. Service location
protocol, version 2. RFC 2608, IETF Network Working Group, July
1999.

[11] U. Halfmann and W. E. Kühnhauser. Embedding security policies into a
distributed computing environment. SIGOPS Oper. Syst. Rev., 33(2):51–
64, 1999.

[12] B. Horowitz, N. Magnusson, and N. Klack. Telia’s service delivery
solution for the home. Communications Magazine, IEEE, 40:120–125,
2002.

[13] V. Kapsalis, K. Charatsis, M. Georgoudakis, E. Nikoloutsos, and G. Pa-
padopoulos. A SOAP-based system for the provision of e-services.
Computer Standards & Interfaces, 26:527–541, October 2004.

[14] A. Kung, B. Jean-Bart, O. Marbach, and S. Sauvage. The EHS European

Home Systems Network. Trialog, 2004.
[15] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558 – 65, 1978/07/.
[16] J.-Y. Oh, J.-H. Park, G.-H. Jung, and S.-J. Kang. CORBA based core

middleware architecture supporting seamless interoperability between
standard home network middlewares. Consumer Electronics, IEEE

Transactions on, 49:581–586, 2003.
[17] J. H. Park, M. J. Lee, and S. J. Kang. Corba-based distributed and

replicated resource repository architecture for hierarchically configurable
home network. Journal of Systems Architecture, 51:125–142, February
2005.

[18] V. Sundramoorthy, P. H. Hartel, and J. Scholten. On consistency main-
tenance in service discovery. In 20th IEEE Int. Parallel & Distributed

Processing Symp. (IPDPS), April 2006.
[19] D. Valtchev and I. Frankov. Service gateway architecture for a smart

home. Communications Magazine, IEEE, 40:126–132, 2002.
[20] H. van Dijk, K. Langendoen, and H. Sips. ARC: a bottom-up approach

to negotiated QoS. In 3rd IEEE Workshop on Mobile Computing Systems

and Applications (WMCSA 2000), pages 128–137, Monterey, CA, Dec.
2000.

[21] European committee of manufacturers of domestic equipment. www.

ceced.org/.
[22] Digital living network alliance. www.dlna.org.
[23] TEAHA: The European Application Home Alliance. www.teaha.

org.
[24] Zigbee:. www.zigbee.org.

