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ABSTRACT

The perfusion of the brain is essential to maintain brain function. Stroke is an example of a decrease in blood
flow and reduced perfusion. During ischemic stroke the blood flow to tissue is hampered due to a clot inside
a vessel. To investigate the recovery of stroke patients, follow up studies are necessary. MRI is the preferred
imaging modality for follow up because of the absence of radiation dose concerns, contrary to CT. Dynamic
Susceptibility Contrast (DSC) MRI is an imaging technique used for measuring perfusion of the brain, however,
is not standard applied in the clinical routine due to lack of immediate patient benefit. Several post processing
algorithms are described in the literature to obtain cerebral blood flow (CBF). The quantification of CBF relies
on the deconvolution of a tracer concentration-time curve in an arterial and a tissue voxel. There are several
methods to obtain this deconvolution based on singular-value decomposition (SVD). This contribution describes
a comparison between the different approaches as currently there is no best practice for (all) clinical relevant
situations. We investigate the influence of tracer delay, dispersion and recirculation on the performance of the
methods. In the presence of negative delays, the truncated SVD approach overestimates the CBF. Block-circulant
and reformulated SVD are delay-independent. Due to its delay dependent behavior, the truncated SVD approach
performs worse in the presence of dispersion as well. However all SVD approaches are dependent on the amount
of dispersion. Moreover, we observe that the optimal truncation parameter varies when recirculation is added to
noisy data, suggesting that, in practice, these methods are not immune to tracer recirculation. Finally, applying
the methods to clinical data resulted in a large variability of the CBF estimates. Block-circulant SVD will work
in all situations and is the method with the highest potential.

Keywords: Dynamic susceptibility contrast, perfusion, deconvolution, stroke, recirculation, reformulated SVD,
block-circulant SVD, singular value decomposition

1. INTRODUCTION

Cerebral perfusion is defined as the delivery of blood to the tissues at the capillary level.1 Stroke is a vascular
disease characterized by a decrease in the blood flow and thus reduced perfusion in the brain. It is the second
cause of death and a leading cause of long-term disability worldwide. Ischemic stroke, caused by the blockage of
a vessel that supplies part of the brain, is the most common type of stroke.2

The imaging techniques used in the assessment of perfusion are Positron Emission Tomography (PET),3, 4 Sin-
gle Photon Emission Computed Tomography (SPECT),5 Xenon-enhanced Computed Tomography (Xe-CT),6, 7

dynamic perfusion computed tomography8, 9 and Magnetic Resonance Imaging (MRI).10, 11 The two MRI perfu-
sion techniques available are Arterial Spin Labelling (ASL) and Dynamic Susceptibility Contrast (DSC) MRI.

All these techniques provide quantitative measures of perfusion, such as the Cerebral Blood Volume (CBV),
the Cerebral Blood Flow (CBF) and the Mean Transit Time (MTT). H2

15O PET is usually selected as gold
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standard in brain perfusion imaging.3, 4, 12 For clinical purposes, this method has substantial disadvantages,
including the need for an arterial catheter to sample the arterial tracer concentration over time, the use of
radioactivity and the limited availability of PET centers with a cyclotron for the required on-site production of
the radionuclide.

DSC-MRI is a widely used technique. The fact that it is less invasive than PET makes it more suitable for
monitoring the progression of the stroke or the effect of a therapy in follow up studies. It consists of an intravenous
injection of a contrast agent (typically a gadolinium chelate, Gd-DTPA) and the subsequent monitoring of its
first passage in the brain tissues via the fast acquisition of a series of T2 or T ∗

2 weighted images.13 The resulting
signal-time curves can be post-processed using the perfusion model of Meier-Zierler for non-diffusible tracers in
order to determine the hemodynamic parameters.14

First, the signal intensities of all voxels are converted to tracer concentrations. Most authors assume that the
tissue concentration of the contrast agent is proportional to the change in the transversal relaxation rate.1, 15–17

The relationship between the signal intensity, S(t), and the change in relaxation rate, ∆R2(t), during the passage
of the bolus is then given by

S(t) = S0e
−TE·∆R2(t), (1)

where S0 denotes the precontrast signal and TE the echo time. The concentration C(t) can then be calculated
using

C(t) = −
1

TE
ln

(

S(t)

S0

)

, (2)

where C(t) is the contrast agent concentration of the voxel at time t. By detecting the arterial as well as the tissue
concentration as a function of time, the cerebral blood flow (CBF) can be calculated. The arterial concentration
time curve is also called the arterial input function (AIF) because this curve is the theoretical concentration-time
input for all tissue voxels. In practice it is not possible to measure the true AIF for every voxel. Usually one
AIF is estimated for the whole brain from a major vessel such as the middle cerebral artery by selection of one
voxel or a region of interest (ROI). Therefore, the estimated AIF may undergo delay and/or dispersion between
the position of AIF recording and the tissue voxels.1 This needs to be taken into account in the determination
of the perfusion parameters.

The CBF is defined as the volume of blood moving through a given brain region per unit time, representing
the capillary flow in the tissue. CBF has units of milliliters of blood per 100 gram of brain tissue per minute
(mL/100 g/min).18 To calculate the CBF the residue data R(t) has to be known. R(t) is the fraction of the
injected tracer still present in the vasculature at time t after an in theory infinitely short injection of tracer into
the artery. R(t) can be expressed as

R(t) = 1−

∫ t

0

h(t)dt, (3)

with h(t) the probability density function of the capillary transit times.1, 17 The product CBF ·R(t) is called the
tissue impulse response function, as it is the tissue concentration as a result of the infinitely short AIF. However,
in fact the AIF is distributed in time. The tissue concentration-time curve becomes the convolution of the tissue
impulse response function and the shape of the AIF

Ct(t) = CBF

∫ t

0

AIF (τ)R(t − τ)dτ

= CBF ·R(t)⊗AIF (t),

(4)

where ⊗ denotes convolution.1, 17



When an appropriate AIF is selected, the CBF can be determined by deconvolution. Because R(0) = 1, CBF
should theoretically be equal to the initial height of the tissue impulse response function. However, this is only
valid in the absence of delay and dispersion. Therefore, the maximum of R(t) · CBF is commonly chosen as
value for CBF.15, 17, 19

Several methods have been proposed to perform the deconvolution of the concentration-time curves. A
reliable method is necessary for the correct quantification of subtle perfusion changes that can be detected in
follow up scans. In this work we provide a comparison of the different quantification methods that are currently
used with the aim of finding the most accurate and reliable one. We evaluate the effect of the presence of delay,
dispersion and recirculation in the performance of these methods using simulated data for which the perfusion
values are known. Finally, we assess the variability of the results obtained with the different methodologies in
datasets from 15 Transient Ischemic Attack (TIA) patients.

This article is organized as follows: Section 2 reviews the existing deconvolution approaches; section 3 de-
scribes how the data was simulated; section 4 explains the comparisons that are made, including both the
description of the methods used and the respective results. In section 5, the results obtained with clinical data
are presented. Finally, a general conclusion will be drawn in section 6.

2. DECONVOLUTION APPROACHES

The available deconvolution approaches can be divided into three main categories; model-dependent, model-
independent and statistical approaches. This study is about the model-independent deconvolution approaches
which do not require a priori assumptions regarding the vascular structure. The deconvolution function is
generally not robust, which means that an infinitesimal change in CTissue(t) can cause a finite change in R(t).
There are Fourier and algebraic techniques to deconvolve Eq. (4) which mainly differ in the way they moderate
the effects of noise in the measurements. This study is focussed on the singular value decomposition (SVD)
approach which is a factorization method widely used in algebraic linear inverse problems.

2.1 Singular Value Decomposition

Assuming that tissue and arterial concentrations are measured at equidistant time points t1, t2, t3, . . . , tN , the
convolution theorem can be approximated by a matrix equation1, 13, 17

Ct(tj) = CBF

∫ tj

0

AIF (τ)R(t − τ)dτ

≈ CBF∆t

j
∑

i=0

AIF (ti)R(tj − ti),

(5)

Equation (5) can also be written in matrix form as
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, (6)

which can be solved iteratively for the elements of R(tj). The AIF matrix is a lower triangular matrix and ∆t
represents the repetition time (TR).

The algebraic approach assumes that arterial and tissue concentrations are constant between measurements.
However, in dynamic MR imaging, both concentrations are expected to show variation within the temporal
resolution of the measurements. Therefore Østergaard et al.17 have introduced a modification of the AIF matrix
in Eq. (6) which assumes that AIF and R(t) both vary linearly with time. The elements of the AIF matrix
become



AIFij =

{

∆t(AIF (ti−j−1) + 4AIF (ti−j) +AIF (ti−j+1))/6 0 ≤ j ≤ i
0 else.

(7)

With the SVD approach the pseudo inverse of the AIF matrix can be calculated. Using the SVD the AIF
matrix can be decomposed into three matrices

AIF = U ·













w1 0 . . . . . . 0
0 w2 . . . . . . 0
0 0 . . . . . . 0
. . . . . . . . . . . . . . .
0 0 . . . . . . wN













·VT = U ·W ·VT (8)

where U and V are orthogonal matrices, so their inverses are equal to their transposes. The inverse of AIF can
then be written as20

AIF−1 = V ·

[

diag

(

1

wj

)]

·UT . (9)

The tissue impulse response function, CBF ·R(t), can thus be calculated using

CBF ·R(t) = V ·

[

diag

(

1

wj

)]

·
(

UTC(t)
)

. (10)

The smallest singular values in matrix W correspond to high frequencies. In an actual calculation of the
SVD, even singular values that theoretically should be zero will show up as extremely small but non-zero values
in the matrix W. This is caused by round-off errors and noise in the data. A direct application of the calculated
matrix W will produce large oscillations in the final solution. Regularization refers to mathematical methods
which improve the stability in such problems.

Truncated SVD (tSVD) is a straightforward regularization method which treats all singular values below a
certain threshold (PSVD ) as exact zeros. Using this method the effects of noise are reduced. However, a high
threshold can lead to underestimation of the CBF.21

2.1.1 Alternative SVD approaches

The standard SVD approach is delay sensitive. Nowadays there are new, slightly modified, SVD approaches such
as reformulated SVD22 (rSVD) and block-circulant SVD15 (bcSVD) which are reported to be delay insensitive.

With rSVD the first nonzero estimate of the residue function is obtained at time t = TOFFSET . The
parameter TOFFSET must represent a time larger than the absolute value of the largest expected experimental
negative arrival time plus the duration of signal distortions introduced when discarding singular values. With
discrete Ct(t) data, this method is computationally equal to shifting the experimental Ct(t) values by n samples
corresponding to TOFFSET . After this computational time shift the SVD approach is equal to the previously
described SVD approach.22

With bcSVD both the AIF matrix and the Ct(t) vector are changed. By zero-padding the N-points AIF-time
and the tissue concentration-time curves to length L, where L ≥ 2N, time aliasing can be avoided. Secondly,
the AIF matrix is changed to

AIF#
ij =

{

AIFi,j 0 ≤ j ≤ i
AIFL+i,j,0 else.

(11)

Using this AIF matrix and the zero-padded tissue concentration curve with length L, the standard SVD approach
can be followed.15



3. DATA SIMULATION

The different postprocessing methods can be compared using simulated data with known perfusion values. During
the simulations first the AIF is simulated and subsequently the tissue concentration curves can be calculated.

3.1 Simulated Arterial Input Function

The AIF is simulated using a gamma-variate function with a shape and size that is obtained using a standard
bolus injection scheme.17 The analytical expression of the AIF is

AIF (t) =

{

0 t ≤ t0
A (t− t0)

a · e−(t−t0)/b t > t0
(12)

with A a scaling factor, t0 the contrast arrival time and a and b are shape parameters which depend on the
vasculature and blood flow. Parameters used in this study where A = 1, t0 = 20 s, a = 3.0 and b = 1.5 s.
Subsequently the recirculation is calculated by convolving the obtained AIF, with an additional delay of 8
seconds, with an exponential with a time constant of 30 seconds. All datasets are simulated with a TR of 1
second and over a time range of 250 seconds to avoid truncation of the curves.

3.2 Simulated Tissue Concentration Curve

To investigate the performance of the different deconvolution methods, tissue curves produced with an exponential
residue functions R (t) are used. The exponential residue function describes the vasculature as one single, well-
mixed compartment and is given by

R (t) =

{

0 t < 0

e−
t

MTT 0 ≤ t.
(13)

The MTT is the mean transit time which is the mean time for blood to perfuse a volume of tissue.

The tissue concentration curves are calculated using Eq. (4) with different values for CBF, CBV and MTT.
Subsequently, the obtained concentration-time curves are converted to signal intensity-time curves using

S(t) = S0e
−k·C(t)·TE (14)

which is equivalent to Eq. (1) including a proportionality factor k which is used to match a typical peak drop in
signal intensity. For all simulations, a proportionality factor k is selected that resulted in a 40% peak signal drop
at a flow rate of 60ml/100g/min and CBV = 4%. These values correspond to values typically found in human
gray matter.15 Furthermore S0 depends on scanner hardware and software and is entirely arbitrary. During
the simulations S0 = 100 and TE = 30 ms are used. The signal intensity-time curve for the AIF is similarly
modeled as S(t), except that AIF is substituted for C(t). The proportionality constant, k, is in this case selected
to generate a peak signal drop of 60% as done by Wu et al.15 To determine absolute flow values at the end of
the calculations, the calculated CBF values are rescaled by the k-factors used.

3.3 Add Delay and Dispersion

To simulate delay and dispersion, the model described by Calamante et al.23 is used. Simulation of dispersion
is equivalent to a convolution of the estimated AIF with an effective residue function, R(eff) = h∗ (t)⊗R, with
h∗ (t) a vascular transport function23

h∗(t) = β · e−βt (15)

as a first approximation for the vascular transport function. With this approximation the assumption as a well-
mixed compartment is used for the vasculature. 1/β corresponds to the effective MTT of the distance between
AIF recording and the tissue.

Using this model for h∗(t), the effective residue function can be written as

R(eff)(t) =
β

(

1
MTT − β

) ·
(

e−βt − e−t/MTT
)

. (16)

This effective residue function is used instead of the previously described residue function to simulate dispersion.
Subsequently delay of the curve can be simulated by shifting the obtained tissue curve with a time delay, td.



3.4 Add Noise

The obtained signal intensity-time curves are expanded into 1024 copies. Zero-mean random Gaussian noise is
added to each curve to generate 1024 different curves with signal to noise ratios (SNR) of 20 and 100. The SNR
is determined at the baseline of the signal curve.

3.5 Optimal PSVD Calculation

Comparisons between the deconvolution methods are performed using the optimal truncation parameter, PSVD .
The optimal PSVD is calculated using the method described by Wu et al.15 For PSVD values between 0.1% and
90%, the error at each of the 1024 iterations is calculated as

Et =
1

Nf
·

Nf
∑

1

|F − F ′| , (17)

where F is the true CBF value, F ′ the estimated CBF value and Nf the number of simulated CBF values. The
optimal PSVD is determined as the value that minimized the averaged error simultaneously over all CBV values
and all 1024 iterations assuming zero time delay and no dispersion.

4. COMPARISONS

4.1 Recirculation

Kosior et al.19 reported that CBF calculations are immune for tracer recirculation using noise-free concentration
curves. In practice all MRI signals contain noise, therefore it is important to investigate whether CBF calculations
are immune for tracer recirculation in the presence of noise as well.

4.1.1 Methods

The CBV of the simulated data is either 4% or 2%. For CBV 4% the CBF is varied between 10-70 mL/100
g/min in 10 mL/100 g/min increments. For CBV 2% CBF values are evaluated from 5-35 mL/100 g/min using
5 mL/100 g/min increments in order to maintain the same range of MTT values. To validate the findings by
Kosior et al.19 first the CBFfirstpass/CBFrecirculation is calculated for noise-free curves using a non-weighted
AIF matrix and a PSVD of 5e−7. Subsequently noise is added to the curves and the optimal PSVD values are
determined for tSVD and bcSVD using the method described in subsection 3.5.

4.1.2 Results

The CBFfirstpass/CBFrecirculation ratio calculated with all deconvolution approaches with noise-free curves is
one. This means that the CBF estimates are not influenced by tracer recirculation. For curves including noise
truncation of the eigenvalues is necessary. In Fig. 1 the mean error curves for determination of the optimal
PSVD ’s using tSVD and curves with SNR 20 are depicted. The optimal PSVD is represented by the minimum
of the error curve. The optimal PSVD for curves with recirculation (solid-line) is lower compared to the optimal
PSVD for curves without recirculation (dashed-line). However, the mean error and standard deviation of both
types of curves is comparable. The obtained PSVD ’s are listed in Table 1.

Table 1. Optimal PSVD ’s for curves with and without recirculation using tSVD and bcSVD.

SNR with recirculation without recirculation

tSVD
20 10% 20%
100 4% 10%

bcSVD
20 7.5% 10%
100 2% 3%
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Figure 1. Mean error curve of curves with (solid-line) and without (dashed-line) recirculation using tSVD. The depicted
graph is for SNR 20. The errorbars represent 1SD.

4.1.3 Discussion

Kosior et al.19 have shown that tracer recirculation does not impact estimations of CBF using noise-free tissue
concentration curves. These findings are validated for both tSVD and bcSVD. Although CBF estimates are
theoretically not influenced by the presence of tracer recirculation. Figure 1 shows that there is a difference in
optimal PSVD for curves with and without recirculation when noise is added to the curves. Using one fixed PSVD

for a dataset containing curves both with and without recirculation, the estimation error will differ between the
voxels. However, if it would be possible to determine an optimal PSVD for each voxel seperately, the error and
the standard deviation of the error are still equal because these are based on curves with the same SNR.

4.2 Delay and Dispersion

The AIF is usually selected in a major vessel. Therefore delay and dispersion can occur between the location of
AIF measurement and the tissue.

4.2.1 Methods

To investigate the deconvolution approaches in the presence of delay or dispersion three tissue concentration-time
curves are obtained with the perfusion values listed in Table 2. These curves represent gray and white matter
and hypoperfused tissue.24

Table 2. CBV, CBF and MTT values of the three different tissue types.

Tissue
CBV CBF MTT

(ml/100g) (ml/100g/min) (s)
Gray matter 4 60 4
White matter 2 20 6
Hypoperfused tissue 1.8 12 9

The optimal PSVD is dependent on the CBF value, therefore the optimal value is calculated using the
described concentration curves including curves with CBF - 10% and CBF+10%. In summary, three CBF values
combined with three CBV values give nine concentration time curves involved in the optimal PSVD calculation.
The calculated optimal PSVD ’s are used for the subsequent comparisons. The PSVD determined using tSVD is
used for rSVD as well.

To evaluate the sensitivity of CBF estimates to differences in tracer arrival times, i.e. delay, the tissue curves
are shifted with respect to the AIF from -4 till +6 seconds with increments of one second. To evaluate the
sensitivity to dispersion, data is simulated with values of 1/β up to 5.5 seconds. First the analysis is done using
noise-free curves and subsequently using curves with a SNR of 20 and 100.



4.2.2 Results

The optimal PSVD ’s for SNR 20 and 100, for both tSVD and bcSVD are listed in Table 3. These values are used
during the following steps of this investigation. This comparison can be divided into two parts, namely CBF
estimates calculated in the presence of delay and CBF estimates in the presence of dispersion. First the results
related to delay are described.

Table 3. Optimal PSVD values using tSVD and bcSVD for curves with the perfusion values listed in Tab. 2 including
CBF-10% and CBF+10% curves.

SNR tSVD bcSVD
20 10% 7.5%
100 5% 2%

Figure 2 shows the CBFestimated/CBFtrue ratio for noise-free curves calculated using tSVD and bcSVD.
rSVD shows exactly the same results as bcSVD, for clarity only bcSVD is shown. CBF estimates calculated
with the tSVD approach are overestimated in the presence of negative delays and well estimated with delays
greater than zero. Furthermore the figure shows that CBF estimates calculated with bcSVD and rSVD are delay
independent within this range of delays.
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Figure 2. The effect of delay on CBF estimates of noise-free hypoperfused tissue curves. The plot shows the ratio between
the CBF estimates and the true CBF. The graph includes tSVD (dashed-line) and block-circulant SVD (dotted-line).

In the presence of noise the same patterns can be recognized. Figure 3 shows the CBFestimated/CBFtrue

ratio for CBV 4% and SNR 100. It is found that regardless of the CBV and CBF values tSVD overestimates
CBF for negative delays and performs equal to bcSVD and rSVD for delays greater than one second.

The CBFestimated/CBFnodispersion ratio (solid-line) for noise-free concentration curves in Fig. 4 shows that
all deconvolution approaches perform equal and are dependent on the amount of dispersion. When noise is added
to the curves dependency on dispersion is seen as well. The figure shows that the delay independent approaches
provide a higher CBFestimated/CBFnodispersion ratio compared to delay dependent approaches.

4.2.3 Discussion

The CBFestimated/CBFtrue ratio shows that the CBF estimates calculated with the tSVD approach are depen-
dent of the delay. In the presence of negative delays, i.e. the peak of the tissue concentration curve will appear
before the peak in the AIF, the tSVD approach will overestimate the CBF values. For delays equal to or larger
than zero seconds tSVD becomes delay independent. bcSVD and rSVD approaches are delay independent for
negative delays as well. Also when noise is added to the curves, bcSVD and rSVD are able to estimate CBF
near the true CBF for negative delays. With noise the tSVD approach is delay independent for delays larger
than one second.

The bcSVD and rSVD approaches seem to be delay independent. However, the delay is varied from -4 till
6 seconds with increments of 1 second, which is equal to the TR of the signal. Salluzzi et al.25 reported that
the CBFestimated/CBFtrue changes with a period equal to TR. This variation is unwanted. When different
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Figure 3. The effect of delay on CBF estimates. The plot shows the ratio between the CBF estimates and the true CBF for
a curve representing gray matter with a SNR of 100. The tSVD (dashed-line), rSVD (dash-dot-line) and block-circulant
SVD (dotted-line) are shown together with the ideal ratio (solid-line).
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Figure 4. The effect of dispersion on CBF estimates. The plot shows the ratio between the CBF estimates and CBF
estimate of a curve without dispersion representing gray matter with a SNR of 100. The solid line shows the CBF
estimates calculated with noise-free curves. tSVD (dashed-line), rSVD (dash-dot-line) and bcSVD (dotted-line) are the
approaches used.



voxels have different delays, the error of the CBF estimates will differ between the voxels as well. So further
investigation to the delay independency of block-circulant and rSVD is necessary.

When dispersion is added to the noise-free tissue concentration curves, all approaches are unable to reproduce
the true CBF. This is reported in several other articles as well.23, 26, 27 The performance of all methods using
noise-free curves is equal. However, when noise was added to the curves, the delay independent methods perform
better.

Adding dispersion to the tissue concentration curves causes broadening of the bolus and subsequently a
shift of the peak. According to Ko et al.26 this is the reason why tSVD underestimates the CBF more in
the presence of bolus dispersion. This is found in our investigation as well, namely with zero seconds delay,
the tSVD approach gives a higher CBF estimation compared to one second delay (see Fig. 3). Therefore the
CBF estimate without dispersion and thus zero delay is higher for tSVD compared to bcSVD and rSVD. For a
dispersion constant 1/β = 0.25 seconds a delay of one second exists which causes a change in CBF estimate due
to both the bolus broadening and the additional delay. After one second delay, comparable to 1/β = 0.25 s, the
CBFestimated/CBFtrue ratio based on the delay becomes constant and the CBF estimates are only dependent
on the amount of dispersion. Therefore the shape of the curves become equal after 1/β = 0.25 s.

5. CLINICAL DATA

The analysis of the clinical data is performed retrospectively. All data is obtained between May 2006 and May
2008. The data of 15 patients, 10 female and 5 male, (age: 55.7 ± 11.4 (mean ± SD)) suffering from a TIA is used.
Contrast-enhanced T2* weighted images were collected using a gradient-echo sequence (TR/TE = 2280ms/47ms)
on a clinical MR scanner (Siemens Medical Solutions, Avanto, 1.5T). During the imaging sequence, a contrast
agent bolus (Dotarem) was injected. All studies consisted of 19 slices with a thickness of 5 mm collected over 30
timepoints.

When clinical data is used, the true perfusion values are unknown. Therefore the CBF valus estimated using
the different methods are compared in order to evaluate their variability.

5.1 Methods

From the clinical MR data, first the skull is removed from the dataset by thresholding of the image. In this
investigation an automatic AIF-identification algorithm is used as described by Caroll et al.28 All data are
quantified by tSVD, rSVD and bcSVD approaches with the PSVD set to 22.5% for tSVD and rSVD and 15%
for bcSVD. These PSVD ’s are based on simulated data with an SNR of 20, which is comparable to the SNR of
clinical data.15, 29

After calculation of the CBF maps, the percentage difference between the CBF values given by the methods
is calculated. This is the difference between the two CBF estimates divided by their average value, which can
be described in equation form by

%Difference =
M1 −M2

(M1 +M2)/2
· 100, (18)

where M1 and M2 are the CBF values of method 1 and method 2 respectively. Finally the mean percentage
difference and its standard deviation over all voxels in the dataset is calculated.

5.2 Results

Figure 5 shows one example of a percentage difference image for one brainslice. The figure shows that the
percentage difference is not uniform over the whole brain slice. For example in the figure, the percentage
difference in the white matter is negative, while the percentage difference in gray matter is positive. The mean
percentage difference and the mean of the standard deviation calculated over 15 patients was 26.9 ± 26.8 for
tSVD vs. rSVD, -7.25 ± 16.0 for tSVD vs. bcSVD and -33.8 ± 25.7 for rSVD vs. bcSVD.
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Figure 5. Percentage difference between tSVD and rSVD. A negative percentage means that tSVD provides a higher CBF
estimate than rSVD. The figure shows that the percentage difference is not equal for all voxels in the brainslice. This is
brain slice 13 of patient 6.

5.3 Discussion

The percentage difference is calculated over the whole acquired dataset. In some datasets, voxels of the skull are
still included in the calculations because they had the same signal intensity as brain voxels. The large standard
deviation shows that the percentage difference is not equal for all voxels, i.e. there is a large variability of the
results.

The percentage difference seems to be related to the tissue type. To investigate the differences between the
tissue types, ROIs should be drawn in the image and compared with each other. Then information about the
CBF estimates between the different methods is obtained.

Finally, none of the datasets show regions of low perfusion. This was to be expected, because the datasets
are from patients with a transient ischemic attack (TIA) instead of a stroke.

6. CONCLUSION

In Section 4.1 it is shown that the CBF estimates are immune for tracer recirculation using noise-free curves.
However when noise is added to the curves, a difference in the optimal PSVD is observed. This optimal PSVD

shifts cause differences in estimation errors between voxels.

tSVD is shown to be a delay dependent SVD approach, while rSVD and bcSVD are both delay independent.
Furthermore it is shown that all approaches are dependent on the amount of dispersion. However, delay inde-
pendent methods are preferable because of the small amount of delay which occurs during dispersion. The rSVD
needs a manual input, namely the maximum amount of timeshift, and bcSVD does not use any manual input.
Therefore the bcSVD method will work in all situations and is the method with the highest potential for use in
the evaluation of follow up studies.

Using clinical data, a large variability of results can be observed when the different methods are applied.
This suggests that further validation studies need to be carried out in order to find the best algorithm that is
sensitive to detect the small changes in the patient’s perfusion in the recovery process after ischemic stroke as
(to be) revealed in follow up MRI scans.
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