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Abstract. The k-means algorithm is the method of choice for clustering
large-scale data sets and it performs exceedingly well in practice. Most
of the theoretical work is restricted to the case that squared Euclidean
distances are used as similarity measure. In many applications, however,
data is to be clustered with respect to other measures like, e.g., relative
entropy, which is commonly used to cluster web pages. In this paper,
we analyze the running-time of the k-means method for Bregman di-
vergences, a very general class of similarity measures including squared
Fuclidean distances and relative entropy. We show that the exponential
lower bound known for the Euclidean case carries over to almost every
Bregman divergence. To narrow the gap between theory and practice, we
also study k-means in the semi-random input model of smoothed anal-
ysis. For the case that n data points in R? are perturbed by noise with
standard deviation o, we show that for almost arbitrary Bregman di-
vergences the expected running-time is bounded by poly(n\/g7 1/0) and
E* . poly(n,1/0).

1 Introduction

Clustering a set of objects into a certain number of classes so as to maximize the
similarity of objects in the same class is a fundamental problem with applications
in various areas like information retrieval, bioinformatics, and data compression.
Usually the objects are represented by points in R?, and they are to be clustered
into k classes Cy, .. .,Cy that can be represented by centers ¢y, ..., c; € R? such
that the sum Zle > ecc, 4(x, ¢;) becomes minimal for some distance measure
d. A common distance function d are squared Euclidean distances but in many
practical applications other distance measures are required. For instance, when
clustering text documents like web pages often the bag-of-words model [7] is
applied, in which the objects to be clustered are probability distributions over
the set of all words. A popular distance measure for probability distributions
is the Kullback-Leibler divergence (KLD, also known as relative entropy). Both
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squared Euclidean distances and KLD are special cases of Bregman divergences,
a very general class that contains most practically important distance measures.

Even though a lot of theoretical research has been conducted on clustering
algorithms, the by far most successful algorithm in industrial and scientific appli-
cations is the seemingly ad hoc k-means method [6], a local search algorithm due
to Lloyd [12]: Start with an arbitrary set of k centers and repeat the following
two steps until the process stabilizes: 1) Assign every data point to its closest
center. 2) Readjust the positions of the centers such that they are optimal for
the current assignment. The k-means method works very well in practice. One
of its distinguished features is its speed: It has been observed that the number of
iterations it needs to find a local optimum is much smaller than the number of
objects to be clustered [8, Section 10.4.3]. This is in stark contrast to its worst-
case running-time: The only upper bound is n®%*4) [11], which is based on the
observation that no clustering appears twice in a run of k-means. On the other
hand, Vattani [15] showed that k-means can run for 22(") iterations in the worst
case. This lower bounds holds for all d > 2.

To reconcile theory and practice, Arthur and Vassilvitskii considered the k-
means method for squared Euclidean distances in the framework of smoothed
analysis. This notion has been introduced by Spielman and Teng [14] and it is
based on a two-step input model: An adversary specifies an instance, which is
then subject to slight random perturbation. The smoothed running-time is de-
fined to be the worst expected running-time the adversary can achieve. If it is
small, then (artificial) worst-case instances might still exist, but they are encoun-
tered only with very small probability if inputs are subject to some small amount
of random noise. In practice, such noise can come, e.g., from measurement errors
or numerical imprecision. Unlike worst-case or average-case analyses, smoothed
analyses are neither dominated by single worst-case instances nor by completely
random instances, and they lead to more realistic conclusions. Arthur and Vas-
silvitskii [4] showed that for squared Euclidean distances the smoothed running-
time of k-means is poly(n*,1/0) if the data points are perturbed by Gaussian
noise with standard deviation o. We improved this bound to poly(n\/g7 1/0) and
we additionally obtained a bound of k*¢ - poly(n,1/c) [13]. Recently, Arthur et
al. [3] showed that the smoothed running-time of k-means is polynomial in n
and 1/0.

With only a few exceptions [1,2, 5], the theoretical knowledge about k-means
clustering is limited to the case of squared Euclidean distances. In this paper, we
initiate the theoretical study of the k-means method for general Bregman diver-
gences. We show that the lower bound of 2(" for the worst-case running-time is
valid for almost every Bregman divergence, leading, as for squared Euclidean dis-
tances, to a huge discrepancy between theory and practice for many commonly
used distance measures like Kullback-Leibler divergence or Itakura-Saito diver-
gence. To obtain more realistic theoretical results, we also analyze the smoothed
running-time of k-means for general Bregman divergences. We show that for al-
most arbitrary Bregman divergences, the smoothed running-time of k-means is
upper-bounded by poly(n¥*,1/¢) and k*? - poly(n,1/c).



1.1 k-Means Method

An instance for k-means clustering is a set X C R4 consisting of n points. The
aim is to find a clustering Ci,...,Cr of X, ie., a partition of X', as well as
cluster centers cy,...,c; € R? such that the potential Zle > e, do(,c;) is
minimized, where dg denotes some distance measure on R%. Given the cluster
centers, every data point should be assigned to the cluster whose center is closest
to it. The other way round, given the clusters, the centers cq,...,c; should be
chosen so as to minimize the potential. In the next section, we will see that for
Bregman divergences this is the case if the centers are chosen as the centers
of mass, i.e., ¢; = ﬁ erci . The k-means method for Bregman divergences
proceeds now as follows (observe that since the potential decreases in every step,
no clustering occurs twice, and the algorithm eventually terminates):

1. Select cluster centers ci,...,c, € R? arbitrarily.

2. Assign every x € X to the cluster C; whose cluster center ¢; is closest to it.
(If the closest center is not unique and a point is already assigned to one of
the closest clusters, then do not change its assignment.)

3. Set ¢; = ﬁ Y eec, T

4. If clusters or centers have changed, goto 2. Otherwise, terminate.

1.2 Bregman Divergences

One of the most commonly used functions is dg(, ¢) = ||z —c||?, i.e., squared Eu-
clidean distances. But also other distance measures are common, e.g., Kullback-
Leibler divergence [7]. Both are special cases of Bregman divergences [5].

Definition 1. Let X C R?, and let & : X — R be a strictly convex function
such that @ is differentiable on the relative interior ri(X) of X. The Bregman
divergence dg : X X ri(X) — [0,00) is defined as

dg(x,c) = &(z) — D(c) — (x — c)TVP(c) .

Here, V&(c) is the gradient of @ at ¢. The basic intuition behind Bregman
divergences is the following: ¢ corresponds to a cluster center and x to a data
point. Let &(z) = ®(c) + (z — ¢)TV®(c) be the linear interpolation of @(z) from
c. Then dg(w, ¢) measures how well this interpolation is: dg(z,c) = &(x) — &(z).
Since @ is strictly convex, we have ®(z) < &(x) with equality only for z = c.
Thus, dg is non-negative and dg(z,¢) = 0 if and only if z = c.

For a finite set of points C' C X, we denote the center of mass of C by
cm(C) = ﬁ > scc ©- For Bregman divergences the potential can be expressed

in terms of the center of mass in the following way [5, Proposition 1]: For every ¢,
Z de(z,c) = Z dg(x,em(C)) + |C| - dg(cm(C), ) .
zeC zeC

In particular, this means that the center of mass minimizes the potential for a
given cluster C, as it does for squared Euclidean distances.



Another important property of Bregman divergences is that the bisector of
two centers ¢ and ¢/, i.e., the set {x € X | d¢(z,¢) = do(x, )}, is a hyperplane,
which follows immediately from the definition of dg. The only known worst-
case bound for the running-time of k-means on squared Euclidean distances
comes from the observation that no clustering can repeat during the execution
of k-means. This yields a bound of W < n3%? [3,11]. The proof of this bound
relies only on the fact that the bisectors are hyperplanes. Hence, also for general
Bregman divergences, the worst-case number of iterations cannot exceed W.

In the following, we present some prominent Bregman divergences.

Mahalanobis Distances. Let us assume that we want to cluster objects that are
each characterized by d quantities. If these quantities are independent, then clus-
ters should be hyperspherically-shaped and squared Euclidean distances provide
a good distance measure. However, if the coordinates are correlated, then clus-
ters are expected to have hyperelliptic shapes and squared Euclidean distances
are not the right measure. In that case, let B € R%*? be the covariance matrix of
the components of the data points and assume that it is invertible. This means
that the matrix B is symmetric and positive definite. Let A = B~!, then the
right distance measure taking into account the correlations is the Mahalanobis
distance d,, , for ma(z) = 27 Az. The gradient of ma is Vma(c) = 2Ac, which
yields d,, , (z,¢) = (x — )T A(x — ¢).

Kullback-Leibler Divergence and Generalized I-Divergence. The Kullback-Leibler
divergence (KLD, relative entropy) is a very popular Bregman divergence. Here,
X={xeR |z > O,Zlexi < 1} and an element z = (x1,...,24) €
X represents a probability distribution on a discrete set with d + 1 elements
(where (z1,...,2441) with 2441 = 1 — Z?Zl x; is the vector of probabilities).
For KLD(z) = Zfill x;log(z;), we obtain dkrp(z,c) = Zfill z; log(£:), where

Tgrr = 1 — Zle x; and ¢gy1 = 1 — Zle ¢;. Intuitively, the Kullback-Leibler
divergence is a measure for the expected difference in the number of bits that
are required to code samples drawn according to  when, on the one hand, we
use an optimal code based on ¢ and, on the other hand, we use an optimal code
based on z. KLD plays a crucial role in a variety of applications like clustering
text documents and image classification [7].

We will also consider the generalized I-divergence (GID), which generalizes
KLD to a larger domain: For this, we have X = {z € R? | z > 0}, the po-
tential function GID(z) = Z?Zl x;log(z;), and dgip(z,c) = Z?:l z;log(Zh) —

S (@i — ).

Ttakura-Saito Divergence. Another Bregman divergence that is commonly used
in signal processing and in particular in speech processing is the Itakura-Saito
divergence (ISD) [5,10]. We have again X = {z € R? | z > 0}, and the potential
function is given by the Burg entropy ISD(z) = — Zgzl log(z;). From this, we

d x;

get the Bregman divergence disp(z,c) = 3 ;_; & —log(£*) — 1.



1.3 Perturbation Models for Bregman Divergences

If the Bregman divergence is defined on the whole space R?, i.e., if X = R?, then
it is often natural to assume that the points are perturbed by adding Gaussian
noise to them. More precisely, we can assume that an adversary is allowed to
place initially n points in [0,1]¢, and that each of these points is perturbed by
adding a Gaussian with standard deviation o to each of its coordinates.

On the other hand, if X is a proper subset of R?, as it is the case for KLD or
GID, then such a perturbation model cannot be applied as it might yield points
outside the feasible region X . For this reason, we decided to consider very general
perturbation models that need to satisfy only a couple of properties, which we
will summarize in the following. In Section 2, we present concrete perturbation
models with these properties for some special Bregman divergences.

We assume that the perturbation model is parameterized by some o € (0, 1]
that measures the amount of randomness in the sense that the smaller o is
chosen, the weaker is the perturbation. If every point is perturbed by Gaussian
noise, then o can be chosen as the standard deviation. We assume that the
following properties are satisfied for o € (0, 1]:

— For any ¢ > 0, any hyperplane H, and any point in x € X N [0,1]%, the
probability that x has a distance of at most € from H after the perturbation
is bounded from above by \/2/0.

— For any = € X N[0, 1]¢, the density of the perturbation of z is bounded from
above by (1/0)¢ on R%.

Let us remark two things about our assumptions on the perturbation model:
For Gaussian noise, the probability of a point being close to a hyperplane is even
bounded by /0. However, to gain some flexibility for choosing other perturba-
tion models, we use the weaker bound of \//c. Second, the bound on the density
immediately implies that for any ¢ > 0, any ¢ € R?, and any z € X N [0,1]¢,
the perturbed version of z lies in the hyperball with radius € and center ¢ with
probability at most (2¢/0)9.

Additionally, we need the property that perturbed points cannot be too far
away from their initial positions in X N [0,1]%. For this, let D be chosen such
that with probability at least 1 — W ™! every point from the perturbed point set
X is contained in the hypercube D = [~D, 1+ D]¢, where W < n®#? denotes
the worst number of steps. The bounds on the smoothed running-time that we
obtain depend polynomially on D. For Gaussian random vectors with mean in
[0,1] and standard deviation ¢ < 1, D can be chosen polynomially in n.

1.4 Parameterization

In this section, we make precise what we mean by “almost arbitrary Bregman
divergences.” To do this, we define a couple of parameters of Bregman diver-
gences. For the remainder of the paper we assume that X, the domain of the
distance measure, is a convex set.



For € > 0, let Z(g) be the interior of X N D that has a distance of at least &
to the boundary: Z(¢) = {z € X N D | dist(x, (X ND)) > €}.

For a given perturbation model, we choose £* such that Pr[z ¢ Z(¢*)] <
n~13, where x denotes the perturbed version of an arbitrary point in X N[0, 1]¢.
In the following, we use the notations Z = Z(¢*) and Z' = Z(¢*/(2n)). An
important property of this definition is the following: If A C X is a subset of the
data points, and A contains a point from Z, then cm(A) € Z(e*/n) C 7', i.e.,
the center of mass of A is also at a distance of at least £*/n from the boundary.

To relate the Bregman divergence dg to squared Euclidean distances, we
introduce two parameters £ and £ such that

Va,y € XND:do(z,y) > & |z —yl? and Vo,y € I': do(z,y) <& [lz—y|*.

Observe that for the definition of ¢’, only the interior of X N D is relevant. This is
important as otherwise £ would be unbounded for many Bregman divergences.
The ratio £’ /€ is closely related to the p in the notion of p-similarity introduced
by Ackermann et al. [2]. However, Bregman divergences like KLD, GID, or ISD
are not p-similar for any g on their whole domain. To make them p-similar, their
domains have been restricted such that all data points must be sufficiently far
away from the singularities. We emphasize that no such restrictions are necessary
for our smoothed analysis. There may be points close to the boundary of the
domain, but we can take special care of those points. This technical challenge is
the reason for the definition of Z and Z’ above.

We also need the following lower bound on the “second derivative” of @, which
IIVé(ﬁc)—V‘rP(y)H > 2¢

r—y -
for all x,y € X ND with z # y. Similarly, we need an upper bound (only for the

interi Vb (x)— VP
interior): Q' :=SUp, ye7s 4oz, W

follows by a simple calculation from the previous definition:

1.5 Our Results

In the following, we assume d < n, k < n, and d > 4, which are no severe
restrictions from a practical point of view. Let P be the maximal potential after
the first iteration of k-means, provided that all points of X lie in D.

Theorem 2. Let dg be a Bregman divergence. Then the smoothed running-time

of k-means is bounded from above by % -poly(n‘/E, %) and by P - kke . gif/; .
1

poly(n, ), where the polynomials are independent of d, k, and the parameters.

The second bound in the theorem yields a polynomial smoothed running-time if
k,d € O(y/logn/loglogn). Indeed, k and d are usually much smaller than n in
practice.

On the negative side, in Section 3, we transfer the lower bound of 2(") for
squared Euclidean distances to all good-natured Bregman divergences, where
“good-natured” means that all third order derivatives exist and are bounded in
a small region, which includes Mahalanobis distances, KLLD, GID, and ISD.



1.6 Technical Contribution

In an earlier analysis [13], we presented two different approaches for analyzing
the smoothed running-time, leading to upper bounds of k¥ - poly(n,o~!) and

poly(nﬂ,afl) for squared Fuclidean distances. Both of these approaches are
based on a novel lemma about perturbed point sets, stating that, given any
Voronoi partition of the point set, it is unlikely that many points are close to
the bisectors [13, Lemma 2.1]. Clearly, the structure of the smoothed analy-
sis presented in this paper is similar to the earlier one [13]. However, we had
to tackle several severe problems when transferring the results from squared
Euclidean distances to general Bregman divergences. First of all, the proof of
the aforementioned lemma about perturbed point sets cannot be generalized
directly to Bregman divergences. In the course of finding a generalization, we
found a shorter and simpler proof of the lemma. Given this result, the bound
of k¥ . poly(n,o~1) follows roughly in the same way as in the Euclidean case,
but some additional technical problems have to be addressed. Let us describe
the main problem by way of example: For KLD, the parameters £’ and @’ can
become arbitrarily large for points close to the boundary of X. Even after the
perturbation, some of the points might still be too close to the boundary to
obtain reasonable upper bounds for £’ and @Q’. Essentially, we show that the kd
points that are closest to the boundary can be handled separately and that all
other points are sufficiently far away from the boundary (i.e., they lie in Z) to
bound £ and @’ in a reasonable way.

An obvious question is whether the smoothed polynomial bound [3] carries
over to Bregman divergences. The problem with adapting the proof of this bound
is that it exploits specific properties of Gaussian perturbations. It uses, in par-
ticular, the property that the projection of a Gaussian random vector onto a
lower-dimensional subspace is still a Gaussian with the same standard devia-
tion. It would be very interesting to see if it is possible to relax some of these
requirements or if it is possible to design more general perturbation models that
still meet the requirements needed for the smoothed polynomial bound.

In order to prove the lower bound, we first observe that all Mahalanobis
distances (in particular squared Euclidean distances) exhibit the same worst-case
behavior. Then we show that all “good-natured” Bregman divergences (including
all commonly considered examples like KLD, GID, or ISD) behave locally like
some Mahalanobis distance, which makes a transfer of the known lower bound
for the Euclidean case possible.

Due to lack of space, all proofs are deferred to the full version of this paper.
In the following section, we will only apply Theorem 3 to four common Bregman
divergences.

2 Applying the Smoothed Analysis

2.1 Mahalanobis Distances

For Mahalanobis distances, we use the same perturbation model that has been
used for squared Euclidean distances [4,13]: The adversary chooses n points in



[0,1]4. Then the d coordinates are perturbed by independent Gaussian pertur-
bations of standard deviation o. We can choose D = poly(n). Then X C D =
[-D, D + 1)* with a probability of at least 1 — W ! since Gaussians are con-
centrated around their mean, which is in [0, 1]¢. After one iteration of k-means,
every point is assigned to a cluster center within a distance of at most poly(n).

Let A € R%* be an arbitrary symmetric positive definite matrix, and con-
sider k-means using m 4. Scaling the matrix does not change the behavior of
k-means. Thus, we assume that A is scaled such that the smallest eigenvalue,
which is positive, equals 1. Let A\,.x be the largest eigenvalue of A. A short
calculation shows that the parameters can be chosen such that Theorem 2 yields
the following bound:

Theorem 3. The smoothed running-time of k-means using m 4 is bounded from
above by )\max ’ pOIY(n\/Ev %) and kkd ’ )‘?nax ’ pOly(na %)

2.2 Kullback-Leibler Divergence

We have to be more careful when choosing a perturbation model for Kullback-
Leibler divergence. KLD is defined on a simplex. Thus, we cannot use Gaussian
perturbations since these might result in points outside of the domain of KLD.

To get a perturbation model, we take into account that a point represents
a probability distribution on a finite set {1,2,...,d + 1}. For instance, assume
that we want to classify web pages based on a list wq, ..., w441 of words (the
so-called bag-of-words model [7]). For a specific web page, let n; be the number
of occurrences of w;. Then x; = E%}"] is the relative frequency of w;. Based on
the vectors x, web pages can be clustered according to their topics since pages
about similar topics are likely to contain similar words. To perturb instances,
the idea is to add a random number of each word to the web page.

Let us make this more precise. For a point z € X, we obtain / € R4+
by adding the component z441 = 1 — Z?Zl 2;. Then we draw random num-
bers y1, ..., yq4+1 independently according to some probability distribution to be
specified in a moment. Let S = Zfill ity =1+ Zfill yi;- Then we obtain

the perturbed point z € R? by setting z; = % By construction, z > 0 and

2%, 2 < 1. We use the exponential distribution [9], whose density is sexp(—%)
for a positive parameter 6.

In the full version of this paper, we show that this perturbation model satisfies
the requirements of Section 1.3 for § = 8do®(4+1), Analyzing the parameters
£ &, Q) and €* as well as the potential P after the first iteration yields the
following theorem.

Theorem 4. The smoothed running-time of k-means using KLD is bounded

from above by poly(n‘/g L), and k%@ - poly(n, 1).

’o

2.3 Generalized I-Divergence

For generalized I-divergence and Itakura-Saito divergence, we use the same per-
turbation model, except for rescaling. Since we do not have to rescale, this allows



1
2\/30
bounds are sufficiently small: The probability of a number greater than poly(n)

must be bounded by ﬁ Then we perturb a point by adding independent ran-
dom numbers drawn according to f. For this perturbation model, Theorem 4
carries over to GID and ISD. Details can be found in the full version.

whose tail

us to let the adversary choose any density function f bounded by

3 Lower Bound

In this section, we transfer the exponential lower bound proved by Vattani [15]
to almost arbitrary Bregman divergences.

Theorem 5 (Vattani [15]). For squared FEuclidean distances, there exist sets
X C R? of n points on which the k-means method requires 2™ iterations when
initialized with a particular set of cluster centers. Here, k depends on n and
d > 2 is arbitrary.

First, we show that all Mahalanobis distances are equivalent in terms of
the worst-case number of iterations. Squared Euclidean distances are a special
case of Mahalanobis distances. Thus, we get an exponential lower bound for all
Mahalanobis distances. Let Wi};d(n) be the maximum number of iterations of

k-means on any instance of n points in R¢ using de as the distance measure.

Lemma 6. For every symmetric positive definite matriz A € R™¢, we have
Wkd(n) =Wkd(n) for alln,k,d € N.

Now we transfer worst-case instances for Mahalanobis distances to instances
for arbitrary good-natured Bregman divergences. For this, we use the observation
that any good-natured Bregman divergence dg behaves locally at some point zg
like the Mahalanobis distance d,,,,, where H is the Hessian matrix of @ at zo.
Hence, essentially we only need to scale down the worst-case instance for d,,,
and embed it locally into a small space around zj.

Lemma 7. Let & : X — R be a strictly convex function with X C R? and the
following properties: There exist a zg € X and a > 0 such that

—Z={2 R[]z - 20llc <} C X,

— all third-order derivatives of @ exist on Z and their absolute values are
bounded, and

— the Hessian matrix of @ at zy is positive definite.

Then W(Zd(n) > Wkd(n).

Combining Vattani’s lower bound with Lemma 6 and Lemma 7, we obtain
the main result of this section.

Theorem 8. The worst-case number of iterations of k-means for the following
Bregman divergences is at least exp(§2(n)) for n points and d > 2: Mahalanobis
distances for any symmetric positive definite matriz A, Kullback-Leibler diver-

gence (KLD), generalized I-divergence (GID), Itakura-Saito divergence (ISD).
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