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This report presents a partial solution to the Compiler Optimization case study [1]] using GROOVE.
We explain how the input graphs provided with the case study were adapted into a GROOVE rep-
resentation and we describe an initial solution for Task 1. This solution allows us to automatically
reproduce the steps of the constant folding example given in the case description. We did not solve
Task 2.

1 GROOVE

GROOVEE] [2] is a general purpose graph transformation tool set that uses simple labelled graphs. The
core functionality of GROOVE is to recursively apply all rules from a predefined set (the graph production
system — GPS) to a given start graph, and to all graphs generated by such applications. This results
in a state space consisting of the generated graphs. The main component of the GROOVE tool set is
the Simulator, a graphical tool that integrates (among others) the functionalities of rule and host graph
editing, and of interactive or automatic state space exploration.

1.1 Host Graphs

In GROOVE, the host graphs, i.e., the graphs to be transformed, are simple graphs with nodes and directed
labelled edges. In simple graphs, edges do not have an identity, and therefore parallel edges (i.e., edges
with same label, and source and target nodes) are not allowed. Also, for the same reason, edges may
not have attributes. In the graphical representation, nodes are depicted as rectangles and edges as binary
arrows between two nodes. Node labels can be either node types or flags. Node types [resp. flags] are
displayed in bold [resp. italic] inside a node rectangle.

1.2 Rules

The transformation rules in GROOVE are represented by a single graph and colours and shapes are used
to distinguish different elements. Figure|l|shows a small example rule.

e Readers. The black (continuous thin) nodes and edges must be present in the host graph for the
rule to be applicable and are preserved by the rule application;

¢ Embargoes. The red (dashed fat) nodes and edges must be absent in the host graph for the rule to
be applicable;
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Figure 1: Example GROOVE rule and legend

e Erasers. The blue (dashed thin) nodes and edges must be present in the host graph for the rule to
be applicable and are deleted by the rule application;

e Creators. The green (continuous fat) nodes and edges are created by the rule application.

Embargo elements are usually called Negative Application Conditions (NACs). When a node type or
flag is used in a non-reader element but the node itself is not modified, the node type or flag is prefixed
with a character to indicate its role. The characters used are 4, —, and !, for creator, eraser, and embargo
elements, respectively.

2 Solution

2.1 Input from the FIRM representation

The input graphs provided with the case study are stored in GXL format and conform to the FIRM
representation. GROOVE also uses GXL to store graphs but it was not possible to immediately load the
given files because the input graphs have certain properties that are not compatible with GROOVE (e.g.,
edges with attributes) and therefore require some adaptation.

The case description lists all node and edge types that may occur in the program graphs. These types
are also included in the GXL files given on the form of a type graph. Based on these two sources of
information we constructed our own type graplﬁ in GROOVE, shown in Figure

Each node in the figure corresponds to a node type; some have associated attributes. Types shown in
bold italic inside dashed nodes are abstract. Edges with open triangular arrows indicate type inheritance.
A key point in the type graph shown in Figure 2]is the following. In GROOVE edges do not have types
or attributes while in FIRM the edges do. To encode these extra properties in GROOVE, edges have to be
nodified, i.e., each edge of the FIRM graph is transformed to a node in the GROOVE graph with a proper
sub-type of Edge and associated position attribute. Nodes representing operations, i.e., sub-types of
Node, are connected via Edge nodes and associated edges labelled in and out. The remaining elements
of the type graph of Figure 2] correspond directly to the ones described in the case study.

After creating our type graph, the program graph used in the constant folding example was manually
created by inspecting the given GXL file and the corresponding figure in the case study. Our start graph
in a plain representation, i.e., without block containment visualisation, is shown in Figure[3]

We would like to point that, despite the current manual adaptation of the input graphs, there are no
technical limitations that prevent the automatic loading of FIRM graphs using the conversion described
above. Automatic loading was not done due to time limitations only.

2GROOVE enforces static typing, so there is no overhead for type checking while performing a transformation. Using a type
graph is a very convenient way to avoid simple mistakes (e.g., typos) while creating a grammar.
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Figure 2: Type graph for the adapted input graphs.

2.2 Verifier

We implemented the sanity checks described in the case study in negated form such that if an invalid
configuration is produced, then a checking rule matches. Figure ] shows rule consts, that is triggered if
there is a constant located in a Block that is not the StartBlock. The other checks given in the case study
were implemented with the rules named single-start, single-end, containment, phi-check, and pos-check.
(See the grammar for the solution in the SHARE image [3]].)

2.3 Constant Folding

To solve the constant folding example given in the case description we created seven rules to perform
the folding of operations and another three cleanup rules to handle dangling edges and constants without
references.

Figure [5|shows rule add-fold-int, that performs the last step of the transformation: folding of an Add
operation with two constant operands. The Add node and the two Dataflow edges associated with the
operands are deleted by the rule. The constants used in the addition are not removed because they may be
referenced by other operations. A new constant is created with the result of the addition and all Dataflow
edges incoming into Add are re-routed to the newly created constant. We use a special quantifier node
(labelled with V=) to redirect an arbitrary number of Dataflow edges.

The remaining rules are similar. We created one rule for each operation folding, except for the
handling of unreachable blocks, which uses two rules, one for removing blocks and another for adjusting
the edges of Phi nodes. (Again, for the complete solution, we refer the reader to the grammar that is
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Figure 3: Program graph of minimum plus one function with constants.
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Figure 5: Rule add-fold-int, for folding the addition of two integer constants.

available in the SHARE image [3]].)

We did not create folding rules for the operations that do not occur in the given example. Still, once
more, we do not foresee any technical difficulties to do so. The remaining operations were not handled
only due to limited time availability.

3 Conclusion

In this report we presented the key points of our solution for Task 1 of the case study. Task 2 was not
addressed. We conclude with an overview according to the criteria listed in the case study.

e Completeness. Since we did not cover all operations, it is expected that no program graph other
than the example discussed can be handled. Absence of automatic loading of graphs is another
limitation that prevents the use of the test suite.

o Performance. N/A. See reasons in the item above.

e Conciseness. As a rule of thumb, we have one rule for each operation.

o Purity. The solution is entirely made of graph transformations, no glue code is necessary.
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