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ABSTRACT
An important challenge for biomedical information retrieval
(IR) is dealing with the complex, inconsistent and ambigu-
ous biomedical terminology. Frequently, a concept-based
representation defined in terms of a domain-specific termi-
nological resource is employed to deal with this challenge. In
this paper, we approach the incorporation of a concept-based
representation in monolingual biomedical IR from a cross-
lingual perspective. In the proposed framework, this is real-
ized by translating and matching between text and concept-
based representations. The approach allows for deployment
of a rich set of techniques proposed and evaluated in tradi-
tional cross-lingual IR. We compare six translation models
and measure their effectiveness in the biomedical domain.
We demonstrate that the approach can result in significant
improvements in retrieval effectiveness over word-based re-
trieval. Moreover, we demonstrate increased effectiveness of
a CLIR framework for monolingual biomedical IR if basic
translations models are combined.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Retrieval Models – language
models

General Terms: Algorithm, Experimentation, Performance.

Keywords: CLIR framework, Biomedical IR, concepts,
TREC Genomics, MeSH, UMLS.

1. INTRODUCTION
A major challenge for information retrieval in the life sci-

ence domain is coping with its complex, inconsistent and
ambiguous terminology [14, 22]. A single biomedical con-
cept is often referred to using multiple terms (synonymy),
including long multi-word phrases, ad hoc abbreviations and
spelling variations. Shorter terms, in particular abbrevia-
tions, can be ambiguous: often the same term is used to
refer to different concepts (homonymy).

It is evident that word-based information retrieval in this
domain may benefit from knowledge found in terminologi-
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cal resources, such as controlled vocabularies, thesauri and
domain-specific databases. These resources are commonly
used for query expansion. Experiences during the TREC
Genomics benchmarks illustrated, however, that beneficial
incorporation of these terminological resources is far from
trivial. An out-of-the-box TF.IDF retrieval system outper-
formed many sophisticated approaches incorporating knowl-
edge from terminological resources [10]. Approaches which
do benefit from terminological resources are frequently ad
hoc or heavily geared towards the task at hand [21].

In this work, we view the integration of a concept-based
representation in biomedical IR as a cross-lingual retrieval
problem. We will demonstrate that approaches to tradi-
tional cross-lingual IR can be successfully applied for the
integration of domain knowledge in biomedical IR.

The structure of this paper is as follows. First, we will
describe our ‘cross-lingual’ framework for biomedical IR. In
section 3 we will describe a number of translation models
in this framework. In section 4 we will describe how these
translation models are used to improve word-based retrieval.
In section 5 the experimental setup for evaluating the pro-
posed framework will be described. In section 6 the results
of the experiments will be reported and discussed. We will
conclude in section 7.

2. A CROSS-LINGUAL PERSPECTIVE ON
BIOMEDICAL IR

Traditional cross-language IR (CLIR) is concerned with
retrieving documents in a language different from the user’s
query language. For example, a user can formulate his or
her information need in Spanish and the retrieval system
retrieves English documents. Some kind of translation has
to take place to allow for such cross-lingual matching. The
translation can be based on a machine translation system,
bilingual lexicons, translation models learned from multilin-
gual document collections to name but a few [17].

Also in the monolingual setting, the mismatch between
terms used in a query and terms used in relevant documents
can be viewed as a cross-lingual matching problem. Berger
and Lafferty [3] formalized this observation by viewing the
query formulation process as a noisy translation from the
language used in relevant documents. In biomedical IR the
vocabulary mismatch can be substantial given the number
of synonyms and ambiguous terms. In this paper, we take
Berger et al.’s (1999) work a step further by identifying a
second concept-based representation language.

The framework we propose is visualized in figure 1.
We identify two representation languages in this frame-
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Figure 1: A cross-lingual view on biomedical IR

work. Firstly, a textual language in which queries are for-
mulated by a user in free text and in which documents
have been written. Secondly, a conceptual language which
is defined by the concepts or synset entries in a termino-
logical resource. For instance, the concept [Mad cow dis-
ease]1, which groups synonymous terms such as “mad cow
disease” and “BSE”. In some cases, documents are already
available in such a conceptual representation. The citations
in MEDLINE, for instance, have been manually annotated
with terms from the Medical Subject Headings (MeSH) the-
saurus. Queries are typically not directly available in a
concept-based representation; some form of translation has
to take place to obtain such a representation. In many other
cases, both the query and document concept-based represen-
tations have to be obtained automatically. For instance, a
biomedical named entity recognizer can be used to tag oc-
currences of concepts in (document and query) text.

Table. 1 shows an example of a document in three repre-
sentations. The first column shows the title and the abstract
of the citation. The second column lists a concept-based rep-
resentation which has been manually determined by human
indexers. The last column shows a concept-based represen-
tation which has been automatically obtained.

The integration of a concept-based representation in biomed-
ical IR is then reduced to translating the query and/or doc-
uments, and matching them in the same representation lan-
guage. Such a cross-lingual perspective gives the opportu-
nity of adopting a large set of established CLIR methods
and techniques for this domain.

In theory, a conceptual representation is preferred over
a word-based representation. Synonymous (including com-
plex multi-word) terms are mapped to a single conceptual
representation. Ambiguous terms are mapped onto the con-
ceptual representation which corresponds to the context in
which they appear. IR then simply reduces to matching the
conceptual representations of documents to queries.

In practice, however, a concept-based representation has
its limitations. Early work by [11] demonstrated that using
only a concept-based representation for retrieval was harm-
ful for retrieval effectiveness. One reason was that not all

1square bracket notation is used to refer to concepts

information needs could be represented in terms of the con-
cept vocabulary. Therefore we combine text or word-based
retrieval with concept-based retrieval. This is clearly differ-
ent from traditional CLIR where queries and documents are
available only in different languages. In this CLIR-enhanced
framework for biomedical IR, retrieval based on a text or
word-based representation can be improved with a concept-
based representation.

We identify two main translation resources for this type of
biomedical CLIR. Firstly, the concept vocabulary itself. The
concept vocabulary defines which phrases are used to express
a concept, but does not indicate how frequently these terms
are actually used or show the ambiguity of these terms.
Analogous to traditional CLIR, the concept vocabulary can
be used as a dictionary to translate between concepts and
phrases and vice versa. Secondly, document corpora in a
dual representation of both a text and concept-based repre-
sentation can be used as a translation resource. In conven-
tional CLIR, such parallel or comparable corpora are used
to train translation models. Translation models between a
source and target language are obtained from a large cor-
pus of translated sentences or documents in both languages.
A similar approach can be used to train translation models
between a concept and a word-based representation.

Our main research question is as follows: How can we

adapt CLIR methods and techniques for more effective mono-

lingual biomedical information retrieval? We are interested
in particular in how to build translation models in this do-
main and how these translation models can be used to im-
prove monolingual (that is, text only) retrieval.

In this paper we will investigate a basic implementation of
the framework. The text or word-based representation is re-
stricted to a unigram word-based representation. Moreover,
we limit the trained translation models to word-to-concept
and concept-to-word translations.

We will investigate two concept languages in our work:

MeSH The Medical Subject Headings thesaurus2, a con-
trolled vocabulary used for manually indexing MED-
LINE citations. We will only use the main headings as
concepts, which are around 24,000 concepts using the
2008 edition of the thesaurus.

UMLS++ The Unified Medical Language System (UMLS)
metathesaurus3 extended with several gene and pro-
tein dictionaries for four species, referred to as UMLS++.
The combined thesaurus consists of around 640,000
concepts from 59 vocabularies.

A major difference between the two is that for MeSH a
manually curated document representation is already avail-
able. For UMLS++ the document representation is obtained
automatically, using Peregrine [19]. Peregrine scans for UMLS
entries in the text and performs a lightweight disambigua-
tion strategy to resolve ambiguous terms. Another difference
is the alignment of the concept representations with the text.
For UMLS++, each concept is aligned to the word or phrase
it refers to. For MeSH, such an alignment is not available:
MeSH terms are assigned at the citation level. Hence, the
representation in UMLS++ can be viewed as a parallel cor-
pus, whereas the representation in MeSH can be viewed as
a comparable corpus.

2
http://www.nlm.nih.gov/mesh/

3
http://www.nlm.nih.gov/research/umls/



Table 1: PubMed citation (PMID 10050890) in text and two concept-based representations (shown partially).

Text (title + abstract) MeSH (manual) UMLS++ (automatic)

Fatal familial insomnia: a new Austrian family.
We present clinical, pathological and molecular features
of the first Austrian family with fatal familial insomnia.
Detailed clinical data are available in five patients and au-
topsy in four patients. Age at onset of disease ranged be-
tween 20 and 60 years, and disease duration between 8 and
20 months. Severe loss of weight was an early symptom in
all five patients. Four patients developed insomnia . . .

[Adult] [Austria] [Brain] [Fe-
male] [Humans] [Sleep Initi-
ation and Maintenance Dis-
orders] [Male] [Middle Aged]
[Pedigree] [Prions] [Blotting,
Western] [Fatal Outcome]
[PrPSc Proteins].

[Abnormality] [Adrenal Cortex] [Age] [Aging]
[Analysis] [Astrogliosis] [Austrians] [Autonomic
dysfunction] [Autopsy] [Bos taurus] [Brain Stem]
[Brain] [Cattle] [Cell Nucleus] [Cerebellum] [Cere-
bral cortex] [Codon Genus] [Congenital Abnor-
mality] [Cytoplasmic Granules] [Disease] [Disso-
ciation] [Encephalopathies] . . .

3. TRANSLATION MODELS
In the previous section, we mentioned two resources to

build translation models. Firstly, a collection of documents
in both a text and a concept representation. And secondly,
the terminological resource itself, which groups a number of
phrases into a concept.

The first translation model we will investigate, based on
pseudo-feedback translation, translates a text-based repre-
sentation as a whole to a concept-based representation, based
on the co-occurrence of words and concepts in a comparable
corpus. The other five translation models we will investi-
gate are used to translate representations in a term-by-term
fashion. They employ different methods to estimate proba-
bilities for P (w|c) (the probability of translating a concept
c to the word w) and P (c|w) (the probability of translating
the word w to a concept c). On their own these term-by-
term translation models are not expected to perform well,
since they rely on only very little information for translation.
However, they are expected to be useful when combined with
the KNN translation model.

We will now describe six models based on these resources.

3.1 Pseudo-feedback translation (KNN)
The first translation model we will discuss is based on

pseudo-relevance feedback in a different representation. The
representation to translate is used to search a collection in
a dual representation, and the translation of the nearest
neighboring documents is used as a translation. In conven-
tional CLIR such an approach was proposed by [15]. In work
by [20] and [24], a similar feedback mechanism was used for
MeSH. We refer to this translation as KNN, since K nearest
neighboring documents are used to obtain the translation.

The translation is modeled as follows. We assume to have
a document collection D available in both a conceptual and
textual representation. For each document D, we can esti-
mate a textual language model and a conceptual language
model, P (w|θD) and P (c|φD) respectively.

We want to translate the text to translate (referred to
as Q) to a conceptual language model P (c|φQ). The ap-
proximation of the language model is based on the joint
probability of observing the concept c with the query Q in
the previously introduced document collection D. In words,
this approach determines which concepts are most likely to
co-occur with the query. Formally:

P (c|φQ) ≈
P (c,Q)

∑

c′
P (c′, Q)

, (1)

where P (c,Q) is the joint probability of observing a concept
c with the query Q.

The joint probability of observing the concept with the

query is approximated by independently sampling documents
from the collection D, followed by independently sampling
the concept and the query from each document.

P (c,Q) =
∑

D∈D

P (D)P (c|φD)P (Q|θD) (2)

≈
∑

D∈D

P (D)P (c|φD)
∏

i=1..n

P (qi|θD) (3)

where P (D) is a prior probability of sampling the docu-
ment D from the collection (assumed to be uniform) and
P (Q|θD) is the probability of sampling the query from the
document, the query likelihood (assuming term indepen-
dence P (Q|θD) =

∏

i=1..n P (qi|θD)).
Obviously, requiring the complete collection D to be pro-

cessed for classifying a piece of text, makes the model infea-
sible in practice. The contribution of many documents to
P (c,Q) is relatively small, however, since they are not likely
to generate the query (P (Q|θD) is small). Therefore, fol-
lowing [15], we can safely reduce this document collection to
n documents with the highest probability of generating the
query P (Q|θD). In practice, these are the top n documents
ranked by query likelihood.

3.2 IBM Model 1 (M1)
The second translation model we will investigate is based

on IBM Model 1, a statistical model of the translation pro-
cess commonly used for traditional CLIR. [6] proposed five
models for determining statistical translation models based
on a bilingual collection of sentences. Central to these mod-
els is the estimation of an alignment of the sentences in two
languages. This alignment connects terms in the sentences
in one language to terms in the translated sentence in the
other language. An EM-algorithm is employed to iteratively
improve the alignment and the parameters of the translation
model, respectively.

IBM Model 1 is the simplest of the five models proposed
by [6], and does not take word order into account. Models
2 to 5 are increasingly sophisticated, incorporating abso-
lute and relative word reordering and a fertility model. For
biomedical CLIR, the concept-based representation does not
have a term order. Since we limited our experiments to term-
by-term translation models, we will only use Model 1 for our
translation models from text to concepts and vice versa.

An advantage of using Model 1 for training biomedical
translation models is its theoretical soundness. The sub-
sequent models proposed by [6] illustrate that Model 1 is
highly suitable to be extended to more sophisticated mod-
els. Disadvantages are that training the translation model
is resource intensive and that with new concepts the whole
training process has to be repeated.



3.3 Pointwise Mutual Information (PMI)
The third translation model we will investigate is derived

from the pointwise mutual information (PMI) between the
concept-based and word-based event space [7]. PMI indi-
cates the association of two events based on their joint distri-
bution in comparison to their individual probabilities. PMI
and mutual information have frequently been used as an as-
sociation measure for IR [25] and in particular for filtering
ambiguous translations in a CLIR setting [4, 9]. [3] used
the mutual information statistic for constructing a distribu-
tion function of words over documents to sample queries for
documents. We will use such a distribution directly as a
translation model. We argue that strongly associated con-
cepts and words can be used as translations of each other.

In the literature, definitions of mutual information and
pointwise mutual information are frequently confused. In
this work, the following definition will be used for PMI.

PMI (w, c) = log2
p(w, c)

p(w)p(c)
= log2

Nf(w, c)

f(w)f(c)
(4)

where p(w, c) is the probability of encountering the word
and concept together in a document collection, and p(w) and
p(c) are the probabilities of encountering them separately in
the collection. In the subsequent estimation of these prob-
abilities f(w, c) denotes the number of documents in which
the words w and c appear together; f(w) and f(c) indicate
the number of documents in which the word and concept
appear respectively, and N is the size of the collection.

[16] noted that PMI is not an ideal measure for measuring
the association between terms, since it is biased towards
low-frequency words. Similar to [3], we circumvent this bias
towards low-frequency words by introducing an additional
factor based on occurrence frequency of the pair:

PMI
′(w, c) = f(w, c) log2

p(w, c)

p(w)p(c)
(5)

Based on these scores, we create the translation model for
a term in an ad hoc fashion: the n translation terms with the
highest PMI ′ scores are selected and normalized by dividing
the sum of the top n scores.

3.4 Parsimonious Term Translation (PTT)
The fourth translation model we will investigate is based

on the conditional probabilities of encountering the target
(translation) term after observing the source term in a large
set of documents. Formally:

P (w|c) =
f(w, c)

∑

w′∈V
f(w′, c)

, (6)

where f(w, c) is the number of times a word and a concept
term occur together in a document, and the denominator
indicates the sum of co-occurrences of the concept with any
word in the word vocabulary.

Using this formula, relatively high translation probabili-
ties will be assigned to frequently occurring words or con-
cepts. It is undesirable to assign a high probability to the
frequently appearing word ‘study’ as a translation of the con-
cept [Parkinson’s disease] simply because the word ‘study’
frequently co-occurs with the concept. An Expectation Max-
imization (EM) algorithm proposed by [12] is employed to

Table 3: KNN Concept translations for
“Ferroportin-1 in humans”.

0.095 [Humans], 0.091 [Cation Transport Proteins], 0.079 [Iron],
0.078 [Animals], 0.050 [Membrane Proteins], 0.038 [Enterocytes],
0.038 [Hemochromatosis], 0.036 [Carrier Proteins], 0.034 [Male],
0.021 [Iron-Binding Proteins], 0.021 [Mice], 0.018 [Biological
Transport, Active], 0.018 [Cloning, Molecular], 0.018 [Zebrafish],
0.018 [Ferric Compounds], 0.017 [Duodenum], 0.017 [Models, Bi-
ological], . . .

prune low probability translations and remove these com-
mon terms. In monolingual IR, this approach has been used
for query expansion [18] and determining domain models [1].

We use the EM algorithm as follows. After initializing
the translation probabilities with the maximum likelihood
estimate defined in eq. 6, the EM algorithm will be applied:
During the expectation step, the probability mass will be
redistributed depending on the global probability of a term.
During the maximization step, the probability distribution
will be normalized, that is, normalizing the sum of the trans-
lations to one.

E-step: ew = f(w, c)
(1− λ)P (w|c)

λP (w) + (1− λ)P (w|c)
(7)

M-step: P (w|c) =
ew

∑

w′ ew′

, (8)

where P (w) is the probability of encountering the term
w in a large collection and λ determines how parsimonious
the translation model will be: a value of 0 results in the
maximum likelihood estimate; a value close to 1 results in a
translation model in which probability mass has been redis-
tributed to fewer translations.

We will refer to these translation models as parsimonious

term translation models (PTT).

3.5 Thesaurus (THES and STATTHES)
The last two translation models we will investigate use the

thesaurus for determining translation probabilities between
concepts and terms. In traditional CLIR, similar approaches
have used to machine readable dictionaries to estimate trans-
lation models [13].

In the naive translation model based on a thesaurus (THES),
the translation from words to concepts and vice versa, is es-
timated by their relative co-occurrence frequencies in entries
in the thesaurus. As a formula:

P (w|c) =
f(w, c)

∑

w′ f(w′, c)
, (9)

where f(w, c) is the number of times the word w is used to
describe c in the thesaurus. For instance, when the concept
[Mice] has synonyms “mice”, “house mouse” and “mouse”,
the probability of P (mouse|[Mice]) is equal to 2

1+1+2
= 0.5.

Similarly, the probability of translating a word to a con-

cept can be approximated (P (c|w) = f(w,c)∑
c′ f(w,c′)

).

The model based on a statistical thesaurus (STATTHES),
also takes into account how frequently a particular word is
used to refer to a concept in a corpus of documents. This
requires the text to be tagged with concepts found in a the-
saurus. f(w, c) is then defined as the frequency that the word
w was tagged with the concept c.



Table 2: Translations and translation probabilities obtained from different translation models.
(a) Translating the MeSH concept [Mad cow disease] to words (word stems)

Model Translations

M1 0.228 bse, 0.096 spongiform, 0.096 encephalopathi, 0.038 diseas, 0.030 transmiss, 0.028 cattl, 0.027 infect, 0.025 case, 0.020 agent,
0.019 bovin, 0.019 anim, 0.014 mad, 0.012 epidem, 0.011 variant, 0.011 clinic, 0.010 human, 0.009 scrapi, 0.009 prion, 0.300 . . .

THES 0.250 spongiform, 0.250 bovin, 0.125 enceph, 0.125 encephalopathi, 0.062 bse, 0.062 cow, 0.062 mad, 0.062 diseas.

(b) Translating the word “ferroportin” to MeSH concepts.

Model Translations

M1 0.184 [Cation Transport Proteins], 0.085 [Carrier Proteins], 0.076 [Homeostasis], 0.074 [Genetic Heterogeneity], 0.073 [Mutation,
Missense], 0.054 [Amino Acid Substitution], 0.052 [Mononuclear Phagocyte System], 0.047 [Membrane Proteins], 0.047 [Receptors,
Transferrin], 0.044 [Iron Overload], 0.043 [Italy], 0.042 [Chromosomes, Human, Pair 2], 0.040 [Codon], 0.140 . . .

THES no translations available

4. RETRIEVAL MODELS
In this section we will first describe the retrieval model

used for integrating word and concept-based retrieval. After
that, we will describe a number of extensions of this retrieval
model which combine multiple translation models.

4.1 Basic retrieval model
Our basic word and concept-based retrieval system is based

on statistical language models. Queries and documents are
represented by unigram word and unigram concept language
models. As a baseline, only the word language models of
queries and documents are matched. Matching is enhanced
by matching the (translated) concept query and document
language models. Documents are ranked according to the
negated cross entropy between query and document word
and concept language models:

RSV (D,Q) = −αH(φQ|φD)− (1−α)H(θQ|θD) (10)

where φQ and φD are the concept-based query and docu-
ment language models respectively; θQ and θD are the word-
based query and document language models; α controls the
relative importance of the concept-based representation (for
the baseline α is set to 0). Other fusion methods were inves-
tigated as well (such as CombMNZ, CombMax and Comb-
Sum [8]), but this form of interpolation of document scores
turned out to be most effective.
φD and θD are smoothed document language models based

on a maximum likelihood estimate. P (c|φD), the probabil-
ity of generating the concept c from the language model is
estimated as follows:

P (c|φD) = (1− λc)
f (c,DC)

|DC |
+ λcP (w|φ̂C) (11)

where f (c,DC) is the concept term frequency; |DC | is the
total number of concepts in the document representation;
φ̂C is a background language model used for smoothing and
λc is a parameter which controls the amount of smoothing.
P (w|θD) is estimated in a similar fashion.

The word-based query language model is based on an (un-
smoothed) maximum likelihood estimate from the original
query text. The concept-based query language model is ob-
tained through query translation. The KNN translation
model translates the word-based query model as a whole,

that is, it translates a probability distribution over words di-
rectly to a probability distribution over concepts. The other
five translation models are used to translate the word-based
query word-by-word, similar to [3]. Formally:

P (c|φQ) =
∑

w∈Q

P (c, w|Q) =
∑

w∈Q

P (c|w,Q)P (w|θQ)(12)

≈
∑

w∈Q

P (c|w)P (w|θQ), (13)

where w are the words in the word-based queryQ, P (w|θQ)
is the probability of w in the word-based query model and
P (c|w) is the translation probability as determined using
the various translation models (PMI, M1, PTT, THES and
STATTHES).

4.2 Combining translation models
In traditional CLIR, combining different translation re-

sources has shown to be an effective way to improve transla-
tion quality [2, 5]. In the following sections we will propose
a number of retrieval models and strategies which aim for a
similar effect in biomedical CLIR.

4.2.1 Pruning
Since the translation based on pseudo-feedback (KNN) is

based on documents, it is expected to contain noisy concepts
which are only indirectly related to the original query. In-
deed, the example translation in table 3 contains concepts
which were found in related documents, but could not be di-
rectly linked to the text to translate (for example, [Animals],
[Mice] and [Zebrafish]).

We propose the use of the term-by-term translation mod-
els to prune concepts from the translated concept-based query
obtained through feedback (KNN). The concept-based rep-
resentation obtained by feedback translation is filtered as
follows:

P (c|φQ) =

{

κ PKNN(c|φQ) if
∑

t∈Q
P (t|c) > 0

0 otherwise
(14)

where PKNN(c|φQ) is the conceptual query language model
estimated through feedback; P (t|c) is a concept to term
translation model; and κ is a query dependent normaliza-
tion constant, which normalizes

∑

c P (c|φQ) to 1.



Note that this type of pruning based on term-by-term
translation models is not very restrictive: concepts are only
pruned from the translation when this concept cannot be
translated to any of the query words; the translation proba-
bility in the concept-to-word translation model is not taken
into account.

4.2.2 Reweighting
A well-known drawback of using pseudo-relevance feed-

back is possible query drift: an expanded query can overem-
phasize or neglect particular aspects from the original query,
or skew towards aspects not mentioned in the original query.
In the case of a pseudo-feedback translation to a conceptual
representation, the neglect of a particular query aspect can
be substantiated by the fact that aspects cannot be repre-
sented accurately by the concept vocabulary. As a result,
combining a word and concept-based representation based
on feedback may understate aspects present in the word-
based representation. The goal of the reweighting procedure
we will now describe is to prevent that a word-based query
combined with a concept-based query (obtained through
feedback) neglects aspects found in the word-based query.
To achieve this, the word-based query model is reweighted:
depending on how well the concept-based representation cov-

ers the words in the query, the word weights are updated:
well-covered words receive a lower weight, whereas poorly
covered words receive an increased weight.

The reweighting process is as follows: 1) The feedback
translation model (KNN) is used to translate a word-based
query model P (w|θQ) to a concept-based query model P (c|φQ).
2) The coverage of the words in the original word-based
query model Pcov(w|φQ) is determined by translating the
concept-based query model using the term-by-term transla-
tion models described earlier. 3) An updated word-based
query model P (w|θ′Q) is based on Pcov(w|φQ). The updated
word-based query model is combined with the concept-based
query model for retrieving documents.

How the coverage and updated word-based query model
are determined will now be described.
Determining the coverage of the word-based query

The coverage of a word-based query by a concept-based
representation is defined as a probability distribution over
the words in the original query. If the word-based query is
evenly covered by a concept-based representation this prob-
ability distribution is uniform: all query words are covered
by concepts in the concept-based representation.

We use a term-by-term translation model to determine
this coverage as follows.

Pcov(w|φQ) =

∑

c
P (w|c, φQ)P (c|φQ)

∑

w′∈Q

∑

c P (w′|c, φQ)P (c|φQ)
(15)

≈

∑

c
P (w|c)P (c|φQ)

∑

w′∈Q

∑

c P (w′|c)P (c|φQ)
, (16)

where P (c|φQ) is the concept language model obtained through
pseudo-feedback translation of the original word-based query
and P (w|c) is the term-by-term translation probability of
translating a concept c to a word w. In the (unlikely) case
that none of the concepts can be translated to a query word
Pcov(w|φQ) is equal to 0 for all w4.

4This can be viewed as a coverage of a null -query word with
probability 1.

Updating the word-based query language model
The coverage of the original word-based query language

model is used to determine an updated word-based query
language model.

We assume that all the aspects mentioned in the origi-
nal text-based query are equally important: when searching
with a combined word and concept-based query representa-
tion this balance should be maintained. When the concept-
based representation does not cover all query aspects this
balance is disturbed: some aspects are overemphasized lead-
ing to query drift. This query drift of a combined word and
concept-based query representation can be prevented by de-
creasing the weight of words which are well covered by the
concept-based representation.

We assume that the aspects of a query can be represented
by the original word-based query language model (based
on a maximum likelihood estimate). To retain the origi-
nal query balance, the updated word-based query language
model combined with the coverage by the concept-based
query language model should approximate the original query
word distribution. Formally:

P (w|θQ) = βQ Pcov(w|φQ) + (1−βQ)P (w|θ′Q) (17)

where P (w|θQ) is the original query word language model,
which should be covered by the translation of a conceptual
query language model Pcov(w|φQ) and by an updated query
language model P (w|θ′Q). The query dependent parameter
βQ indicates the relative importance of the updated word-
based query language model in comparison to the translated
concept-based query language model.

To approximate eq. 17, initial estimates of the updated
word-based query language model are calculated as follows:

ew =















P (w|θQ) if Pcov(w|φQ) = 0

P (w|θQ)− βQPcov(w|φQ)

1−βQ
otherwise

(18)

The updated query language model is determined by nor-
malizing these initial estimates:

P (w|θ′Q) =
ew

∑

w′∈Q
ew′

(19)

Note that the second line of the equation is obtained by
rewriting eq. 17. The value βQ has to be restricted to prevent
P (w|θ′Q) becoming less than zero, formally:

0 ≤ βQ ≤ min
w∈φQ

P (w|θQ)

Pcov(w|φQ)
(20)

A β-value of 0 indicates that the updated word-based
query language model is exactly the same as the original
word-based query model; the largest possible value of β mod-
ifies P (w|θQ) as much as possible to retain the original query
term balance.

Table 4 illustrates this reweighting in practice for a query
consisting of three words (w1 to w3). Their original impor-
tance weights, based on the original query formulation is
found in the second column. The third column indicates to
what extent the words are covered by concepts found in the
query. w1 for example, has an original probability of 0.5, but
is only covered by the translation with a probability of 0.1.
The updated probability should therefore be higher than 0.5.
The last three columns of the table show the re-estimated



Original Coverage Updated weight P (w|θ′Q)

P (w|θQ) Pcov(w|φQ) βQ = 0 βQ = 0.1 βQ = 0.25

w1 0.5 0.1 0.5 0.54 0.63
w2 0.4 0.5 0.4 0.39 0.37
w3 0.1 0.4 0.1 0.07 0

Table 4: Example of query term reweighting.

weights for three different values of βQ. The highest possible
value of βQ for this query is 0.25, resulting in a reweighted
probability for the word w3 of 0.

To control the value of βQ at a global level (that is across
different queries), we introduce the parameter α (between 0
and 1) which linearly scales βQ between its minimum and

maximum value. Formally βQ = αminw∈Q
P (w|θQ)

Pcov(w|φQ)
.

4.2.3 Structuring
The last approach we investigate to combine translation

models combines the original textual query with a concep-
tual query based on pseudo feedback into a structure. The
approach is motivated by the idea that the translated con-
cepts should be linked to the query words they represent.
We hypothesize that such an approach balances the original
textual query with its translation, and prevents query drift.

To allow for such an integration we need to model con-
cepts and words in the same event space. We achieve this by
simply merging the two representations, that is mixing the
identifiers of the concepts with the tokens extracted from the
text. From a principled modeling perspective, mixing the
representations is not very attractive: concepts and words
are different units of information and should therefore be
kept separated. On the other hand, the mixed representa-
tion is easy to understand and straightforward to implement.

The parameters of the mixed document language model
P (t|ψD) are again based on a maximum likelihood estima-
tion, smoothed with a background language model.

The initial parameters of the mixed query language model
P (t|ψD) are based on a linear interpolation of the word-
based query model and the concept-based query model:

P (t|ψQ) = α P (t|θQ) + (1− α)P (t|φQ) (21)

where α indicates the relative importance of the text-based
representation with respect to the concept-based represen-
tation.

We will use a translation model P (w|c) to create an align-

ment between the concepts and the words in this mixed
query language model. Based on the translation model, each
concept is assigned to (at most) one word. Assuming that
the l terms in the word-based query are w1 to wl, and that
the m concepts in the concept-based query are c1 to cm,
we can define an alignment function between ci and wj as
follows.

δ(ci, wj) =

{

1 if j = argmaxj′ P (w′
j |ci)

0 otherwise
(22)

In words: the concept ci is aligned to the word wj with
the highest translation probability. We now define σ(wj)
of a word wj as the set containing the word itself and the
concepts which have been assigned to it.

σ(wj) = {wj} ∪ { ci ; δ(ci, wj) = 1} (23)

Similar to [13, p. 133], we use this set to define an equiv-
alence class of the word and the concepts mapped to it:

P (class(wj)|ψD) =
∑

t∈σ(wj)

P (t|ψQ)
∑

t′∈σ(wj)
P (t′|ψQ)

P (t|ψD)

The query language model of the equivalence class is de-
fined as follows.

P (class(wj)|ψQ) = P (wj |ψQ) (24)

5. EXPERIMENTAL SETUP
In this section we will describe the experimental setup for

comparing the different translation and retrieval models.
The TREC Genomics document collections and topics sets

between 2004 and 2007 were used for the evaluation [10].
The 2004 and 2005 topic sets consist of 50 queries and were
used to search a document collection of 4,591,008 MEDLINE
citations (referred to as the 2004 document collection). The
2006 and 2007 topic sets consist of 28 and 36 queries and
were used to search a document collection of 162,259 full-
text journal articles from Highwire Press (the 2006 docu-
ment collection). The TREC Genomics task of 2006 and
2007 were passage retrieval tasks. In this evaluation, how-
ever, we only investigated ad hoc document retrieval: docu-
ments containing relevant passages were assumed to be rel-
evant to the query.

Mean average precision (MAP) and rank precision (preci-
sion at 10) were used as evaluation measures. Due to space
limitations, we will only mention MAP in the results section
of this paper.

The translation models which required training data (all
except for the naive thesaurus translation model), were trained
with documents from the TREC Genomics 2004 document
collection. Word-based representations of these documents
were obtained using a tokenizer adapted to biomedical text [23].
The MeSH-based representations of the documents were based
on the major MeSH headings assigned by NLM indexers;
subheadings were discarded. The UMLS++-based document
representation was obtained using the Peregrine[19]. The
document collection in word and UMLS++-based represen-
tations was used both as a parallel and a comparable cor-
pus. For training the STATTHES translation models, the
explicit alignment between words and concepts (obtained
from Peregrine) were used. For the other translation mod-
els, the alignment was discarded and the representation was
treated as a comparable corpus. The document collection
in word and MeSH-based representations was only used as a
comparable corpus. Translation models were built for trans-
lation between MeSH and words, UMLS++ and words and
vice versa.

The translation models for PMI and PTT were based on
co-occurrence counts of concepts and words in the complete
2004 document collection. Because of scalability issues, the
IBM model 1 translation models were built on a subset of
the collection. 1,200,000 randomly selected documents from
the collection were used to build the translation models. A
slightly modified version of the GIZA++5 machine trans-
lation toolkit was used to train the models based on IBM

5
http://www.fjoch.com/GIZA++.html



model 1. The default setting of 5 iterations of the EM algo-
rithm was used.

All translation models went through the following post-
processing to remove noise: 1) Translations with a probabil-
ity smaller than 0.001 were removed; 2) Words or concepts
which occurred in fewer than 3 documents in the collection
were pruned; 3) Single character words and numbers were
removed. The remaining translations were normalized for
each term (assuring

∑

t′
P (t′|t) = 1).

The Lemur Toolkit6 was used for indexing and retrieval.

6. RESULTS
This results section is structured as follows. First, we

will investigate the effectiveness of the individual transla-
tion models. In sections 6.2 to 6.4 we will look into the
effectiveness of combining the pseudo-feedback translation
model with the term-by-term translation models for prun-
ing, reweighting and structuring respectively.

As a baseline, retrieval using only the word-based repre-
sentation was used. Each column lists the results of the
TREC Genomics query set of that year (2004 to 2007). Re-
sults using a statistical thesaurus (STATTHES) are only re-
ported for the UMLS++ representation; only for this vocab-
ulary such a translation model was available.

6.1 Translation models compared
Table 5 lists the retrieval effectiveness in terms of mean

average precision when using the combined word and trans-
lated concept-based language models for retrieval.

A first observation is that a concept-based representation
translated from the textual query can significantly improve
word-based retrieval. Using an additional MeSH-based rep-
resentation leads to (significant) improvements up to 9.5%
in MAP. For UMLS++ improvements up to 9.9% can be
observed. The precision at 10 (not displayed in the table)
shows similar improvements.

As expected, KNN performs best when considering all 4
topic sets. For 6 out of 8 cases, retrieval using a word-
based representation combined with the concept translation
obtained with KNN results in the highest MAP. The other
translation models are all extremely limited in the amount
of context they take into account for translation: a concept-
based query is obtained by individually translating each
word in the query to concepts. Considering the ambiguity of
individual words in this domain, it is in fact surprising that
this naive term-by-term translation results in improvements
in retrieval effectiveness.

Using translations obtained from the naive thesaurus trans-
lation model does show slight improvements in mean aver-
age precision, but none of the improvements are statistically
significant. A possible explanation for this lack of signif-
icant improvement is noise in the terminological resource:
the resource sometimes mentions terms for concepts which
are rarely used. The correct, or most common, translation
of a concept or term may therefore receive a low translation
probability.

The translation models trained on the comparable cor-
pus (M1, PTT and PMI), performed slightly better than
the translation model based solely on thesaurus information
(THES). No significant differences were observed, however,
between M1, PTT and PMI.

6
http://www.lemurproject.org/

6.2 Pruning
The effect of pruning obviously depends on how many

concepts are in fact pruned. The pruning method described
in section 4.2.1 removed many concepts: between 49.9%
and 91.5% of the concepts in the KNN translation were re-
moved. The translation models based on PMI and IBM
model 1, resulted in the most restrictive pruning (between
49.9% and 79.1%); the models based on PTT and the the-
sauri (THES and STATTHES) resulted in stronger pruning
(between 81.9% and 91.5%).

This indicates that the KNN and term-by-term transla-
tions are quite different: for many concepts found in the
KNN translation no translation to a word in the original
query is indicated by the term-by-term translation models.

Table 6 lists the results of combining the pruned concept
language model with a word-based language model for re-
trieval.

For MeSH, the pruned concept language model can still
be used to increase the performance of word-based retrieval.
However, for the query sets using the 2004 document col-
lection (consisting of citations with relatively little text),
the original concept translation performs better than the
pruned translation. Apparently, pruning resulted in the re-
moval of MeSH concepts which were beneficial for retrieval.
For searching the full-text article collection (2006 and 2007
topic sets), pruning turned out to be more useful: pruning
the KNN translation with the naive thesaurus translation
model resulted in the highest retrieval effectiveness.

For UMLS++, interpolating the pruned concept represen-
tations with the text representations turned out to be almost
as effective as or even more effective than the unpruned rep-
resentation. Irrespective of the type of translation model
used for pruning, significant improvements (up to 10.5%
in MAP) over the text-based baseline were observed. For
UMLS++ pruning turned out to be very useful: between
50.5% and 91.5% of the terms in the concept-based query
could be pruned with the same or improved retrieval effec-
tiveness.

6.3 Reweighting
Table 7 shows the result of reweighting the word-based

query model, based on the coverage of the KNN concept
language model, determined using the term-by-term trans-
lation models. The table shows the results for α set to 0.5.
On average 0.19 and 0.17 of the probability mass of word-
based query language model was redistributed for MeSH and
UMLS++ respectively.

Reweighting based on coverage byMeSH concepts in many
cases led to detrimental retrieval effectiveness. For the 2004,
2006 and 2007 not reweighting resulted in a higher effective-
ness. For the 2006 and 2007 topic sets, effectiveness even
significantly dropped below the word-based baseline. This
effect can be explained by the exhaustiveness of the MeSH-
based document representation. On average, a document in
the 2006 Genomics collection is represented by only 15 MeSH
concepts. It is likely that many more MeSH terms are in fact
relevant to this document but have not been assigned. The
word-based representation of the document is more exhaus-
tive than the concept-based representation. Despite the fact
that according to a translation model a concept ‘covers’ a
query word, it is likely that this covering concept reduces
the recall in comparison to the query word.

Reweighting based on the UMLS++ representation turned



Table 5: Retrieval effectiveness (MAP) using different translation models for obtaining a concept-based query
model. ∧, △ and N indicate significant differences (sign test) with p-levels < 0.05, 0.01 and 0.001 respectively.

(a) Using MeSH concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3868△ 0.2429∧ 0.3736 0.2916

word + M1 0.3621N 0.2250 0.3895 0.2864
word + PTT 0.3644N 0.2240 0.3876 0.2844
word + PMI 0.3612N 0.2235 0.3836 0.2842
word + THES 0.3589 0.2220 0.3898 0.2820

(b) Using UMLS++ concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3929△ 0.2285 0.4048 0.2981

word + M1 0.3743 0.2277N 0.3928 0.2933∧
word + PTT 0.3751∧ 0.2273△ 0.4037 0.2930△
word + PMI 0.3630∧ 0.2287N 0.3976 0.2909△
word + THES 0.3617 0.2227 0.3925 0.2926
word + STATTHES 0.3652∧ 0.2249∧ 0.3982 0.2970

Table 6: Retrieval effectiveness after pruning.
(a) Using MeSH concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3868△ 0.2429∧ 0.3736 0.2916
M1 prune 0.3656N 0.2282△ 0.3917 0.2858
PTT prune 0.3660△ 0.2282∧ 0.3857 0.2818
PMI prune 0.3660N 0.2289N 0.3912 0.2847
THES prune 0.3651N 0.2277 0.4011 0.2923

(b) Using UMLS++ concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3929△ 0.2285 0.4048 0.2981
M1 prune 0.3854△ 0.2275 0.4114 0.3062N
PTT prune 0.3801 0.2293 0.4077 0.2947△
PMI prune 0.3853△ 0.2319△ 0.4179 0.3005△
STATTHES prune 0.3796△ 0.2297 0.4122 0.3063△
THES prune 0.3806△ 0.2303 0.4089 0.3089△

out to be more effective. Improvements (up to 5.3%) could
be observed for the 2005, 2006 and 2007 topic sets. Many
of the results are insignificant however. For the 2004 topic
set, no improvements could be observed, even with differ-
ent values of α. The effect of reweighting turned out to be
independent of the translation model used.

6.4 Structuring
Considering the original number of concepts in a query

(50), the structuring does not result in very large changes
to the original query. On average between 1.1 to 3.2 equiva-
lence classes were created, with between 1.8 and 6.2 concepts
grouped into a single equivalence class.

Table 8 lists the impact of structuring the query using the
term-by-term translation models. Structuring the represen-
tations turned out to give strongly varying results, from sig-
nificant deteriorations (up to 22.7% in MAP) to significant
improvements (up to 6.4% in MAP). The decline in perfor-
mance can to some extent be attributed to a difference in
granularity of the word terms which have been grouped with
more specific or over general concept terms. For instance,
the UMLS++ concept [nicotinic acetylcholine receptor loca-
tion] is treated as a synonym of the word “nicotin”. In other
cases, clearly incorrect equivalence classes were formed. For
example, the UMLS++ concept [Device breakage] is grouped
with the word “break” in the context of “DNA breaks”. In
this case, the translation through feedback introduced these
errors; by mapping these errors to original query words and
treating them as equivalent, the impact of the erroneous
translation was further emphasized. Improvements were ob-
served when the words and concepts in the same equivalence
class were clearly linked and were defined at the same gran-
ularity level.

7. CONCLUSION
In this paper we proposed a cross-lingual framework for

biomedical IR. We distinguish between a concept and word-
based representation language. We hypothesized that the
integration of a concept-based representation in biomedi-
cal IR could benefit from methods and techniques used in
established CLIR. In analogy to what is common in tradi-
tional CLIR, we identified three types of translation models
for biomedical CLIR: 1) a comparable corpus of documents
in both a text and concept-based representation; 2) term-
by-term translation models trained on a comparable corpus;
and 3) a thesaurus. We used these sources in different cross-
lingual retrieval models. Despite the limited context taken
into account, word-to-concept translation could still improve
word-based retrieval. Translation based on pseudo-feedback
using a comparable corpus in both a word and concept-based
representation proved to perform best. In the other three
retrieval models we evaluated whether translation between
text and concepts could be improved by combining trans-
lation models. Despite the simplicity of the term-by-term
translation models, the results showed that a combination
of translation models could improve retrieval effectiveness
when combined with a word-based representation.

The results also demonstrated the added value of the con-
cept representations MeSH and an extended version of UMLS
(UMLS++). MeSH turned out to be primarily a recall en-
hancing device, especially useful for citation retrieval. For a
MeSH-based representation to be effective, however, many
(also indirectly related) terms were required to represent the
information need. The UMLS++ representation can be used
to precisely represent information needs and can be used as
a precision enhancing device.

We conclude that the proposed cross-lingual framework
offers a transparent view on the integration of a concept-
based representation for monolingual biomedical IR. Based
on the promising results with relatively simple translation
and retrieval models, we have high expectations for more
sophisticated translation and retrieval models.



Table 7: Retrieval effectiveness after reweighting.
(a) Using MeSH concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3868△ 0.2429∧ 0.3736 0.2916

M1 reweigh 0.3686 0.2428△ 0.3400▽ 0.2228H
PTT reweigh 0.3608 0.2436△ 0.3171▽ 0.2147H
PMI reweigh 0.3697 0.2425△ 0.3463▽ 0.2243H
THES reweigh 0.3699 0.2399△ 0.3509▽ 0.2273H

(b) Using UMLS++ concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3929△ 0.2285 0.4048 0.2981
M1 reweigh 0.3821 0.2300 0.4217 0.3045
PTT reweigh 0.3833△ 0.2320 0.4215 0.3025
PMI reweigh 0.3835△ 0.2341 0.4237 0.3051
STATTHES reweigh 0.3824△ 0.2345 0.4226 0.3029
THES reweigh 0.3807△ 0.2332 0.4262 0.3070

Table 8: Retrieval effectiveness after structuring.
(a) Using MeSH concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3868△ 0.2429∧ 0.3736 0.2916

M1 struct 0.3733 0.2475△ 0.3594 0.2306▽
PTT struct 0.3787 0.2521△ 0.3546 0.2250H
PMI struct 0.3762 0.2477△ 0.3572 0.2288▽
THES struct 0.3739 0.2414△ 0.3378▽ 0.2267▽

(b) Using UMLS++ concepts

2004 2005 2006 2007

baseline 0.3576 0.2219 0.3889 0.2796
word + KNN 0.3929△ 0.2285 0.4048 0.2981

M1 struct 0.3790 0.2362△ 0.4237 0.2964
PTT struct 0.3847 0.2406 0.4239 0.2976
PMI struct 0.3861 0.2311 0.4244 0.2949
STATTHES struct 0.3857 0.2358 0.4223 0.2930
THES struct 0.3770△ 0.2371 0.4266 0.2972
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