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Abstract. Until recently, the preferred method of livelock detection was
via LTL model checking, which imposes complex constraints on partial
order reduction (por), limiting its performance and parallelization. The
introduction of the dfsfifo algorithm by Faragó et al. showed that live-
locks can theoretically be detected faster, simpler, and with stronger por.

For the first time, we implement dfsfifo and compare it to the LTL
approach by experiments on four established case studies. They show the
improvements over the LTL approach: dfsfifo is up to 3.2 times faster,
and it makes por up to 5 times better than with spin’s ndfs.

Additionally, we propose a parallel version of dfsfifo, which demon-
strates the efficient combination of parallelization and por. We prove
parallel dfsfifo correct and show why it provides stronger guarantees on
parallel scalability and por compared to LTL-based methods. Experi-
mentally, we establish almost ideal linear parallel scalability and por
close to the por for safety checks: easily an order of magnitude bet-
ter than for LTL.

1 Introduction

Context. In the automata-theoretic approach to model checking [27], the be-
havior of a system-under-verification is modeled, along with a property that it is
expected to adhere to, in some concise specification language. This model M is
then unfolded to yield a state space automaton AM (cf. Def. 1). Safety properties,
e.g. deadlocks and invariants, can be checked directly on the states in AM as they
represent all configurations of M. This check can be done during the unfolding,
on-the-fly, saving resources when a property violation is detected early on.

For more complicated properties, like liveness properties [1], AM is inter-
preted as an ω-automaton whose language L(AM) represents all infinite execu-
tions of the system. A property ϕ, expressed in linear temporal logic (LTL), is
likewise translated to a Büchi or ω-automaton A¬ϕ representing all undesired
infinite executions. The intersected language L(AM) ∩ L(A¬ϕ) now consists of
all counterexample traces, and is empty if and only if the system is correct with
respect to the property. The emptiness check is reduced to the graph problem of
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finding cycles with designated accepting states in the cross product AM ⊗A¬ϕ

(cf. Sec. 2). The nested depth-first search (ndfs) algorithm [6] solves it in time
linear to the size of the product and on-the-fly as well.

Motivation. The model checking approach is limited by the so-called state space
explosion problem [1], which states that AM is exponential in the components of
the system, and A¬ϕ exponential in the size of ϕ. Luckily, several remedies exist
to this problem: patience, specialization and state space reduction techniques.

State space reduction via partial order reduction (por) prunes AM by avoiding
irrelevant interleavings of local components in M [16,26]: only a sufficient subset
of successors, the ample set, is considered in each state (cf. Sec. 2). For safety
properties, the ample set can be computed locally on each state. For liveness
properties, however, an additional condition, the cycle proviso, is needed to avoid
the so-called ignoring problem [9]. por can yield exponential reductions.

Patience also pays of exponentially as Moore’s law stipulates that the number
of transistors available in CPUs and memory doubles every 18 months [22]. Due
to this effect, model checking capabilities have increased from handling a few
thousand states to covering billions of states recently (this paper and [5]). While
this trend happily continues to increase memory sizes, it recently stopped be-
nefitting the sequential performance of CPUs because physical limitations were
reached. Instead, the available parallelism on the chips is rapidly increasing. So,
for runtime to benefit from Moore’s law, we must parallelize our algorithms.

Specialization towards certain subclasses of liveness properties, finally, can
also help to solve them more efficiently. For instance, a limitation to the CTL
and the weak-LTL fragments was shown to be efficiently parallelizable [25,3]. In
this paper, we limit the discourse to livelock properties, an important subclass
(used in about half of the case studies of 1 and a third of [24]) that investi-
gates starvation, occurring if an infinite run does not make progress infinitely
often. The definition of progress is up to the system designer and could for in-
stance refer to an increase of a counter or access to a shared resource. The spin

model checker allows the user to specify progress statements inside the specifi-
cation of the model [12], which are then represented in the model by the state
label ‘progress’ and referenced by the predefined progress LTL property [15]. Un-
til 1996, spin used a specific livelock verification algorithm. Section 6 of [15]
states that it was replaced by LTL model checking due to its incompatibility
with por.

Problem. LTL model checking can likely not be parallelized efficiently. The
current state-of-the-art reveals that parallel cycle detection algorithms either
raise the worst-case complexity to L2 [3] or to L · P [8], where L is the size of
the LTL cross product and P the number of processors. Moreover, its additional
constraints on por severely limit its reduction capabilities, even if implemented
with great care (see models allocation, cs and p2p in Table 1 in the appendix of
[9]). Last but not least, these constraints also limit the parallelization of por [2].

1 promela database: http://www.albertolluch.com/research/promelamodels.

http://www.albertolluch.com/research/promelamodels


34 A. Laarman and D. Faragó

We want to investigate whether better results can be obtained for livelocks, for
which recently an efficient algorithm was proposed by Faragó et al. [11]: dfsfifo.
In theory, it has additional advantages over the LTL approach:
1. It uses the progress labels in the model directly without the definition of an

LTL property; avoiding the calculation of a larger cross product.
2. It requires only one pass over the state space, while the ndfs algorithm,

typically used for liveness properties, requires two.
3. It eliminates the need for the expensive cycle proviso with por. Not only is

the cycle proviso a highly limiting factor in state space reduction [9], it also
complicates the parallelization of the problem [2].

4. It finds the shortest counterexample with respect to progress.
But dfsfifo is yet to be implemented and evaluated experimentally, so its prac-
tical performance is unknown. Additionally, a few hypotheses stand unproven:
1. The algorithm’s strategy to delay progress as much as possible, may also be

a good heuristic for finding livelocks early, making it more on-the-fly.
2. Its por performance might be close to that of safety checks, because the cycle

proviso is no longer required [11], and the visibility proviso (see Table 1) is
also positively influenced by the postponing of progress.

3. The use of progress transitions instead of progress states is possible, seman-
tically more accurate, and can yield better partial order reductions.

Furthermore, no parallelization exists for the dfsfifo algorithm.

Contributions. We implemented the dfsfifo algorithm in the LTSmin [21,5],
with both progress states and transitions. For the latter, we extended theory,
algorithms, proofs, models and implementation. We compare the runtime and
por performance to that of LTL approaches using ndfs. For dfsfifo, we also
investigate the effect of using progress transitions instead of states on por.

Additionally, we present a parallel livelock algorithm based on dfsfifo, to-
gether with a proof of correctness. While the algorithm builds on previous effi-
cient parallelizations of the ndfs algorithm [8,17,19], we show that it has stronger
guarantees for parallel scalability due to the nature of the underlying dfsfifo al-
gorithm. At the same time, it retains all the benefits of the original dfsfifo
algorithm. This entails the redundancy of the cycle proviso, hence allowing for
parallel por with almost the same reductions as for safety checks.

Our experiments confirm the theoretical expectations: using dfsfifo on four
case studies, we observed up to 3.2 times faster runtimes than with the use of
an LTL property and the ndfs algorithm, even compared to measurements with
the spin model checker. But we also confirm all hypotheses of Faragó et al.: the
algorithm is more on-the-fly, and por performance is closer to that of safety
checks than the LTL approach, making it up to 5 times more effective than por

in spin. Our parallel version of the algorithm can work with por and features the
expected linear scalability. Its combination with por easily outperforms other
parallel approaches [3].

Overview. In Sec. 2, we recapitulate the intricacies of livelock detection via LTL
and via non-progress detection, as well as por. In Sec. 3, we introduce dfsfifo
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for progress transitions with greater detail and formality than in [11], as well as
its combination with por. Thereafter, in Sec. 4, we provide a parallel version
of dfsfifo with a proof of correctness, implementation considerations, and an
analysis on its scalability. Sec. 5 presents the experimental evaluation, compar-
ing dfsfifo’s (por) performance and scalability against the (parallel) LTL algo-
rithms in spin [13,15], DiVinE [2,3], and LTSmin [5,21]. We conclude in Sec. 6.

2 Preliminaries

Model Checking of Safety Properties. Explicit-state model checking algo-
rithms construct AM on-the-fly starting from the initial state s0, and recursively
applying the next-state function post to discover all reachable states RM. This
only requires storing states (no transitions). As soon as a counterexample is dis-
covered, the exploration can terminate early, saving resources. To reason about
these algorithms, it is however easier to consider AM structurally as a graph.

Definition 1 (State Space Automaton). An automaton is a quintuple AM =
(SM, s0, Σ, TM, L), with SM a finite set of states, s0 ∈ SM an initial state, Σ
a finite set of action labels, TM : SM × Σ → SM the transition relation, and
L : SM → 2AP a state labeling function, over a set of atomic propositions AP .

We also use the recursive application of the transition relation T : s π−→+s′ iff
π is a path in AM from s to s′, or s π−→∗s′ if possibly s = s′. We treat a path π
dually as a sequence of states and a sequence of actions, depending on the context.
We omit the subscript M whenever it is clear from the context.

Now, we can define: the reachable states RM = {s ∈ SM | s0 →∗ s}, the function
post : SM → 2Σ , such that post(s) = {α ∈ Σ | ∃s′ ∈ SM : (s, α, s′) ∈ TM}
and α(s) as the unique next-state for s, α if α ∈ post(s), i.e. the state t with
(s, α, t) ∈ TM. Note that a state s ∈ S comprises the variable valuations and
process counters in M. Hence, we can use any proposition over these values as
an atomic proposition representing a state label. For example, we may write
progress ≡ Peterson0 = CS to have progress ∈ L(s) iff s represents a state where
process instance 0 of Peterson is in its critical section CS. Or we can write
error ≡ N > 1 to express the mutual exclusion property, with N the number of
processes in CS. These state labels can then be used to check safety properties
using reachability, e.g., an invariant ‘¬error ′ to check mutual exclusion in M.

LTL Model Checking. For an LTL property, the property ϕ is transformed to
an ω-automaton A¬ϕ as detailed in [27]. Structurally, the ω-automaton extends a
normal automaton (Def. 1) with dedicated accepting states (see Def. 2). Seman-
tically, these accepting states mark those cycles that are part of the ω-regular
language L(A¬ϕ) as defined in Def. 3.

To check correctness of M with respect to a property ϕ, the cross product of
A¬ϕ with the state space AM is calculated: AM×ϕ = AM ⊗A¬ϕ. The states of
SM×ϕ are formed by tuples (s, s′) with s ∈ SM and s′ ∈ S¬ϕ, with (s, s′) ∈ F
iff s′ ∈ F¬ϕ. Hence, the number of possible states |SM×ϕ| equals |SM| · |S¬ϕ|,
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whereas the number of reachable states |RM×ϕ| may be smaller. The transitions
in TM×ϕ are formed by synchronizing the transition labels of A¬ϕ with the state
labels in AM. For an exact definition of TM×ϕ, we refer to [1].

Definition 2 (Accepting states). The set of accepting states F corresponds
to those states with a label accept ∈ AP : F = {s ∈ S | accept ∈ L(s)}.

Definition 3 (Accepting run). A lasso-formed path s0
v−→∗s w−→+s in A, with

s ∈ F , constitutes an accepting run, part of the language of A: vwω ∈ L(A).

As explained in Sec. 1, the whole procedure of finding counterexamples to ϕ
for M is now reduced to the graph problem of finding accepting runs in AM×ϕ.
This can be solved by the nested depth-first search (ndfs) algorithm, which does
at most two explorations of all states RM×ϕ. Since AM×ϕ can be constructed
on-the-fly, ndfs saves resources when a counterexample is found early on.

Livelock Detection. Livelocks form a specific, but important subset of the live-
ness properties and can be expressed as the progress LTL property: �♦progress,
which states that on each infinite run, progress needs to be encountered infinitely
often. As the LTL approach synchronizes the state labels of AM (see Def. 3), it
requires that progress is defined on states as in Def. 4.

Definition 4 (Progress states). The set of progress states SP corresponds to
those states with a state label progress ∈ AP : SP = {s ∈ S | progress ∈ L(s)}.

Definition 5 (Non-progress cycle). A reachable cycle π in AM is a non-
progress cycle (NPcycle) iff it contains no progress P.

We define NP as a set of states: NP = {s ∈ SM | ∃π : s π−→+s∧ π ∩P = ∅}.

Theorem 1. Under P = SP , AM contains a NPcycle iff the crossproduct with
the progress property AM×�♦progress contains an accepting cycle.

Livelocks can however also be detected directly on AM if we consider for a
moment that a counterexample to a livelock is formed by an infinite run that
lacks progress P , with P = SP . By proving absence of such non-progress cycles
(Def. 5), we do essentially the same as via the progress LTL property, as Th. 1
shows (see [15] for the proof and details). This insight led to the proposal of
dedicates algorithms in [15,11] (cf. dfsfifo in Sec. 3), requiring |RM| time units
to prove livelock freedom. The automaton A¬�♦progress consists of exactly two
states [15], hence |RM| · 2 ≤ |RM×ϕ|. This, combined with the revisits of the
ndfs algorithm, makes the LTL approach up to 4 times as costly as dfsfifo.

Partial Order Reduction. To achieve the reduction as discussed in the in-
troduction, por replaces the post with an ample function, which computes a
sufficient subset of post to explore only relevant interleavings w.r.t the prop-
erty [16].

For deadlock detection, ample only needs to fulfill the emptiness proviso
and dependency proviso (Table 1). The provisos can be deduced locally from s,
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Table 1. por provisos for the LTL model checking of M with a property ϕ

C0 emptiness ample(s) = ∅ ⇔ post(s) = ∅
C1 dependency No action α �∈ ample(s) that is dependent on another β ∈ ample(s),

i.e. (α, β) ∈ D, can be executed in the original AM after reaching
the state s and before some action in ample(s) is executed.

C2 visibility ample(s) �= post(s) =⇒ ∀α ∈ ample(s) : α is invisible, which
means that α does not change a state label referred to by ϕ.

C3 cycle For a cycle π in AM, ∃s ∈ π : post(s) = ample(s).
C3’ cycle (impl.) ample(s) �= post(s) ⇒ �α ∈ ample(s) s.t. α(s) is on the dfs stack.

post(s), and dependency relations D ⊆ ΣM × ΣM that can be statically over-
estimated from M, e.g. (α, β) ∈ D if α writes to those variables that β uses as
guard [23]. For a precise definition of D consult [16,26].

In general, the model checking of an LTL property (or invariant) ϕ requires
two additional provisos to hold: the visibility proviso ensures that traces included
in A¬ϕ are not pruned from AM, the cycle proviso prevents the so-called ignor-
ing problem [9]. The strong variant C3 (stronger than A4 in [1, Sec. 8.2.2]) is
already hard to enforce, so often an even stronger condition, e.g. C3’, is imple-
mented. While visibility can still be checked locally, the cycle proviso is a global
property, that complicates parallelization [2]. Moreover, the ndfs algorithm re-
visits states, which might cause different ample sets for the same states, because
the procedure is non-deterministic [15]. To avoid any resulting redundant explo-
rations, additional bookkeeping is needed to ensure a deterministic ample set.

3 Progress Transitions and dfsfifo for Non-progress

In the current section, we refine the definition of progress to include transitions.
We then present a new version of dfsfifo, an efficient algorithm for non-progress
detection by Faragó et al. [11], which supports this broader definition. We also
discuss implementation considerations and the combination with por.

s1

s2

s3

α

Progress Transitions. As argued in [11], progress is more naturally
defined on transitions (Def. 6) than on states. After all, the action itself,
e.g. the increase of a counter in M, constitutes the actual progress. This
becomes clear considering the semantical difference between progress
transitions and progress states for livelock detection: The figure on the
right shows an automaton with SP = {s1} and T P = {(s2, α, s1)}.
Thus the cycle s2 ↔ s3 exhibits only fake progress when progress states are used
(P = SP ): the action performing the progress, α, is never taken. With progress
transitions (P = T P), only s2 ↔ s3 can be detected as NPcycle. While fake
progress cycles could be hidden by enforcing strong (A-)fairness [1], Spin’s weak
(A-)fairness [12] is insufficient [11]. But enforcing any kind of fairness is costly [1].

Definition 6 (Progress transitions/actions). We define progress transitions
as: T P = {(s, α, s′) ∈ T | α ∈ ΣP}, with ΣP ⊆ Σ a set of progress actions.
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Algorithm 1. dfsfifo for progress transitions and progress states

1: procedure dfs-fifo(s0)
2: F := {s0} �Frontier queue
3: V := ∅ �Visited set
4: S := ∅ �Stack
5: repeat
6: s := some s ∈ F
7: if s �∈ V then
8: dfs(s)
9: F := F \ {s}

10: until F = ∅
11: report progress ensured

12: procedure dfs(s)
13: S := S ∪ {s}
14: for all t := α(s) s.t. α ∈ post(s) do
15: if t ∈ S ∧ α, t �∈ P then
16: report NPcycle
17: if t �∈ V then
18: if α, t �∈ P then
19: dfs(t)
20: else if t �∈ F then
21: F := F ∪ {t}
22: V := V ∪ {s}
23: S := S \ {s}

Theorem 2. dfsfifo ensures: R∩NP = ∅ ⇔ dfs-fifo(s0) = report NPcycle

dfsfifo. Alg. 1 shows an adaptation of dfsfifo that supports the definition of
progress on both states and transitions (actions), so P = SP ∪ΣP . Intuitively,
the algorithm works by delaying progress as long as possible using a bfs and
searching for NPcycles in between progress using a dfs. The correctness of this
adapted algorithm follows from Th. 2, which is implied by Th. 4 with P = 1.

The FIFO queue F holds progress states, or immediate successors of progress
transitions (which we will collectively refer to as after-progress states), with the
exception of the initial state s0. The outer dfs-fifo loop handles all after-progress
states in breadth-first order. The dfs procedure, starting from a state in F then
explores states up to progress, storing visited states in the set V (l.22), and after-
progress states in F (l.21). The stack of this search is maintained in a set S (l.13
and l.23) to detect cycles at l.16. All states t ∈ S and their connecting transitions
are non-progress by l.18, except for possibly the starting state from F . next page−→
The cycle-closing transition s α−→t might also be a progress transition. Therefore,
l.15 performs an additional check α, t ∈ P . Furthermore, an after-progress state
s ∈ SP added to F , might be reached later via a non-progress path and added
to V . Hence, we discard visited states in dfs-fifo at l.7.

Implementation. An efficient implementation of Alg. 1 stores F and V in
one hash table (using a bit to distinguish the two) for fast inclusion checks,
while F is also maintained as a queue F q. S can be stored in a separate hash
table as |S| � |R|. Counterexamples can be reconstructed if for each state
a pointer to one of its predecessors is stored [20]. Faragó et al. showed two
alternatives [11], which are also compatible with lossy hashing [4].

Table 2. por visibility provisos for dfsfifo

C2S ample(s) = post(s) =⇒ s ∈ SP

C2T ample(s) = post(s) =⇒ ∀α ∈ ample(s) : α ∈ ΣP
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Combination with por. While the four-fold performance increase of dfsfifo
compared to LTL (Sec. 2) is a modest gain, the algorithm provides even more
potential as it relaxes conditions on por, which, after all, might yield exponential
gains. In contrast to the LTL method using ndfs, dfsfifo does not revisit states,
simplifying the ample implementation. Moreover, Lemma 1 shows that dfsfifo
does not require the cycle proviso using a visibility proviso from Table 2.

Lemma 1. Under P = SP , C2S implies C3. Under P = ΣP , C2T implies C3.

Proof. If dfsfifo with por traverses a cycle C which makes progress, i.e. ∃s ∈
C : s ∈ SP ∨ ample(s)∩C ∩ΣP = ∅, C2S/ C2T guarantees full expansion of s,
thus fulfilling C3. If dfsfifo traverses a NPcycle, it terminates at l.16. ��

Theorem 3. Th. 2 still holds for dfsfifo with C0, C1, C2S/ C2T .

Proof. Lemma 1 shows that if the C0, C1 and C2S/ C2T hold, so does C3.
Furthermore, C0, C1 and C2S/ C2T are independent of the path leading to s,
so ample(s) with dfsfifo retains stutter equivalence related to progress [14, p.6].
Therefore, the reduced state space has a NPcycle iff the original has one. ��

4 A Parallel Livelock Algorithm Based on dfsfifo

Alg. 2 presents a parallel version of dfsfifo. The algorithm does not differ much
from Alg. 1: the dfs procedure remains largely the same, and only dfs-fifo is split
into parallel fifo procedures handling states from the FIFO queue F concurrently.
The technique to parallelize the dfs(s, i) calls is based on successful multi-core
ndfs algorithms [17,19,8]. Each worker thread i ∈ 1..P uses a local stack Si,
while V and F are shared (below, we show how an efficient implementation can
partially localize F ). The stacks may overlap (see l.2 and l.9), but eventually
diverge because we use a randomized next-state function: post i (see l.15).

Proof of Correctness. Th. 4 proves correctness of Alg. 2. We show that the
propositions below hold after initialization of Alg. 2, and inductively that they

Algorithm 2 . Parallel dfsfifo (pdfsfifo)
1: procedure dfs-fifo(s0, P )
2: F := {s0} �Frontier queue
3: V := ∅ �Visited set
4: Si := ∅ for all i ∈ 1..P �Stacks
5: fifo(1) ‖ . . . ‖ fifo(P )
6: report progress ensured
7: procedure fifo(i)
8: while F �= ∅ do
9: s := some s ∈ F

10: if s �∈ V then
11: dfs(s, i)
12: F := F \ {s}

13: procedure dfs(s, i)
14: Si := Si ∪ {s}
15: for all t := α(s) s.t. α ∈ post i(s) do
16: if t ∈ Si ∧ α, t �∈ P then
17: report NPcycle
18: if t �∈ V then
19: if α, t �∈ P then
20: dfs(t, i)
21: else if t �∈ F then
22: F := F ∪ {t}
23: V := V ∪ {s}
24: Si := Si \ {s}
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are maintained by execution of each statement in the algorithm, considering
only the lines that influence the proposition. Rather than restricting progress to
either transitions or states, we prove the algorithm correct under P = SP ∪T P .
Hence, the dual interpretation of paths (see Def. 1) is used now and then. Note
that a call to report terminates the algorithm and the callee does not return.

Lemma 2. Upon return of dfs(s, i), s is visited: s ∈ V .

Proof. l.23 of dfs(s, i) adds s to V . ��

Lemma 3. Invariantly, all direct successors of a visited state v are visited or in F :
∀v ∈ V, α ∈ post(v) : α(v) ∈ V ∪ F .

Proof. After initialization, the invariant holds trivially, as V is empty. V is only
modified at l.23, where s is added after all its immediate successors t are consid-
ered at l.16–22: If t ∈ V ∪F , we are done. Otherwise, dfs(s, i) terminates at l.17
or t is added to V at l.20 (Lemma 2) or to F at l.22. States are removed from
F at l.12, but only after being added to V at l.11 (Lemma 2). ��

Corollary 1. Lemma 3 holds also for a state v ∈ V in dfs(v, i) just before l.23.

Lemma 4. Invariantly, all paths from a visited state v to a state f ∈ F \ V
contain progress: ∀π, v ∈ V, f ∈ F \ V : v π−→f =⇒ P ∩ π = ∅.

Proof. After initialization of the sets V and F , the lemma is trivially true. These
sets are modified at l.12, l.22, and l.23 (omitting the trivial case):

l.22 Let i be the first worker thread to add a state t to F in dfs(s, i) at l.22. If
some other worker j adds t to V , the invariant holds trivially, so we consider
t ∈ V . By l.19, all paths v →∗ s → t contain progress. By contradiction,
we show that all other paths that do not contain s also contain progress:
Assume that there is a v ∈ V such that v π−→+t and P∩π = ∅. By induction
on the length of the path π and Lemma 3, we obtain either t ∈ V , a
contradiction, t ∈ F \V , contradicting the assumption that worker i is first,
or another f = t with f ∈ F \V , for which the induction hypothesis holds.

l.23 Assume towards a contradiction that i is the first worker thread to add a
state s to V at l.23 of dfs(s, i). So, we have s ∈ V before l.23. By Cor. 1, for
all immediate successors t of s, i.e. for all t = α(s) such that α ∈ post(s),
we have t ∈ V or t ∈ F \ V . In the first case, since s = t, the induction
hypothesis holds for t. In the second case, if t = s, the invariant trivially
holds after l.23, and if t = s, we have α, t ∈ P , since otherwise t ∈ V by l.19
and l.20 (Lemma 2). Thus the invariant holds for all paths s →+ f . ��

Remark 1. Note that a state s ∈ F might at any time be also added to V by
some other worker thread in two cases: (1) s ∈ SP , i.e. it was reached via a
progress transition (see l.19), but is reachable via some other non-progress path,
or (2) another worker thread j takes s from F at l.9 and completes dfs(s, j).

Lemma 5. Invariantly, visited states do not lie on NPcycles: V ∩ NP = ∅.
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Proof. Initially, V = ∅ and the lemma holds trivially. Let i be the first worker
thread to add s to V in dfs(s, i) at l.23. So we have s ∈ V just after l.23 of
dfs(s, i). Assume towards a contradiction that s ∈ NP . Then there is a NPcycle
s → t →+ s with s = t since otherwise l.17 would have reported a NPcycle.
Now by Lemma 3, t ∈ V ∪ F . By the induction hypothesis, t ∈ V , so t ∈ F \ V .
Lemma 4 contradicts s → t making no progress. ��

Lemma 6. Upon return of dfs-fifo, all reachable states are visited: R ⊆ V .

Proof. After dfs-fifo(s0, P ), F = ∅ by l.8. By l.2, l.11 and Lemma 2, s0 ∈ V . So
by Lemma 3, R ⊆ V . ��

Lemma 7. dfs-fifo terminates and reports an NPcycle or progress ensured.

Proof. Upon return of a call dfs(s, i) for some s ∈ F at l.11, s has been added
to V (Lemma 2), removed from F at l.12, and will never be added to F again.
Hence the set V grows monotonically, but is bounded, and eventually F = ∅.
Thus eventually all dfs calls terminate, and dfs-fifo(s0, P ) terminates too. ��

Lemma 8. Invariantly, the states in Si form a path without progress except for
the first state: Si = ∅ or Si = π ∩ S for some s π−→∗s′ and π ∩ P ⊆ {s1}.
Proof. By induction over the recursive dfs(s, i) calls, we obtain π. At l.20, we
have α, t ∈ P , but at l.11 we may have s ∈ SP (by l.19 and l.22). ��
Theorem 4. pdfsfifo ensures:R∩NP = ∅⇔dfs-fifo(s0, P ) = report NPcycle

Proof. We split the equivalence into two cases:
⇐: We have a cycle: s α−→t π−→s s.t. ({α} ∪ π) ∩ P = ∅ by l.16 and Lemma 8.
⇒: Assume that dfs-fifo(s0, P ) = NPcycle ∧ R ∩ NP = ∅. However, at l.6,

R ⊆ V by Lemma 6 and Lemma 7, hence R∩NP = ∅ by Lemma 5. ��

Implementation. For a scaling implementation, the hash table storing F and V
(see Sec. 3) is maintained in shared memory using a lockless design [20,18].
Storing also the queue F q in shared memory, however, would seriously impede
scalability due to contention (recall that F is maintained as both hash table and
queue F q). Our more efficient implementation splits F q into P local queues F q

i ,
such that F ⊆

⋃
i∈1..P F q

i (Remark 1 explains the ⊆).
To implement load balancing, one could relax the constraint at l.21 to s ∈ F q,

so that after-progress states end up on multiple local queues. Provided that AM
is connected enough, which it usually is in model checking, this would provide
good work distribution already. On the other hand, the total size of all queues
F q
i would grow proportional to P , wasting a lot of memory on many cores.

1: procedure fifo(i)
2: F q

i := {s0}
3: while steal(F q

i ) do
4: F q

i := F q
i \ {s}

5: if s �∈ V then
6: dfs(s, i)

Therefore, we instead opted to add explicit load bal-
ancing via work stealing. The code on the left illus-
trates this. Iff the local queue F q

i is empty, the steal
function grabs states from another random queue F q

j

and adds them to F q
i , returning false iff it detects

termination. Inspection of Lemma 3 and Lemma 7
shows that removing s from F is not necessary.
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The proofs show that correctness of pdfsfifo does not require F to be in
strict FIFO order (as l.9 does not enforce any order). To optimize for scalability,
we enforce a strict bfs order via synchronizations2 between the bfs levels only
optionally3. As trade-off, counterexamples are no longer guaranteed to be the
shortest with respect to progress, and the size of F may increase (see Remark 1).

s

tu v

Analysis of Scalability. Experiments with multi-core ndfs [8]
demonstrated that these parallelization techniques make the
state-of-the-art for LTL model checking. Because of the bfs

nature of dfsfifo, we can expect even better speedups. More-
over, in [17], additional synchronization was needed to prevent workers from
early backtracking; a situation in which two workers exclude a third from part
of the state space. The figure on the right illustrates this: Worker 1 can visit s,
v, t and u, and then halt. Worker 2 can visit s, u, t and v and backtrack over
v. If now Worker 1 resumes and backtracks over u, both v and u are in V . A
third worker will be excluded from visiting t, which might lead to a large part
of the state space. Lemma 3 shows that this is impossible for pdfsfifo as the
successors of visited states are either visited or in F (treated in efficient parallel
bfs), but never do successors lie solely on the stack Si (as in cndfs).

5 Experimental Evaluation

In the current section, we benchmark the performance of dfsfifo, and its combi-
nation with por, using both progress states and progress transitions. We com-
pare the results against the LTL approach with progress property using, inter
alia, spin [12]. We also investigate the scalability of pdfsfifo, and compare the
results against the multi-core ndfs algorithm cndfs, the state-of-the-art for
parallel LTL [8,5], and the piggyback algorithm in spin (PB). Finally, we in-
vestigate the combination of pdfsfifo and por, and compare the results with
owcty [3], which uses a topological sort to implement paralel LTL and por [2].

We implemented pdfsfifo (Alg. 2 with work stealing and both strict3/non-
strict BFS order) in LTSmin [21] 2.0.4 LTSmin has a frontend for promela,
called spins [12], and one for the DVE language, allowing fair comparison [21,5]
against spin 6.2.3 and DiVinE 2.5.2 [3]. To ensure similar state counts, we turned
off control-flow optimizations in spins/spin, because spin has a more powerful
optimizer, which can be, but is not yet implemented in spins. Only the GIOP
model (described below) still yields a larger state count in spins/LTSmin than
in spin. We still include it as it nicely features the benefits of dfsfifo over ndfs.

We benchmarked on a 48-core machine (a four-way AMD Opteron 6168) with
128GB of main memory, and considered 4 publicly available1

promela models
with progress labels, and adapted spins to interpret the labels as either progress
states, as in spin, or progress transitions. leadert is the efficient leader election

2 Parallel bfs algorithms, with and without synchronization, are described in [7].
3 The command line option --strict turns on strict pdfsfifo in LTSmin.
4 LTSmin is open source, available at: http://fmt.cs.utwente.nl/tools/ltsmin.

http://fmt.cs.utwente.nl/tools/ltsmin
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Table 3. Runtimes (sec) of (sequential) dfs, dfsfifo, ndfs in spin and LTSmin

LTSmin spin
|R| |Rltl| Tdfs Tdfsfifo Tndfs |R| |Rltl| Tdfs Tndfs

leadert 4.5E7 198% 153.7 233.2 753.6 4.5E7 198% 304.0 1,390.0
garp 1.2E8 150% 377.1 591.2 969.2 1.2E8 146% 1,370.0 2,050.0
giop 2.7E9 oom 21,301.4 43,154.3 oom 8.4E7 181% 1,780.0 4,830.0
i-prot 1.4E7 140% 28.4 41.4 70.6 1.4E7 145% 63.3 103.0

protocol Atiming [10]. The Group Address Registration Protocol (GARP) is a
datalink-level multicast protocol for a bridged LAN. General Inter-Orb Protocol
(GIOP) models service oriented architectures. The model i-Protocol represents
the gnu implementation of this protocol. We use a different leader election proto-
col (leaderDKR) from [24] for comparison against DiVinE. For all these models,
the livelock property holds under P = SP and P = T P .5

Performance. In theory, dfsfifo can be up to four times as fast as using
the progress LTL formula and ndfs. To verify this, we compare dfsfifo to ndfs

in LTSmin and spin. In LTSmin, we used the command line: prom2lts-mc --
state=tree -s28 --strategy=[dfsfifo/ndfs] [model], which replaces the shared table (for
F and V ) by a tree table for state compression [18]. In spin, we used compres-
sion as well (collapse [12]): cc -O2 -DNP -DNOFAIR -DNOREDUCE -DNOBOUNDCHECK

-DCOLLAPSE -o pan pan.c, and pan -m100000 -l -w28, avoiding table resizes and
overhead. In both tools, we also ran dfs reachability with similar commands.
We write oom for runs that overflow the main memory.

Table 3 shows the results: As expected, |Rltl| is 1.5 to 2 times larger than
|R| for both spin and LTSmin; GIOP fits in memory for dfsfifo but the LTL
cross-product overflows (ndfs). Tndfs is about 1.5 to 4 times larger than Tdfs
for spin, 2 to 5 times larger for LTSmin (cf. Section 2). Tdfsfifo is 1.5 to 2 times
larger than Tdfs, likely caused by its set inclusion tests on S and F . Tndfs is 1.6
to 3.2 times larger than Tdfsfifo .

Parallel Scalability. To compare the parallel algorithms in LTSmin, we use
the options --threads=P --strategy=[dfsfifo/cndfs], where P is the number of worker
threads. In spin, we use -DBFS_PAR, which also turns on lossy state hashing [13],
and run the pan binary with an option -uP . This turns on a parallel, linear-time,
but incomplete, cycle detection algorithm called piggyback (PB) [13]. It might also
be unsound due its combination with lossy hashing [4]. Fig. 1 shows the obtained
speedups: As expected, reachability [20] and pdfsfifo scale almost ideally, while
cndfs exhibits sub-linear scalability, even though it is the fastest parallel LTL so-
lution [8]. PB also scales sub-linearly. Since LTSmin sequentially competes with
spin (Table 4, except for GIOP), scalability can be compared.

Parallel Memory Use. We expected few state duplication in F on local queues
(see Remark 1). To verify this, we measured the total size of all local queues and
hash tables using counters for strict3 and non-strict pdfsfifo, and cndfs. Table 4
shows QP =

∑
i∈1..P |F q

i |+ |Si| averaged over 5 runs: Non-strict pdfsfifo shows

5 Models that we modified are available at http://doiop.com/leader4DFSFIFO.

http://doiop.com/leader4DFSFIFO
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Fig. 1. Speedups of dfs, pdfsfifo and cndfs in LTSmin, and piggyback in spin

Table 4. Runtimes (sec) / queue sizes of the parallel algorithms: dfs, pdfsfifo and
cndfs in LTSmin, and PB in spin

dfs pdfsfifo cndfs PB pdfsstrictfifo pdfsnon-strict
fifo cndfs

T1 T48 T1 T48 T1 T48 T1 Tmin Q1 Q48 Q1 Q48 Q1 Q48

leadert 153.7 3.8 233.2 5.7 925.7 51.4 228.0 25.9 1.0E6 1.2E6 1.2E6 1.4E6 2.7E6 3.6E7
garp 377.1 8.8 591.2 13.1 1061.0 58.6 1180.0 70.9 1.9E7 2.0E7 1.9E7 5.3E6 5.5E6 6.5E7
giop 2.1E4 463.3 4.3E4 9.7E2 oom oom 1.2E3 57.8 1.1E9 8.4E8 1.1E9 8.4E8 oom oom
i-prot 28.4 0.7 41.4 1.1 75.9 3.7 86.2 17.7 1.0E6 1.1E6 1.0E6 1.3E6 8.3E5 1.0E7

little difference from the strict variant, and Q48 is at most 20% larger than
Q1 for all pdfsfifo. Due to the randomness of the parallel runs, we even have
Q48 < Q1 in many cases. Revisits occurred at most 2.6% using 48 cores. In
the case of cndfs, the combined stacks typically grow because of the larger
dfs searches. Accordingly, we found that pdfsfifo’s total memory use with 48
cores was between 87% and 125% compared to sequential dfs. In the worst case,
pdfsfifo (with tree compression) used 52% of the memory use of PB (collapse
compression and lossy hashing) [18,5] – GIOP excluded as its state counts differ.

por Performance. LTSmin’s por implementation (option --por) is based on
stubborn sets [26], described in [23], and is competitive to spin’s [5]. We extended
it with the alternative provisos for dfsfifo: C2S and C2T . Table 5 shows the
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Table 5. por (%) for dfsTfifo, dfsSfifo, dfs and ndfs in spin and LTSmin

LTSmin spin
dfs dfsTfifo dfsSfifo ndfs dfs ndfsspin

leadert 0.32% 0.49% 99.99% 99.99% 0.03% 1.15%
garp 1.90% 2.18% 4.29% 16.92% 10.56% 12.73%
giop 1.86% 1.86% 3.77% oom 1.60% 2.42%
i-prot 16.14% 31.83% 100.00% 100.00% 24.01% 41.37%

Table 6. por and speedups for leaderDKR using pdfsfifo, cndfs and owcty

N Alg. |R| |T | T1 T48 U |Rpor| |T por| T por
1 T por

48 Upor

9 cndfs 3.6E7 2.3E8 502.6 12.0 41.8 27.9% 0.1% 211.8 n/a n/a
9 pdfsfifo 3.6E7 2.3E8 583.6 14.3 40.8 1.5% 0.0% 12.9 3.6 3.5
9 owcty 3.6E7 2.3E8 498.7 51.9 9.6 12.6% 0.0% 578.4 35.7 16.2

10 cndfs 2.4E8 1.7E9 —30’ 90.7 —30’ 19.3% 5.4% 1102.7 n/a n/a
10 pdfsfifo 2.4E8 1.7E9 —30’ 109.3 —30’ 0.7% 0.1% 35.0 2.5 14.0
10 owcty 2.4E8 1.7E9 —30’ 663.1 —30’ 8.7% 2.2% —30’ 156.3 —30’
11 pdfsfifo —30’ —30’ —30’ —30’ —30’ 5.1E6 7.1E6 109.8 5.3 20.7
11 owcty —30’ —30’ —30’ —30’ —30’ 9.3E7 1.7E8 —30’ 1036.5 —30’
12 pdfsfifo —30’ —30’ —30’ —30’ —30’ 1.6E7 2.2E7 369.1 11.2 33.0
13 pdfsfifo —30’ —30’ —30’ —30’ —30’ 6.6E7 9.2E7 1640.5 38.1 43.0
14 pdfsfifo —30’ —30’ —30’ —30’ —30’ 2.0E8 2.9E8 —30’ 120.3 —30’
15 pdfsfifo —30’ —30’ —30’ —30’ —30’ 8.4E8 1.2E9 —30’ 527.5 —30’

relative number of states, using the different algorithms in both tools: For all
models, both LTSmin and spin are able to obtain reductions of multiple orders
of magnitude using their dfs algorithms. We also observe that much of this
benefit disappears when using the ndfs LTL algorithm due to the cycle proviso,
although spin often performs much better than LTSmin in this respect. Also
dfsfifo with progress states (column dfs

S
fifo), performs poorly: apparently, the

C2S proviso is so restrictive that many states are fully expanded. But dfsfifo
with progress transitions (column dfs

T
fifo) retains dfs’s impressive por with at

most a factor 2 difference.

Scalability of Parallelism and por. We created multiple instances of the
leaderDKR models by varying the number of nodes N and expressed the progress
LTL property in DiVinE. We start DiVinE’s state-of-the-art parallel LTL-por

algorithm, owcty, by: divine owcty [model] -wP -i30 -p. With the options described
above, we turned on por in LTSmin and ran pdfsfifo, and cndfs, for compar-
ison. We limited each run to half an hour (—30’ indicates a timeout). Piggyback
reported contradictory memory usage and far fewer states (e.g. <1%) compared
to dfs with por, although it must meet more provisos. Thus we did not compare
against piggyback and suspect a bug.

Table 6 shows that pdfsfifo and por complement each other rather well:
Without por (left half of the table) the almost ideal speedup (U = T1

T48
=

40.8) allows to explore one model more: N ≤ 10 instead of only N = 9. When
enabling por (right half of the table), we see again multiple orders of magnitude
reductions, while parallel scalability reduces to U = 3.5 for N = 9, because of
the small size of the reduced state space (|Rpor|). When increasing the model
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size to N = 13 the speedup grows again to an almost ideal level (U = 43). With
por, the parallelism allows us to explore two more models within half an hour,
i.e., N ≤ 15. While owcty and ndfs also show this effect, it is less pronounced
due to their cycle proviso, allowing N ≤ 11 for owcty and N ≤ 9 for ndfs.

As livelocks are disjoint from the class of weak LTL properties, owcty could
become non-linear [3], but it required only one iteration for leaderDKR.

As pdfsfifo revisits states, the random next-state function could theoretically
weaken por (as for ndfs, see Sec. 2). But for all our 5 models, this did not occur.

cndfs pdfsTfifo cndfs pdfsTfifo
T1 T48 T1 T48 C1 C48 C1 C48

shallow —30’ 7 12 4 —30’ 16 16 16
deep 16

(once
—30’

)
2 —30’ 451 577 499 —30’ 51

On-the-Fly Performance. We cre-
ated a leader election protocol with
early (shallow) and another with late
(deep) injected NPcycles (see 5, [10]).
The table on the right shows the average runtime in seconds (T ) and counterex-
ample length (C) over five runs. Since pdfsfifo finds shortest counterexamples3,
it outperforms cndfs for shallow (more relevant in practice) and pays a penalty
for deep. Both algorithms benefit greatly from massive parallelism (see also [19]).

6 Conclusions
We showed, in theory and in practice, that model checking livelocks, an impor-
tant subset of liveness properties, can be made more efficient by specializing on
it. For our pdfsfifo implementation with progress transitions, por becomes sig-
nificantly stronger (cf. Table 5), parallelization has linear speedup (cf. Fig. 1),
and both can be combined efficiently (cf. Table 6).

Acknowledgements. We thank colleagues Mark Timmer, Mads Chr. Olesen,
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