
Fuzzy Reasoning
with Continuous Piecewise Linear Membership Functions

P.M. van den Broek
Department of Computer Science, Twente University of Technology,

P.O.Box 217,7500 AE Enschede, the Netherlands
email : pimvdb@cs.utwente.nl

Abstract

It is shown that, for some intersection and implication
functions, the complexity of the computation of inference
results with generalised modus ponens can be reduced
considerably when membership functions are restricted to
functions which are continuous and piecewise linear.
Algorithms for computing inference results are given in
the functional language Miranda.

I. Introduction

In fuzzy reasoning with generalised modus ponens:

Premise 1 If X-Athen Y-B
Premise 2 X=A’

Conclusion Y-B’

one calculates the fuzzy set B’ from the fuzzy sets A,
A’ and B with

where I is some intersection function and J is some
implication function.

When the domains of the fuzzy sets are finite, the
computation of B’ presents no difficulties. Here we are
interested in the case where the domains are finite intervals
of the real numbers. In this case one cannot compute B’ in
general; instead one computes B’(y) for a finite number of
values of y. The Computation of a single value B’(y)
involves functions over a continuous interval, and usually
involves the application of numerical approximation
techniques.

In this paper we will show that, for some intersection
and implication functions, the complexity of the
computation can be reduced considerably when only
membership functions are considered which are
continuous and piecewise linear. A function is said to be

piecewise linear if it is linear in all but a finite number of
points. We observe from the literature that for membership
functions one often uses piecewise linear functions. The
reduction of the complexity arises from the fact that no
discretization is necessary.

We will consider of course only those intersection
functions and implication functions which have the
property that when A, A’ and B are continuous and
piecewise linear, also B’ will be continuous and piecewise
linear. Klir and Yuan [l] list four frequently used
intersections: standard intersection, algebraic product,
bounded difference and drastic intersection. From these we
only consider the standard intersection and the bounded
difference, since the inference result for the algebraic
product will not in general be piecewise linear, and the
inference result for the drastic intersection will not in
general be continuous. From the list of implications given
by Klir and Yuan, we only consider, for the same reason,
the Lukasiewicz implication, the Kleene-Dienes
implication, the Early-Zadeh implication and the Willmott
implication. For J we will also consider the minimum
function, also known as the Mamdani implication, because
it is widely used in the literature, although it is not an
implication.

Due to space limitations this paper only treats the
standard intersection; the full version of this paper can be
obtained via http:llwwwtrese.cs.utwente.nl/-pimvdbi.

For each of the 5 implications we will present an
algorithm for the computation of the continuous piecewise
linear function B ’ from continuous piecewise linear
functions A, A’ and B with equation (1). The problem to
be solved in each case is the computation of the supremum
of a continuum of continuous piecewise linear functions.
We will derive our results in a rather informal way;
rigorous proofs of our results are however straightforward,
and therefore not given in this paper. On the other hand,
complete implementations of the algorithms will be given
in the functional programming language Miranda (Turner
[2]) , since Miranda provides an excellent formalism for
the notation of algorithms, and this notation is executable.

A second advantage, besides its efficiency, of an
inference system based on our algorithms, is that the users

37 1

http:llwwwtrese.cs.utwente.nl/-pimvdbi

are able to approximate continuous input functions by
continous piecewise linear functions themselves, instead of
relying on discretization procedures incorporated in the
system. The inference system then gives exact results for
the approximated inputs.

A possible extension of this work would be to drop the
condition that the membership functions are continuous.
This would imply that also the drastic intersection might
be taken into consideration, as well as the Gaines-Resher
implication, the Godel implication, and the Wu
implication. However, the algebraic product intersection,
as well as the Goguen implication, the Reichenbach
implication and the Yager implication still could not be
treated.

2. Preliminaries

A continuous piecewise linear function (plf, for short)
will be represented as a list of tuples of numbers. The list
[(~,yo),(xl,yl), ...(x,,~,,)] with XO<XI< ... <x, will represent
the plf f on the closed interval [&,x,] which is linear on all
intervals [X ~ , X ~ + ~] and whose values are determined by

Let apply be the function which takes a plf g and a
number x as arguments, and returns g(x). In order to solve
equation (1), we calculate the plf gA,A’ which satisfies

f(xi)-yi.

for all z in the interval [0,1].

The solution of equation (1) is the function
f uzzy-reasoning, which has four parameters: a solution
gA,A’ of equation (2), and the plfs A, B and A’; its result is
the plf B’. The function fuzzy-reasoning is the
composition of the plfs gA,g and B.
In Miranda:

plf == [(num,num)]
fuzzy-reasoning : :

fuzzy-reasoning g a b a ’
(p l f - > p l f - > p l f) - > p l f - > p l f - > p l f

= compose (g a a’) b

The function compose, which composes plfs, is given
in the appendix.

As an example, consider the case where I is the
standard intersection and J is the Lukasiewicz implication.
The function which solves equation (2) in this case (and
which is determined in the next section) is lukasiewicz.
If we have the rule

and the fact

then we evaluate the expression

to obtain [(5,0.75),(5.5,1),(6.5,1),(7,0.5)] as the inferred
value of Y.

In several (but not all) cases we will use the fact that A
and A’ are plf‘s by solving equation (2) for the special
case where both A and A’ are linear. The domain of A and
A’ is subdivided into a finite number of intervals where
both A and A’ are linear. Let Ai and A’i be the restrictions
of A and A’ to the i* interval. Then equation (2) may be
written as

If g’A,A’ is the solution of equation (2) for the case
where both A and A’ are linear, the solution for the
general case follows from equation (3):

In the appendix we give a Miranda function
all-intervals, which determines the general solution
when given a solution for the case of linear functions; for
instance , the function lukasiewicz, mentioned above,
can be defined by

lukasiewicz = all-intervals lukasiewicz’

where lukasiewicz’ solves equation (2) in the case
where I is the standard intersection, J is the Lukasiewicz
implication and both A and A’ are linear functions.

In all cases which we consider, the expression
I(A’(x),J(A(x),z)) is a plf of the argument z, which means
that it can be written as apply fA,A’,x z. Equation (2) then
becomes

In the subsequent sections of this paper we will, for
each implication J mentioned in the introduction,
determine the plf‘s fA,A’,x for each x in the domain [xo,x,]
of A and A’ from

apply ~ A , A V , ~ z = min (A’(x),J(A(x),z)), (5)
and find a solution gA,A’ of equation (4), when needed only
for the special case where A and A’ are linear.

372

3. Lukasiewicz implication

In this case J(a,b) = min(1,l-a+b); so equation (5)
reads

apply fA,A',x z = min(A'(x),l-A(x)+z) (6)

We assume that A and A' are linear on their domain
[xo,xl]. The graphs of fA,A'.xO and fA.A',xl are given in figure
1 (dashed resp. dash-dot-dotted).

S

- 1
- 1

0 P r 1

Figure 1

These graphs are non-linear in (p,q) and (r,s)
respectively (p,q,r,and s are defmed in the figure). We
consider here the case where pG. Note that both p and r
may be negative; in order to be able to treat all intervals in
the same way we let z range over the interval [-1,1].The
graphs of the functions fkAsa with x in [xo,xl], all have a
point where they are non-linear; these points are situated
on the (bold) straight line from (p,q) to (r,s) in figure 1,
due to the linearity of A and A' on [~ , x ~] . I t is now easy to
see how the function &,A' from equation (4) is obtained.
For zSp and z2r it is just the maximum of fAxs0 and
fAA',xl. For p<z<r it is the maximum of fA,xsO , fAA',xl and
the plf [(p,q),(r,s)].This leads to the following
implementation of the function lukasiewicz ':

f 2 = [(- l r q - ~ - l) r (~ r q) r (l , q) l
f3 = [(-1,s-r-l),(r,s),(l,s)]
from0 f = (Orapply f 0) :

dropwhile ((<=O).fst) f

Here f romo is the function which restricts its argument
to the domain [0,1]. The functions normalize (which
removes redundant entries from the representation of a
plf), apply (introduced in section 2), and maxplf (which
computes the maximum of two plf's), are given in the
appendix.

As explained in the previous section, the function
lukasiewicz is defined by

lukasiewicz : : p l f -> p l f -> p l f
lukasiewicz = all-intervals lukasiewicz'

4. Kleene-Dienes implication

In this case J(a,b) - max(1-a,b); so equation (5) reads

The graph of fA,A',x is given in figure 2.

P

0 P 9 1

Figure 2

373

respectively. Note that we did not need the assumption
here that A and A’ are linear. This leads to the following
implementation of the function kleene-dienes:

kleene-dienes : : plf -> plf -> plf
kleene-dienes a a’

= normalize [(O,p),(p,p),(q,q),(l,q)I
where
p = sup (minplf a’ (complement a))
q = sup a‘

The functions normalize, sup (which computes the
maximum value of a plf), minplf (which computes the
minumum of two plf‘s), and complement (which changes
the values y of a plf into 1 -y), are given in the appendix.

5. Early-Zadeh implication

In this case J(a,b) - max (1-a,min(a,b)); so equation (5)
reads

The graph of fA,A’,x is given in figure 3.

P

0 P 1

Figure 3

The graph of 8A.A’ has the same form as the graph in
figure 3. So gA.A’ can be constructed from gA,A’(o) and
gA,A’(l), which are given by

early-zadeh a a‘
= normalize I(O,~),(~,~),(q,q),(l,q)l
where
p = sup (minplf a‘ (complement a))
q = sup (minplf a’

(maxplf (complement a) a))

The functions normalize, sup, minplf,
complement and maxplf are given in the appendix.

6. Willmott implication

In this case J(a,b) = min (max(1-a,b),max(a,l-a),max
(b,l-b)); so equation (5) reads

It is straightforward to verify that equation (9) can be
written as

Comparing this equation with equation (8) shows that
an implementation of willmott is obtained directly from
the implementation of of early-zadeh:

willmott a a’
= normalize (minplf (early-zadeh a a’)

[(0,1),(0.5,0.5), (1,1)1)

The functions normalize and minplf are given in
the appendix.

7. Mamdani implication

In this case J(a,b) = min(a,b); so equation (5) reads

The graph of fA,A’,x is given in figure 4. The graph of
has the same form as the graph in figure 4. So gA,A’

can be constructed from &A’(I), which is given by

This leads to the following implementation of the
function mamdani:

and

respectively. This leads to the following implementation of
the function early-zadeh:

mamdani a a’
= normalize [(O,O),(q,q),(l,q)l
where
q = sup (minplf a a’)

The functions sup and minplf are given in the
appendix.

374

.....

........
4

0 q 1

Figure 4

References

[I] G.J. Klir and B. Yuan, Fuzzy sets andfifirzzy logic, theory
and applications (Prentice-Hall) 1995

[2] D. Tumer, Mirundu: a non-strictfunctional language with
polymorphic types, in: Functional Programming
Languages and Computer Architecture, Lecture Notes in
Computer Science Vol. 201, ed. J.-P. Jouannaud, (Springer-
Verlag) 1-16, 1985

Appendix

This appendix contains the Miranda functions for
handling plfs.

The function apply takes a plf A and a number x as
arguments, and r e m s A(x).

apply : : plf -> num -> num
apply ((xO,yO):(xl,yl):zs) x

= apply ((x1,yl):zs) x r
equal x0 xl \/ greater x xl

otherwise
= yo + (x-xo)*(yl-yo)/(xl-xo) /

The function solve takes a plf A and a number x as
arguments, and retums the list of all y which satisfy
A(y)-x. If A(y) is equal to x on an interval, the list
contains only the boundaries of the interval.

solve : : plf -> num -> [num]
solve [(a,b)l c = [a], equal b e

solve ((al,bl):(a2,b2):abs) c
= [Ii otherwise

= al : solve ((a2,b2):abs) c, equal bl c
= a3 : solve ((a2,b2):abs) c,

greater 0 ((b2-c)*(bl-c))

where a3 = a1 + (a2-al)*(c-bl)/(b2-b1)
= solve ((a2,b2):abs) c, otherwise

The function complement takes a plf A as argument
and retums the plf A' with A'(x) - I-A(x).

complement : : plf -> plf
complement a = [(x,l-y)l(x,y)<-al

The function dac is a general recursion scheme to
compute recursively functions of type plf -> plf ->
plf, such as minplf, maxplf and all-intervals. The
second argument of dac is the requested function for the
special case where both plf's are linear. The first argument
of dac is the function which returns the final result, given
the result for an initial segment of the domain where both
plf's are linear, and the result for the remainder of the
domain.

dac : : (plf->plf->plf)->

dac g f plfl plf2 - f plfl plf2,
#plfl = 2 & #plf2 = 2

dac g f ((xO,aO):(xl,al):xs)

= g (f [(xO,aO),(xl,al)J I(yO,bO),(yl,bl)l)

equal xl yl
= g (f [(xO,a0),(xlra1)1 [(yO,bO),(xl,b2)1)

(dac g f ((x1,al):xs)
((xlrb2):(yl,bl):ys)), greater yl xl

= 9 (f [(xO,aO),(~l,aZ)l [(yO,bO),(yl,bl)l)

(plf->plf->plf)->plf->plf->plf

((yO,bO):(Ylrbl):ys)

(dac g f ((x1,al):xs) ((~1,bl):ys))~

(dac g f ((yl,a2):(xl,al):xs)
((y1,bl):ys)) I otherwise

where b2 = apply [(yO,bO),(yl,bl)] x l
a2 = apply [(xO,aO),(xl,al)] yl

The function crossings computes the list of cross-
points of two linear plf's.

crossings : : plf -> plf -> [(num,num)]
crossings [(xO,aO),(xl,al)]

[(xO,bO),(xl,bl)l
= [I , equal (al-aO) (bl-bo) \/

greater-or-equal x0 y \/
greater-or-equal y xl

= [(y,b)], otherwise
where y = x0 + (xI-xO)*(aO-bO)/

(a0-bO+bl-al)
b = a0 + (al-aO)*(y-xO)/(xl-x0)

The function compose takes two plfs A and €3 as
arguments, and returns the plf C with C(x) = A(B(x))

compose : : plf -> plf -> plf
compose a b

= [(x,apply a (apply b x))
Ix<-sort (mkset (xs++ys))]

where
xs = map fst b
ys = concat [solve b kr/kr<- map f s t a]

375

The function s u p takes a plf A as argument and
returns supx A(x)

sup : : plf - > num
sup = max.map snd

The function normalize takes a plf A as argument,
and returns the same A with a “normalised” representation:
duplicate points and points where A happens to be linear
are removed

normalize : : plf -> plf
normalize

= normalize2.normalizel
where
normalizel ((xO,yO):(xl,yl):xys)
= normalizel ((xl,yl):xys), equal x0 xl
= (x0,yO):normalizel ((xl,yl):xys),

otherwise
normalizel x = x
normalize2 ((xO,yO):(xl,yl):(x2,y2):xys)
= normalize2 ((xO,yO):(x2,y2):xys),

equal ((yl-yO)/(xl-x0))
((Y2-Yl)/(X2-x1))

= (xO,yO):normalize2

normalize2 x = x
((xl,yl):(x2,y2):xys), otherwise

The function maxplf takes two plfs A and B as
arguments, and returns the plf C with C(x) = max
(A(x),B(x))

maxplf : : plf -> plf -> plf
maxplf a a’ =

= dac g f (normalize a) (normalize a’)
where
g xs ys = xs ++ tl ys
f [(xO,aO),(xl,a1)1 [(yO,bO), (y1,bl)l

= (xO,max[aO,bO]) : crossings
[(xO,aO),(xl,al)l [(yO,bO)/(~l,bl)l
++ [(xl,max[al,bll)l

The function minplf takes two plfs A and B as
arguments, and returns the plf C with C(x) = min
(A(x),B(x))

minplf : : plf -> plf -> plf
minplf a a’

where
g xs ys = xs ++ tl ys
f [(xO,aO),(xl,al)l [(yO,bO),(~l,bl)l

= dac g f (normalize a) (normalize a’)

= (xO,min[aO,bO]) : crossings
[(xO,aO),(xl,al)l [(yO,bO),(~l,bl)l
++ [(xl,min[al,bl])]

The function all-intervals is explained in section
3.

all-intervals f a a‘
= normalize (dac maxplf f a a’)

Finally some functions for handling rounding errors in
floating point arithmetic:

equal : : num->num->bool
equal n m = abs(n-m)<0.00@0@0@00001

greater-or-equal : : num->num->bool
greater-or-equal n m = n>m-0.000000000001

greater : : num->num->bool
greater n m = n>m & -equal n m

all-intervals : : (plf - > plf - > plf)
-> plf -> plf -> plf

376

