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Abstract 

It is shown that, for some intersection and implication 
functions, the complexity of the computation of inference 
results with generalised modus ponens can be reduced 
considerably when membership functions are restricted to 
functions which are continuous and piecewise linear. 
Algorithms for computing inference results are given in 
the functional language Miranda. 

I. Introduction 

In fuzzy reasoning with generalised modus ponens: 

Premise 1 If X-Athen Y-B 
Premise 2 X=A’ 

Conclusion Y-B’ 

one calculates the fuzzy set B’ from the fuzzy sets A, 
A’ and B with 

where I is some intersection function and J is some 
implication function. 

When the domains of the fuzzy sets are finite, the 
computation of B’ presents no difficulties. Here we are 
interested in the case where the domains are finite intervals 
of the real numbers. In this case one cannot compute B’ in 
general; instead one computes B’(y) for a finite number of 
values of y. The Computation of a single value B’(y) 
involves functions over a continuous interval, and usually 
involves the application of numerical approximation 
techniques. 

In this paper we will show that, for some intersection 
and implication functions, the complexity of the 
computation can be reduced considerably when only 
membership functions are considered which are 
continuous and piecewise linear. A function is said to be 

piecewise linear if it is linear in all but a finite number of 
points. We observe from the literature that for membership 
functions one often uses piecewise linear functions. The 
reduction of the complexity arises from the fact that no 
discretization is necessary. 

We will consider of course only those intersection 
functions and implication functions which have the 
property that when A, A’ and B are continuous and 
piecewise linear, also B’ will be continuous and piecewise 
linear. Klir and Yuan [l] list four frequently used 
intersections: standard intersection, algebraic product, 
bounded difference and drastic intersection. From these we 
only consider the standard intersection and the bounded 
difference, since the inference result for the algebraic 
product will not in general be piecewise linear, and the 
inference result for the drastic intersection will not in 
general be continuous. From the list of implications given 
by Klir and Yuan, we only consider, for the same reason, 
the Lukasiewicz implication, the Kleene-Dienes 
implication, the Early-Zadeh implication and the Willmott 
implication. For J we will also consider the minimum 
function, also known as the Mamdani implication, because 
it is widely used in the literature, although it is not an 
implication. 

Due to space limitations this paper only treats the 
standard intersection; the full version of this paper can be 
obtained via http:llwwwtrese.cs.utwente.nl/-pimvdbi. 

For each of the 5 implications we will present an 
algorithm for the computation of the continuous piecewise 
linear function B ’ from continuous piecewise linear 
functions A, A’ and B with equation (1). The problem to 
be solved in each case is the computation of the supremum 
of a continuum of continuous piecewise linear functions. 
We will derive our results in a rather informal way; 
rigorous proofs of our results are however straightforward, 
and therefore not given in this paper. On the other hand, 
complete implementations of the algorithms will be given 
in the functional programming language Miranda (Turner 
[2]) ,  since Miranda provides an excellent formalism for 
the notation of algorithms, and this notation is executable. 

A second advantage, besides its efficiency, of an 
inference system based on our algorithms, is that the users 
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are able to approximate continuous input functions by 
continous piecewise linear functions themselves, instead of 
relying on discretization procedures incorporated in the 
system. The inference system then gives exact results for 
the approximated inputs. 

A possible extension of this work would be to drop the 
condition that the membership functions are continuous. 
This would imply that also the drastic intersection might 
be taken into consideration, as well as the Gaines-Resher 
implication, the Godel implication, and the Wu 
implication. However, the algebraic product intersection, 
as well as the Goguen implication, the Reichenbach 
implication and the Yager implication still could not be 
treated. 

2. Preliminaries 

A continuous piecewise linear function (plf, for short) 
will be represented as a list of tuples of numbers. The list 
[(~,yo),(xl,yl), ...( x,,~,,)] with XO<XI< ... <x, will represent 
the plf f on the closed interval [&,x,] which is linear on all 
intervals [ X ~ , X ~ + ~ ]  and whose values are determined by 

Let apply be the function which takes a plf g and a 
number x as arguments, and returns g(x). In order to solve 
equation (1), we calculate the plf gA,A’ which satisfies 

f(xi)-yi. 

for all z in the interval [0,1]. 

The solution of equation (1) is the function 
f uzzy-reasoning, which has four parameters: a solution 
gA,A’ of equation (2), and the plfs A, B and A’; its result is 
the plf B’. The function fuzzy-reasoning is the 
composition of the plfs gA,g and B. 
In Miranda: 

plf == [(num,num)] 
fuzzy-reasoning : :  

fuzzy-reasoning g a b a ’  
( p l f - > p l f - > p l f ) - > p l f - > p l f - > p l f  

= compose (g a a’) b 

The function compose, which composes plfs, is given 
in the appendix. 

As an example, consider the case where I is the 
standard intersection and J is the Lukasiewicz implication. 
The function which solves equation (2)  in this case (and 
which is determined in the next section) is lukasiewicz. 
If we have the rule 

and the fact 

then we evaluate the expression 

to obtain [(5,0.75),(5.5,1),(6.5,1),(7,0.5)] as the inferred 
value of Y. 

In several (but not all) cases we will use the fact that A 
and A’ are plf‘s by solving equation (2) for the special 
case where both A and A’ are linear. The domain of A and 
A’ is subdivided into a finite number of intervals where 
both A and A’ are linear. Let Ai and A’i be the restrictions 
of A and A’ to the i* interval. Then equation (2) may be 
written as 

If g’A,A’ is the solution of equation (2) for the case 
where both A and A’ are linear, the solution for the 
general case follows from equation (3):  

In the appendix we give a Miranda function 
all-intervals, which determines the general solution 
when given a solution for the case of linear functions; for 
instance , the function lukasiewicz, mentioned above, 
can be defined by 

lukasiewicz = all-intervals lukasiewicz’ 

where lukasiewicz’ solves equation (2) in the case 
where I is the standard intersection, J is the Lukasiewicz 
implication and both A and A’ are linear functions. 

In all cases which we consider, the expression 
I(A’(x),J(A(x),z)) is a plf of the argument z, which means 
that it can be written as apply fA,A’,x z. Equation (2) then 
becomes 

In the subsequent sections of this paper we will, for 
each implication J mentioned in the introduction, 
determine the plf‘s fA,A’,x for each x in the domain [xo,x,] 
of A and A’ from 

apply ~ A , A V , ~  z = min (A’(x),J(A(x),z)), (5) 
and find a solution gA,A’ of equation (4), when needed only 
for the special case where A and A’ are linear. 
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3. Lukasiewicz implication 

In this case J(a,b) = min(1,l-a+b); so equation (5) 
reads 

apply fA,A',x z = min(A'(x),l-A(x)+z) (6 )  

We assume that A and A' are linear on their domain 
[xo,xl]. The graphs of fA,A'.xO and fA.A',xl are given in figure 
1 (dashed resp. dash-dot-dotted). 

S 
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Figure 1 

These graphs are non-linear in (p,q) and (r,s) 
respectively (p,q,r,and s are defmed in the figure). We 
consider here the case where pG. Note that both p and r 
may be negative; in order to be able to treat all intervals in 
the same way we let z range over the interval [-1,1].The 
graphs of the functions fkAsa with x in [xo,xl], all have a 
point where they are non-linear; these points are situated 
on the (bold) straight line from (p,q) to (r,s) in figure 1, 
due to the linearity of A and A' on [ ~ , x ~ ] . I t  is now easy to 
see how the function &,A' from equation (4) is obtained. 
For zSp and z2r it is just the maximum of fAxs0 and 
fAA',xl. For p<z<r it is the maximum of fA,xsO , fAA',xl and 
the plf [(p,q),(r,s)].This leads to the following 
implementation of the function lukasiewicz ': 

f 2  = [ ( - l r q - ~ - l ) r ( ~ r q ) r ( l , q ) l  
f3 = [(-1,s-r-l),(r,s),(l,s)] 
from0 f = (Orapply f 0) : 

dropwhile ((<=O).fst) f 

Here f romo is the function which restricts its argument 
to the domain [0,1]. The functions normalize (which 
removes redundant entries from the representation of a 
plf), apply (introduced in section 2), and maxplf (which 
computes the maximum of two plf's), are given in the 
appendix. 

As explained in the previous section, the function 
lukasiewicz is defined by 

lukasiewicz : :  p l f  -> p l f  -> p l f  
lukasiewicz = all-intervals lukasiewicz' 

4. Kleene-Dienes implication 

In this case J(a,b) - max(1-a,b); so equation ( 5 )  reads 

The graph of fA,A',x is given in figure 2. 

P 
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Figure 2 
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respectively. Note that we did not need the assumption 
here that A and A’ are linear. This leads to the following 
implementation of the function kleene-dienes: 

kleene-dienes : :  plf ->  plf ->  plf 
kleene-dienes a a’ 

= normalize [(O,p),(p,p),(q,q),(l,q)I 
where 
p = sup (minplf a’ (complement a)) 
q = sup a‘ 

The functions normalize, sup (which computes the 
maximum value of a plf), minplf (which computes the 
minumum of two plf‘s), and complement (which changes 
the values y of a plf into 1 -y), are given in the appendix. 

5. Early-Zadeh implication 

In this case J(a,b) - max (1-a,min(a,b)); so equation (5) 
reads 

The graph of fA,A’,x is given in figure 3. 
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Figure 3 

The graph of 8A.A’ has the same form as the graph in 
figure 3. So gA.A’ can be constructed from gA,A’(o) and 
gA,A’(l), which are given by 

early-zadeh a a‘ 
= normalize I(O,~),(~,~),(q,q),(l,q)l 
where 
p = sup (minplf a‘ (complement a ) )  
q = sup (minplf a’ 

(maxplf (complement a) a)) 

The functions normalize, sup, minplf, 
complement and maxplf are given in the appendix. 

6. Willmott implication 

In this case J(a,b) = min (max(1-a,b),max(a,l-a),max 
(b,l-b)); so equation (5) reads 

It is straightforward to verify that equation (9) can be 
written as 

Comparing this equation with equation (8) shows that 
an implementation of willmott is obtained directly from 
the implementation of of early-zadeh: 

willmott a a’ 
= normalize (minplf (early-zadeh a a’) 

[(0,1),(0.5,0.5), (1,1)1) 

The functions normalize and minplf are given in 
the appendix. 

7. Mamdani implication 

In this case J(a,b) = min(a,b); so equation (5) reads 

The graph of fA,A’,x is given in figure 4. The graph of 
has the same form as the graph in figure 4. So gA,A’ 

can be constructed from &A’( I), which is given by 

This leads to the following implementation of the 
function mamdani: 

and 

respectively. This leads to the following implementation of 
the function early-zadeh: 

mamdani a a’ 
= normalize [(O,O),(q,q),(l,q)l 
where 
q = sup (minplf a a’) 

The functions sup and minplf are given in the 
appendix. 
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Appendix 

This appendix contains the Miranda functions for 
handling plfs. 

The function apply takes a plf A and a number x as 
arguments, and r e m s  A(x). 

apply : :  plf -> num ->  num 
apply ((xO,yO):(xl,yl):zs) x 

= apply ((x1,yl):zs) x r  
equal x0 xl \/ greater x xl 

otherwise 
= yo + (x-xo)*(yl-yo)/(xl-xo) / 

The function solve takes a plf A and a number x as 
arguments, and retums the list of all y which satisfy 
A(y)-x. If A(y) is equal to x on an interval, the list 
contains only the boundaries of the interval. 

solve : :  plf -> num -> [num] 
solve [(a,b)l c = [a], equal b e 

solve ((al,bl):(a2,b2):abs) c 
= [Ii otherwise 

= al : solve ((a2,b2):abs) c, equal bl c 
= a3 : solve ((a2,b2):abs) c, 

greater 0 ((b2-c)*(bl-c)) 

where a3 = a1 + (a2-al)*(c-bl)/(b2-b1) 
= solve ((a2,b2):abs) c, otherwise 

The function complement takes a plf A as argument 
and retums the plf A' with A'(x) - I-A(x). 

complement : :  plf -> plf 
complement a = [(x,l-y)l(x,y)<-al 

The function dac is a general recursion scheme to 
compute recursively functions of type plf ->  plf -> 
plf, such as minplf, maxplf and all-intervals. The 
second argument of dac is the requested function for the 
special case where both plf's are linear. The first argument 
of dac is the function which returns the final result, given 
the result for an initial segment of the domain where both 
plf's are linear, and the result for the remainder of the 
domain. 

dac : :  (plf->plf->plf)-> 

dac g f plfl plf2 - f plfl plf2, 
#plfl = 2 & #plf2 = 2 

dac g f ((xO,aO):(xl,al):xs) 

= g (f [(xO,aO),(xl,al)J I(yO,bO),(yl,bl)l) 

equal xl yl 
= g (f [(xO,a0),(xlra1)1 [(yO,bO),(xl,b2)1) 

(dac g f ((x1,al):xs) 
((xlrb2):(yl,bl):ys)), greater yl xl 

= 9 (f [(xO,aO),(~l,aZ)l [(yO,bO),(yl,bl)l) 

(plf->plf->plf)->plf->plf->plf 

((yO,bO):(Ylrbl):ys) 

(dac g f ((x1,al):xs) ((~1,bl):ys))~ 

(dac g f ((yl,a2):(xl,al):xs) 
((y1,bl):ys)) I otherwise 

where b2 = apply [(yO,bO),(yl,bl)] x l  
a2 = apply [(xO,aO),(xl,al)] yl 

The function crossings computes the list of cross- 
points of two linear plf's. 

crossings : :  plf -> plf -> [(num,num)] 
crossings [(xO,aO),(xl,al)] 

[(xO,bO),(xl,bl)l 
= [ I ,  equal (al-aO) (bl-bo) \/ 

greater-or-equal x0 y \/ 
greater-or-equal y xl 

= [(y,b)], otherwise 
where y = x0 + (xI-xO)*(aO-bO)/ 

(a0-bO+bl-al) 
b = a0 + (al-aO)*(y-xO)/(xl-x0) 

The function compose takes two plfs A and €3 as 
arguments, and returns the plf C with C(x) = A(B(x)) 

compose : :  plf -> plf -> plf 
compose a b 

= [(x,apply a (apply b x)) 
Ix<-sort (mkset (xs++ys))] 

where 
xs = map fst b 
ys = concat [solve b kr/kr<- map f s t  a] 
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The function s u p  takes a plf A as argument and 
returns supx A(x) 

sup : :  plf - >  num 
sup = max.map snd 

The function normalize takes a plf A as argument, 
and returns the same A with a “normalised” representation: 
duplicate points and points where A happens to be linear 
are removed 

normalize : :  plf ->  plf 
normalize 

= normalize2.normalizel 
where 
normalizel ((xO,yO):(xl,yl):xys) 
= normalizel ((xl,yl):xys), equal x0 xl 
= (x0,yO):normalizel ((xl,yl):xys), 

otherwise 
normalizel x = x 
normalize2 ((xO,yO):(xl,yl):(x2,y2):xys) 
= normalize2 ((xO,yO):(x2,y2):xys), 

equal ((yl-yO)/(xl-x0)) 
((Y2-Yl)/(X2-x1)) 

= (xO,yO):normalize2 

normalize2 x = x 
((xl,yl):(x2,y2):xys), otherwise 

The function maxplf takes two plfs A and B as 
arguments, and returns the plf C with C(x) = max 
(A(x),B(x)) 

maxplf : :  plf -> plf -> plf 
maxplf a a’ = 

= dac g f (normalize a) (normalize a’) 
where 
g xs ys = xs ++ tl ys 
f [(xO,aO),(xl,a1)1 [(yO,bO), (y1,bl)l 

= (xO,max[aO,bO]) : crossings 
[(xO,aO),(xl,al)l [(yO,bO)/(~l,bl)l 
++ [(xl,max[al,bll)l 

The function minplf takes two plfs A and B as 
arguments, and returns the plf C with C(x) = min 
(A(x),B(x)) 

minplf : :  plf -> plf -> plf 
minplf a a’ 

where 
g xs ys = xs ++ tl ys 
f [(xO,aO),(xl,al)l [(yO,bO),(~l,bl)l 

= dac g f (normalize a) (normalize a’) 

= (xO,min[aO,bO]) : crossings 
[(xO,aO),(xl,al)l [(yO,bO),(~l,bl)l 
++ [(xl,min[al,bl])] 

The function all-intervals is explained in section 
3. 

all-intervals f a a‘ 
= normalize (dac maxplf f a a’) 

Finally some functions for handling rounding errors in 
floating point arithmetic: 

equal : : num->num->bool 
equal n m = abs(n-m)<0.00@0@0@00001 

greater-or-equal : :  num->num->bool 
greater-or-equal n m = n>m-0.000000000001 

greater : :  num->num->bool 
greater n m = n>m & -equal n m 

all-intervals : :  (plf - >  plf - >  plf) 
-> plf -> plf -> plf 
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