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ABSTRACT: The transverse permeability is an essential input in describing the consolidation process of
CETEX® laminates. A two-dimensional, finite difference based, Stokes flow solver has been developed to
determine the mesoscopic permeability of arbitrary fabricstructures. The use of a multigrid solver dramatically
decreases the cpu time required (less than one minute on a5122 grid). The permeability of a square packed bed
of impenetrable cylinders is calculated and shows excellent agreement with values found in literature.
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1 INTRODUCTION

CETEX® fabric reinforced thermoplastic laminates,
mainly used for aerospace applications, are produced
by forcing thermoplastic films to infiltrate the fabric at
high pressure and temperature. Currently, polyether-
imide (PEI) and polyphenylenesulfide (PPS) are used
as matrix material in CETEX® products. The use of
alternative thermoplastic polymers potentially offers
an increase in performance, e.g. strength or tough-
ness, combined with a decrease in cost. A thorough
understanding of the consolidation process is required
to develop an optimal processing route for these new
thermoplastic composites.
he aim of the consolidation phase is to fully impreg-
nate the fabric reinforcement. Thermoplastic resin
needs to infiltrate into the dry fabric during consoli-
dation. This is a complex process with various inter-
related phenomena. The applied pressure drives the
resin through the fabric but simultaneously deforms
the compliant fabric, thereby altering the infiltration
kinetics. A strong coupling exists between reinforce-
ment compaction and permeability. Michaud and
Månson [5] described the one dimensional, isother-
mal, infiltration of a needled glass fibre mat. The
model is based on Darcy’s Law for conservation of
momentum:

u = −
K

µ
∇p, (1)

wherep andu denote, respectively, the pressure and
velocity field,µ is the resin viscosity andK the per-
meability tensor. The transverse permeability, as a
function of fibre volume fraction, is an essential pa-
rameter in describing the consolidation process. The
aforementioned authors obtained this function by fit-
ting experimental data with a power law [6]. How-
ever, since permeability experiments are generally
laborious and suffer from significant experimental
scatter a modelling approach is desired.
The permeability, as function of fibre volume fac-
tion, can be described by the Kozeny-Carman rela-
tion, which is based on flow through granular beds
consisting of ellipsoids [2]:

K =
R2

4k

(1 − νf)
3

ν2

f

(2)

In this relation, which was initially derived for
isotropic homogeneous porous media,k is the so-
called Kozeny constant. Several authors, e.g.
Gutowski [4], have proposed to adapt (2) for
anisotropic media by applying distinct Kozeny con-
stants for flow perpendicular and parallel to the fibres.
One of the main drawbacks of the Kozeny-Carman
equation is that the Kozeny constant has to be de-
termined experimentally. Significant discrepancies in
the parameterk for given reinforcements have been
reported in literature, which is a reflection of the large
amount of variation in the experimental results.
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More sophisticated methodologies aim to take into
account the preform structure more accurately. The
basis of these models lies in the assumption that the
porous media can be divided into repetitive elements
or unit cells. The fabric permeability is then deter-
mined by modelling the flow through these, more or
less, idealised cells. The degree of structural detail
taken into account in the unit cell ultimately deter-
mines the accuracy of the model. In general the re-
inforcing preform consists of woven or stitched bun-
dles, which themselves are build up from small fila-
ments. The geometric shape, weave pattern and pack-
ing characteristics of the fabric should all be included
in the model. Besides, the preform heterogeneity,
i.e. fluid flows both around and through the bundles,
could be of importance.
Gebart [3] derived the permeability of an idealised
unidirectional reinforcement consisting of regularly
ordered impenetrable cylinders. A lubrication ap-
proximation was used to relate the fibre volume frac-
tion to the transverse permeability. The results closely
match the numerical results for higher volume frac-
tions. Bruschke and Advani [1] used a similar ap-
proach in the high fibre volume fraction range but
adopted an analytic cell model for lower fibre vol-
ume fractions. A closed form solution, over the full
fibre volume fraction range, is obtained by match-
ing both solutions asymptotically. The results were
experimentally validated by Sadiq et al. [8]. Ex-
cellent agreement was found between the measured
and predicted permeability for flow transversely to
the impenetrable cylinders. Experiments using porous
cylinders were performed as well. The measured per-
meability of the heterogeneous lattice was found to be
up to 25% higher than the measured permeability of
the corresponding lattice of impenetrable cylinders.
While the proposed analyses provide valuable funda-
mental understanding of permeability they show lim-
ited applicability in practise. This is partly caused by
the fact that the heterogeneous character of the rein-
forcement is not taken into account. But more impor-
tantly, the bundle cross-sectional shape can generally
not be described as circular. This problem can be cir-
cumvented by calculating the complete fluid flow in a
unit cell around an arbitrary cross-sectional shape nu-
merically. Subsequently, Darcy’s Law (1) can be used
to determine the unit cell permeability.
In this paper a finite difference based Stokes-Flow
solver is presented to predict the meso-scopic perme-
ability of textile reinforcements. The use of a multi-

grid algorithm dramatically decreases the cpu time re-
quired. The solver is validated with experimental re-
sults found in literature [8] and compared to the so-
lutions presented by Bruschke and Advani [1] and
Gebart [3].

2 STOKES FLOW SOLVER

2.1 Governing equations

The solver is developed to calculate the fluid flow
around an arbitrary geometry in a unit cell. Typi-
cally in flow problems regarding composite forming
processes the inertial forces are small compared to
the viscous forces, i.e. the Reynolds number is low
(Re << 1). The impregnating fluid is, for now, as-
sumed to be Newtonian. The Stokes equation can be
used for conservation of momentum:

∇p − µ∆u = 0 (3)

Conservation of mass reads:

∇ · u = 0 (4)

These equations are solved in a two dimensional flow
domain. An analytical solution of these equations is
only available for specific cases, therefore the partial
system is solved numerically using a finite difference
approach. The flow domain is covered with a fixed
rectangular grid and the system variables are solved
at the grid points only. The application of a so-called
staggered grid is common in suchlike problems. Such
a grid, for the two dimensional case, is outlined in
figure 1.
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Figure 1: Part of the staggered grid; the gray section represents
a part of the fibre bundle, the white section corresponds to the

pore space.

2



The grid lines define the cells. The discrete pres-
sure is defined at the cell centres. The discrete ve-
locity u1 is defined at the centres of the of the verti-
cal links, andu2 is defined at the centres of the hori-
zontal links. The conservation of mass (4) is consid-
ered in every individual cell, whereas the conserva-
tion of momentum (3) should hold on the cell faces.
Both equations are discretised using a central differ-
ences scheme. Dirichlet or Neumann boundary con-
ditions can be applied on every cell face throughout
the domain to define the domain boundaries and rein-
forcement geometry. The solution of the defined flow
problem is then obtained by using a Jacobi relaxation
method [9].

2.2 Multigrid algorithm

The convergence speed of these elliptical partial
derivative equations is generally low. A multigrid so-
lution technique has been employed to overcome this.
A Full-Multigrid Algorithm, using five different grid
sizes, has been implemented in Matlab. To further de-
crease the computational calculation time the solver
will be implemented in C++.

3 SIMULATION

3.1 Square packed cylinders

The permeability of a square packed bed of impen-
etrable cylinders is determined to validate the de-
veloped solver. The obtained results are compared
with the results obtained by Bruschke and Advani [1],
Gebart [3] and Sadiq et al. [8]. The repetitive unit cell
is depicted in figure 2. Using symmetry only the flow
in a quarter of the unit cell is calculated. The fig-
ure shows that symmetry is applied on the upper and
lower boundary. A pressure is applied on the left and
right boundary. The velocity on the inlet and outlet
is restricted to have no vertical component. The ve-
locity on the cylinder surface is equal to zero. The
calculated volume flow can, by applying Darcy’s Law
(1), be used to determine the permeability. The di-
mensionless permeability is determined by dividing
the permeability by the squared radius of the cylin-
der. A single analysis of such a problem on a fine grid
(2562) takes approximately 30 seconds.
In figure 2 the dimensionless permeability for varying
fibre volume fraction is compared to the values found
in literature. The results show, for higher fibre volume

fractions, excellent agreement to the results found in
literature. For lower fibre volume fractions, however,
the obtained permeability deviates. Finite element
calculations, using Ansys CFX, have been performed
to verify the results in the lower range. The CFX re-
sults virtually coincide with the multigrid solver re-
sults, as can be seen from the graph. For comparison,
the finite element calculation takes approximately six
minutes.
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Figure 2: Comparison between results from MG solver and data
from literature.

3.2 Square packed ellipses

The bundle cross-sectional area can, in general, better
be represented by an ellipse than a perfect circle. The
permeability of square packed ellipses can easily be
investigated. Figure 3 shows the defined unit cell. The
ellipse axes ratio equals the unit cell aspect ratio. The
constantc is used to vary the fibre volume fraction of
the reinforcement:νf = πc2/4. Symmetry is, as be-
fore, applied on the upper and lower boundary, while
a pressure is enforced on the left and right boundary.
The graph in figure 3 shows the dimensionless perme-
ability, which is obtained by dividing the calculated
permeability by product of ellipse radii, as function
of the fibre volume fraction for three different cases.
The obtained results show excellent agreement to An-
sys CFX simulations.
Most of the flow resistance is caused by the narrow

3



gap between two adjacent bundles. In case the ma-
jor axis of the ellipse is oriented parallel to the flow
direction, i.e.A/B = .5, the gap through which the
flow is forced is smaller than in case the major axis
lies perpendicular to the flow direction. This also fol-
lows from the results shown in the graph, as the high-
est permeability values correspond to the domain with
the largest gap (A/B = 2).
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Figure 3: Dimensionless permeability for flow through a square
packed bed of ellipses. Inset: defined unit cell.

4 CONCLUSIONS AND FUTURE WORK

The fabric permeability, as function of fibre volume
fraction, is an essential input in describing the con-
solidation process of CETEX® laminates. During the
consolidation process the applied pressure results in
deformation of the compliant fabric, thereby altering
the fabric structure and consequently the permeabil-
ity. The existing permeability models pose severe re-
strictions on fabric geometry or require experimental
data to fit the results. A fast and accurate permeabil-
ity model is desired to describe the complicated con-
solidation process. A finite differences based Stokes
solver has been developed to determine the perme-
ability of arbitrary fabric geometries. A multigrid al-
gorithm enables the use of fine grids to accurately rep-
resent the fabric geometry, while keeping the cpu time
required to a minimum.

Future research activities will concentrate on extend-
ing the developed solver in order to improve its ac-
curacy. First, additional rheological models, such
as a power-law description, will be incorporated to
accurately represent the thermoplastic films used in
CETEX® laminates. Secondly, the heterogeneous
character of the reinforcement will be addressed. This
dual porosity can have a significant influence on the
fabric permeability as was shown by Sadiq et al. [8]
and Phelan and Wise [7].
An experimental set-up has been developed for vali-
dation purposes. The transverse permeability of dis-
tinct CETEX® fabrics will be measured and used as a
reference.

ACKNOWLEDGEMENT

This work is performed with the support of from the Netherlands

Agency for Aerospace Programmes (NIVR) and Ten Cate AC.

This support is gratefully acknowledged by the authors.

REFERENCES

[1] M.V. Bruschke and S.G. Advani. Flow of generalized new-
tonian fluids across a periodic array of cylinders.Journal of
Rheology, 37(3):479–496, May/June 1993.

[2] P.C. Carman. Fluid flow through granular beds.Chemical
Engineering Research and Design, 15:150–166, 1937.

[3] B.R. Gebart. Permeability of unidirectional reinforcements
for rtm. Journal of Composite Materials, 26(8):1100–1133,
1992.

[4] T.G. Gutowski, Z. Cai, and S. Bauer. The consolidation
of laminate composites.Journal of Composite Materials,
21:172–188, 1987.

[5] V. Michaud and J.-A.E. Manson. Impregnation of compress-
ible fiber mats with a thermoplastic resin. part i: Theory.
Journal of Composite Materials, 35(13):1150–1173, 2001.

[6] V. Michaud and J.-A.E. Manson. Impregnation of compress-
ible fiber mats with a thermoplastic resin. part ii: Experi-
ments.Journal of Composite Materials, 35(13):1174–1200,
2001.

[7] F.R. Phelan Jr. and G. Wise. Analysis of transverse flow
in aligned fibrous porous media. Composites Part A,
27A(1):25–34, 1995.

[8] T.A.K. Sadiq, S.G. Advani, and R.S. Parnas. Experimental
investigation of transverse flow through aligned cylinders.
International Journal of Multiphase flow, 21(5):755–774,
1995.

[9] C.H. Venner and A.A. Lubrecht.Multilevel methods in lu-
brication, Tribology Series 37. Elsevier, Amsterdam, 2000.

4


