
Using E-markets for Globally Distributed Work

Jos van Hillegersberg and Chintan Amrit(✉)

IEBIS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
{j.vanHillegersberg,c.amrit}@utwente.nl

Abstract. For over a decade, dedicated E-markets have been facilitating globally
distributed systems development by enhancing the traditionally high-risk global
sourcing processes. At the same time, the success and potential of E-markets for
sourcing project globally can be questioned, as E-markets embody a variety of
temporal, geographical and socio-cultural gaps. To study the effectiveness of the
mechanisms offered by the E-markets, we ran a field experiment in which four
development teams worked for 10 weeks to have a software development product
designed, programmed and tested by remote developer(s) using an E-market.
Three out of the four teams managed to deliver a successful product within time
and budget. This result exceeded our expectations and contradicts the critical
observations and opinions in several blogs and news articles. We find that for
effective e-Market sourcing a skilled customer team with competences including
vendor selection, software contracting, software requirements specification,
development methods, cross-cultural and virtual communications, use of various
cloud based tools, frequent functional and non functional testing are necessary.

Keywords: Global outsourcing · E-markets · Outsourcing risks

1 Introduction

The risks associated with globally distributed development of software have been exten‐
sively studied. Risks specific to the globally distributed setting are often classified based
on the temporal, geographical and social cultural dimensions and their potential impact
on Communication, Coordination and Control [1, 2]. Examples of Communication risks
include lack of synchronous communications (temporal), limited face-to-face meeting
time (geographical) and cultural diversity (socio-cultural) [1]. Coordination risks
include lack of overlapping work hours (temporal), unclear task responsibilities
(geographical) and insufficient knowledge and information sharing (socio-cultural)
[1, 3]. Finally, Control risks include delayed feedback (temporal), challenges in main‐
taining stakeholders’ commitment (geographical) and lack of equal domain knowledge
(socio-cultural) [1]. Traditionally, mitigation strategies have focused on decreasing the
gaps by carefully selecting vendors in lengthy bidding processes to assess socio-cultural
fit and appropriate domain knowledge. During development, project partners have
attempted to lower risks by investing in building relationships and trust between
dispersed team members. Measures include frequent site visits, cross cultural training,
social events, and placing individual developers for longer periods at the remote site.

© Springer International Publishing Switzerland 2015
I. Oshri et al. (Eds.): Global Sourcing 2015, LNBIP 236, pp. 206–227, 2015.
DOI: 10.1007/978-3-319-26739-5_12

While sometimes effective, these practices take considerable time and significantly
increase costs. In extreme cases, mitigation costs may completely ruin the potential cost
and efficiency gains of distributed development. Furthermore, these practices are mainly
fit for larger projects where supplier and vendor will work intensively together for longer
periods of time. There is clearly a need for more efficient and effective mechanisms for
small to medium sized projects with short-term duration.

For several years, dedicated E-markets have been targeting at facilitating globally
distributed systems development. E-markets support key sourcing processes such as
vendor search, contractor and contractee ratings, matching, bidding, communicating
about requirements, defining milestones and deliverables, conflict and dispute resolu‐
tion, escrow services and settling payments. Through these services, E-markets claim
to greatly enhance the traditionally high-risk global sourcing processes. Dedicated
E-markets for sourcing distributed work have been around for years and have seen their
business growing. Well-known examples of E-markets for sourcing of online work are
Elance, Odesk, Guru and Freelancer. Elance was founded in 1999, Odesk in 2005. The
two companies merged early 2014 into Elance-Odesk, generally seen as the global leader
in online work. Elance-Odesk facilitates a community of 9 million freelancers and
3.7 million businesses. Elance-Odesk claims 2.7 million annualized job postings with
workers making $900 million in annualized earnings [4].

At the same time, the success and potential of E-markets for sourcing project globally
can be questioned. In 2013, Elance-Odesk holds less than 1 % of the overall global
staffing market (“Why Freelancers Are Dismayed At Elance’s Merger With oDesk,”
n.d.). Their share of the market is only a fraction of the total software development
business. A simple calculation demonstrates that on average the 9 million freelancers
make only 100$ annually. It is very likely many of the accounts are dormant or hardly
get any business while bidding fruitlessly on posted projects.

In recent blog post and magazine articles, the usefulness of E-markets to run high-
quality software development projects has been questioned. For example, a blog post
on http://blog.launchastartup.com/ lists several drawbacks in the current practices of
using E-Markets. First companies do no spent time to properly describe jobs and post
ill-defined projects. In an attempt to bid fast, and spent very little time, vendors offer
low quality bids. Quality bids may get lost in the high volume of bids sometimes even
automatically generated. Price tends to dominate and results in a non-ideal match
between contractee and the contractor. Both parties muddle through towards a solution,
unwilling to go into the time intensive bidding process again, but at the same time remain
unhappy with the current progress. Developers from low cost countries, working for as
little as 2 to 3 dollars an hour, scare away freelancers with higher hourly rates.
Outsourcers complain that it is very hard to find both high quality and reliable devel‐
opers. They question how the high reputations scores have been built up. The low chance
of winning a project may ultimately cause the more serious vendors to lose their interest.
George Anders in a recent Forbes article writes: “These hubs for freelancers rely too
much on the joyless mechanics of market matching … and not enough on the quieter,
friendlier dynamic of developing long-term trust between select employers and special‐
ists who get to know one other” [5].

Using E-markets for Globally Distributed Work 207

http://blog.launchastartup.com/

Thus, currently it is highly debated whether the mechanisms E-markets offer to
bridge temporal, geographical and socio-cultural gaps that lead to successful system
development projects and bring value to both outsourcers and vendors. As our literature
review will show, researchers have not adequately addressed these questions.

In this paper we study the potential of E-markets to mitigate the common risks faced
by globally distributed software development teams working on complex and domain
specific requirements under high time and budget pressure. To study the effectiveness
of the mechanisms offered by the E-markets, we ran a field experiment in which four
development teams worked for 10 weeks to have a software development product
designed, programmed and tested by remote developer(s) using an E-market. While each
team worked on exactly the same initial project definition, budget, deadline and scope,
they choose to make use of different leading E-markets, like Freelancer, Guru and Odesk.
The teams were also given the freedom in how they used the E-market support for finding
an appropriate vendor, communicating requirements and controlling progress. During
the project, the teams kept a log of their experiences in tackling the typical risks in global
sourcing. Three out of the four teams managed to deliver a successful product within
time and budget. In this paper we discuss how various E-market features were used and
evaluated by the development teams. We review the strategies used to select a trusted
vendor and build a fruitful relationship, and reflect on the current features and differences
among the three E-markets that were used. We then discuss how E-markets could
enhance their support for distributed software development even further to facilitate ever
larger and more complex projects, while successfully mitigating the risks of temporal,
geographical and socio-cultural distance.

2 Related Literature

Software development was a popular activity already with the first emerging E-Markets
for global work and services in the early 2000s. : shows the key features an E-Market
facilitating the customer and service provider relationship [6]. The service provider
builds up its profile consisting of his own company information and skills and project
evaluations that are built up over time, provided by earlier customers and verified by the
Electronic Services Market (ESM). As the E-Market also handles payments, the business
results (such as annual reports) can also be generated by the E-Market and consulted by
the customer. The contract is the result of a fully open or by-invitation bid process and
kept by E-market specifying price, duration and important milestones and payment
terms. Not shown in Fig. 1, but available in several E-markets is the feature to rate
customers by providers. With this feature providers have information available to eval‐
uate if they want to work for a customer.

Aguinis and Lawal discuss the “ELancing” phenomena, the various features of
E-Markets and its implications for research [7]. Based on the E-market features, they
argue that none of these are present in traditional outsourcing, offshoring, temporary
work, teleworking and independent contracting. Thus, sourcing work through E-
Markets is truly different from other modes of sourcing work and has its own set of
practical challenges and research questions. “The marketplace plays a key role in

208 J. van Hillegersberg and C. Amrit

matching employer with employee, assigning work, reviewing performance, and allo‐
cating rewards. This is why the marketplace keeps a portion of the profits” [7]. E-markets
compete in various ways, e.g. by varying their commission rates, typically between 5 –
15 % of the total transaction value to be paid by the contractor. E-markets have started
to also offer hourly rate projects in addition to the fixed price model. To address the large
volume and fierce competition in open auctions, E-markets have started to offer private
auctions by invitation. E-markets also vary in the richness of the profile information they
provide including various statistics on earnings, repeat business and customer ratings of
past projects. Several E-markets offer communication tools and work monitoring tools.
Furthermore, they offer ever more advanced payment schemes and customizable mile‐
stones. Escrow services are offered by most E-markets, sometimes with mediation
facilities in case of disagreement.

Most studies have examined the workings E-Markets from an outside perspective;
looking at the number of providers and customers, transactions, features, use of profiles, etc.

Taking a provider-centric perspective [6], develop and test a model of the potential
impact of provider profiles on their business outcomes. Based on an analysis of business
results of providers active on a large E-market with more than 50.000$ turnover in 2011,
they find that external profile information positively impacts business results, while
internal information did not impact results. External information components mainly
imply the possession of technical abilities, and experience by the provider, as specified
by the provider. Internal information constitutes feedback ratings, recommendations and
text comments submitted by a provider’s previous customers.

Fig. 1. E-Market services facilitating Customer and Service provider interaction (source [6])

Using E-markets for Globally Distributed Work 209

Gefen and Carmel (2008) examined the proposition that information technology
providers from low-wage nations can now underbid providers from high-wage nations and
win contracts [8]. They study an online programming marketplace and analysed the history
of transactions [8]. They find that the strongest determinant of the winning bid still is client
loyalty: the client gives very strong preference to a provider with whom there has been a
previous relationship, regardless of whether the provider is offshore or domestic.

Walter (2013) explores the importance of E-markets characteristics and software
development project success factors on project success in his thesis on “Success Factors
in Leveraging Freelance Marketplaces in Software Development Projects” [9]. He anal‐
yses the literature and dozens of blog posts on the use of E-markets for sourcing software
development, both from the buyer and contractor perspective. Based on this data Walter
develops an E-market software development project success model [9] (Fig. 2). The
model is tested using a survey among users of E-markets. The initial results point at Cost
control factors, Project efficiency factors, Qualifications of the buyer and Focus on
product quality, as the important project success factors. For the E-market characteris‐
tics, both Website functionalities and Terms agreed upon mattered. However, the
number of respondents to the survey was small (36 respondents) and obviously the depth
of analysis was limited as a result of the length of the questionnaire.

Fig. 2. A model to study project success of software development using E-markets. Source [9]

In our research we explore the relationships between E-market characteristics, soft‐
ware development project success factors and project success in more depth using a
field experiment. The experiment and the results are described below.

210 J. van Hillegersberg and C. Amrit

3 Research Method: Field Experiment

To get more insight in project success factors and the role of E-markets in achieving
sourcing success, we designed a field experiment to gain detailed experience with soft‐
ware development using E-markets. In the field experiment, four teams of 5 to 6
advanced MSc students enrolled in our Global Project Management course of the Busi‐
ness & IT MSc program were given the assignment to develop a system using a software
development vendor via an E-market. Each of the teams was given the same assignment
to develop a software game called Xchange. At the first course session (April 2014), the
instructors played a paper-based version of the game with the group to illustrate the
game and its mechanics. Next, the teams were told that they had 10 weeks development
time and were allowed to spend €500 each to develop a web based version of the game
using an E-market. The teams were given the freedom in what market to use, what tools
to use and how to organize the development process. However, they were not allowed
to spend more than the budget or to overrun the schedule. Also they were not allowed
to code by themselves, as the goal was to gain experience in transferring requirements
offshore online, and to effectively manage a global project using E-market functionality
and other online communication and project management tools.

Each team was required to maintain a detailed log of their experiences and lessons
learned. At the final course session (June 2014), the four teams presented the working
game software developed and the process experiences, assessed product quality and
lessons learned. The two instructors assessed the software products and project reports
of the four teams and the software products that had been developed. Given the stringent
parameters, it was surprising that three out of four teams managed to deliver good quality
working software within time and budget, while one team delivered a partially working
product. Considering our initial scepticism of sourcing using E-markets, the rich require‐
ments and limited budget of only 500 euro and tight schedule of only 10 weeks, the
results greatly exceeded our expectations. Below we highlight the experiences of the
four teams based on the rich materials about their projects that they delivered. We have
structured the results inspired by the research model by Walter [9] and the sourcing
phases as described in [6], organizing the findings of each team in the following area’s:

1. Choosing a platform and contractor
2. Contracting
3. Specifying Requirements
4. Development process
5. Project Success

We present the findings in each of this area’s below.

3.1 Sourcing Field Study Team Experiences

Team 1. The experiences of team1 are illustrated by the excerpts from their logs and
final report and summarized here as first person accounts:

Using E-markets for Globally Distributed Work 211

Choosing a Platform and Contractor. We decided to use oDesk as a platform, since
it was the only platform where we were able to find developers capable of working with
the rapid prototyping framework MeteorJS. We received the first applications within a
few minutes. We responded to serious offers and also invited some developers directly
to our job description which we already found using the oDesk search engine. After
filtering out some “bad apples” and excesses in price offerings, we arrived at a short-list
of two candidates. We set up a Skype meeting with both to discuss in more detail our
offer, inquiring about their application and asking them to provide an outline of their
work during the development. In this way, we enabled them to decide on deliverables
at milestones themselves, to put them in charge of their own agenda. Deciding ourselves
on deadlines that are impossible for a developer to reach is useless, as the developer
might be culturally restricted to refuse which eventually leads to failing deadlines and
miscommunication. The final candidates (with their info-line on oDesk) were:

1. Nivov H.: Furniture Assembly Expert.Theoretical Physicist.JavaScript Developer
2. Poojan S.: Full Stack Developer: Node.js, AngularJS, Android, PHP, DB, Linux.

We did a little background research on both:
Nivov H. seems not to use his real name on oDesk, comments left by others named

him Mushex or Allesandro. We did found his LinkedIn and GitHub account, where he
posted some interesting stuff but not very professional, like a Web 1.0 theme for the
Twitter Bootstrap Framework (http://code.divshot.com/geo-bootstrap/).

Poojan S. impressed us with a free demo. He kind of had to, because this would be
his first project on oDesk. His written English vocabulary was impressive, however,
during our Skype conversation he sometimes had trouble finding the right words. He
did use his real name though, and has an impressive GitHub portfolio while his LinkedIn-
profile looked professional with a clear picture of himself. We ultimately decided for
Poojan S. as a contractee. Nivov H.’s way of implementation was not in MeteorJS, but
an equivalent which was less known and he did not provide us with similar projects as
reference. In our last interview before we contracted Poojan, we asked him by when
would he be able to complete the assignment, to which he said he would be done within
a week. We were a little sceptical about that deadline, so we asked him to keep the next
weeks also available for bug fixing. Also, we supplemented our requirements to provide
more or less as a contract, based on his promise.

The candidate we chose was from Nepal and had no former experience on oDesk,
which could be a potential threat. Because his other Internet profiles (LinkedIn, Google
Plus, Github, Facebook) seemed consistent and he made a demo for us, we chose to
work with him. Getting in touch was very easy and he responded fast to our questions/
remarks, except when they were too critical.

Contracting. We agreed with the developer on the following terms of payment:

• 50 % upfront
• 50 % when all of the following is true (we define the following as “complete”)

1. We have received the code of the product.
2. We have verified the code of the product.

212 J. van Hillegersberg and C. Amrit

http://code.divshot.com/geo-bootstrap/

3. All functionalities and other requirements of the product as described in this speci‐
fication document are implemented and working.

4. If anything above is not met, the product will be developed until all holds true before
June 10th, 2014.

Specifying Requirements. Because we did not have any knowledge about what quality
we could expect from the applicants, we decided to approach this outsourcing assignment
in as simple a way as possible. With the limited budget, time and need for high quality code
this seemed the best choice to us. We wanted to implement the basic features including
some extra requirements we made using simple visuals in order to enable the programmer
to spend more time on the code quality than in understanding the game itself. We provided
the outsourcee with a 26-pages long requirements document.

We specified the system boundary, rules, task descriptions, mock-up and some
 quality requirements. This way it was clear for both parties what we wanted in the game.
Our software developer also said he had a clear understanding of what had to be done.
The other applicant on our outsourcing platform was also impressed by our specifica‐
tions, although this can be a result of the politeness of the candidates.

Another important aspect was that it seemed like the developer did not get the exact
idea behind the game. He understood simple functionalities and was able to program them,
but he had more trouble with correctly implementing more business-like functionalities
closely related to the game rules, like when something is a profit or a loss. Our job was to
be very specific and explicit about the more complex functionalities, in order that he could
just follow detailed instructions instead of implementing high-level goals.

Development Process. Before the decision to contract the developer was made, we
decided to use a waterfall approach. We agreed to not use an agile approach because it
seemed to be more time consuming and we thought was possibly less suited for small soft‐
ware projects, like our game. We already completed most of our requirements, and as we
were able to complete the requirements within a week so we chose to continue with
 the waterfall approach. After the outsourcing project started by providing Poojan the final
requirements specification document (including the formal contract requirements), our team
awaited the first delivery were he said to be done with everything. This milestone was not
met, and we waited for a few more days. After this extended milestone was also incom‐
plete (there has been source code committed, but not yet functional nor testable), we
reminded him of the contract requirements in terms of delivery. We initiated a Skype
meeting with our team and Poojan, in order to enable him explaining the situation to us and
give us the reason of his delay. He was not very talkative after our reminders, and prom‐
ised us (again and again) to keep working, giving all his time, and finishing the whole
project within a couple of days. After missing the second deadline, nobody believed his
deadline promises anymore, but it worked to keep him developing and enable us to review
his progress each couple of days. It was quite a challenge to have a conversation with him.
This was because his spoken English level was quite low, and it seemed that he did not
always understand what we meant, as he was just responding with a short “ok” several
times. He mainly blamed slow deployment and testing on a slow Internet connection.
While he became aware of his delay, we decided to report missing functionality, issues and

Using E-markets for Globally Distributed Work 213

quality considerations by using the GitHub issue tracker, which proved to be working
extremely well.

After this meeting on the first of June, Poojan showed incredible performance, it
appeared like he was working day and night on our project and directly solved newly
reported issues really fast. We were able to constantly monitor progress and test on the live
environment he provided (upon each code commit, he also deployed the current version
on the Meteor live site). This allowed us to verify if issued were solved. Ultimately he
delivered according our own requested delivery date and additionally implemented some
quality issues we reported. Neither of us explicitly mentioned it, but we regarded this
reasonable since he exceeded his own promised delivery dates several times. When looking
at the requirements we did specify, we quite benefitted from the established, explicit
contract requirements detailing our general game specifics and quality requirements.

Use of Tools.

• Balsamiq - For Mock-ups supplementing the Requirements Specification
• oDesk – Outsourcing platform, contract agreements & Issue solving
• Skype – Communication with applicants
• GitHub –Version Control platform, issue management
• MeteorJS – Web Framework based on JavaScript
• JSHint - Code quality verification tool
• Facebook Group - Own primary communication channel
• WhatsApp Group - Secondary communication channel
• Google Chrome Developer Console-Simple debugging when testing delivered work.

Everyone in our team was familiar with Balsamiq mock-ups, so we could easily
create simple interfaces for our Requirements document for this (Fig. 3).

Fig. 3. Sample screen design in balasamiq (Team1)

214 J. van Hillegersberg and C. Amrit

Fig. 4. Use of GitHub for issues reporting (Team1)

We used GitHub as code platform and issue tracker. This went very well, especially
the simple tagging system helped mark the priority of issues and the status of verification
(Fig. 4).

Sometimes we used Skype to talk to the contractor. Sometimes the sound quality
was not that good, but fortunately our programmer responded on oDesk very fast when
he was available. We used JSHint to detect errors and potential problems in the written
JavaScript code. The final delivered code did not contain errors, but during the projects
we sometimes checked specific commits, which were not always without errors. For our
own documents we used Google Drive to work with multiple people in one document.

We used a Facebook Group as our main communication channel, and sched‐
uled meeting. For urgent matters we also used a WhatsApp group.

Project Success. After some intensive 1, 5 weeks of programming in the beginning of
June, the last issues were resolved on June 11, and on June 13 (after final testing) we
were able to confirm the delivery of our project according to our specification. Reflecting
back on the method we initially used, we switched our waterfall method after the first
“function complete” deliverable to an agile way of working, using milestones as equiv‐
alent to Scrum sprints. Although the basic development method was still a waterfall, we
did not come up with extra requirements or functionalities during the design (except for
frequent quality issues), our communication and collaboration was quite agile due the
high intensity of developing features and testing these immediately.

Using E-markets for Globally Distributed Work 215

Team 2.

Choosing a Platform and Contractor. Ashort version of the requirements was created
and uploaded on Guru.com together with a description of the game in order to find a
developer. The selection of the offshore developer team was a difficult and challenging
task with the limited amount of budget and strict deadline. With our advertisement on
Guru.com, we got 21 quotes initially. It was a tricky task to discover the right developer/
development team with right development ability and communication skills. With the
number of quotes, we also got a large set of questions to answer which resulted in an
immensely time consuming task. Several developers and companies reacted to the
project on Guru.com. Most companies we negotiated with required compensation far
above our budget. At last, with the discussion, communication and negotiation, we
finalised the negotiation with one development company called GlobusSoft from India
that agreed with our limited budget and timeline. Globussoft was the only company that
was willing to develop the game for us for the budget of 500 euros. Due to the time
constraints we decided to go with this company. A Skype call was made with Globussoft
to make sure the developer and our group had a common understanding of the game to
be developed. Globussoft made a video showing the functionality of an initial version
of the game. GlobusSoft is a company, which started in 2009 and is located in Bhilai,
India.

We used Guru.com as a platform to attract our developing party, as we were very
satisfied with the platform. Not only did it offer us a marketplace, it also offered basic
project management functionality. This made the use of a tool like Basecamp redun‐
dant, so we ditched that as soon as we saw the same functionality in Guru.com.
Guru.com also offered a safe payment method, though it was a bit more expensive
than direct transfer, it did help raise trust from the developing party that if they would
do a good job, the money would be paid. It was also possible to pay parts, like per
milestone (Fig. 5). We found it very important to check the skills of the programmer
before hiring him, by checking his or her previous jobs.

There were a total six people in offshore team. Two of them were developers and
one was a support person. For our frequent discussion, we had mostly interacted with
these two developers. Communication with support people was only done at the start
and at the end of the project.

Contracting. Payment was decided to be 500 divided by the number of iterations
(denoted by P). After the first iteration, if the result were not to our satisfaction, we
would pay the vendor half of P. He would then have the choice to continue working on
the project or to quit. If he wanted to continue and his argument is to our satisfaction,
we would continue working with him. Why should we pay the developer half of P if his
work is not satisfactory? A number of reasons: (a) it is only fair, the developer has spent
time on the project and (b) if we would not have paid him, we would be disrespecting
his work leading to a negative comment on our profile, this could potentially result in
no developers willing to work for us. To verify that the developer was reliable and
capable, we tested him by asking to implement a part of the game in an hour or two. We

216 J. van Hillegersberg and C. Amrit

http://Guru.com
http://Guru.com
http://Guru.com
http://Guru.com
http://Guru.com
http://Guru.com

paid the dues after each milestone and kept the last 100 dollars until the moment that
we thought we were satisfied with the game.

The payment plan and iteration planning did work as expected. The developing party
even was consistently a week ahead of schedule. This made us happy to pay them for
their services. At the beginning of the negotiation with the programmer we had some
difficulty in knowing if the price for him was right. We needed to repeat our questions
several times because he was never replying with a direct yes/no. To avoid misunder‐
standings about the price, we learned that it is better to be very clear from the beginning
of the project about the maximum price we are going to pay.

When we hired GlobusSoft, we decided upon a price for fulfilling the requirements,
but we forgot to make clear agreements on when payment will take place and when the
code must be handed over. This resulted in the developers repeatedly asking for part of
the payment and us repeatedly asking for some of the code. In the end, we received the
code, but we were unable to have a look at the code before the entire project was finished
and the full payment was done.

Specifying Requirements. In addition to screen mock-ups, we provided UML based
activity and class diagrams to specify the design of the system. At the beginning of the
project, it was difficult to communicate with the developers, as there were many ques‐
tions and a lot of confusion about the financial data sheets implementation. But, with
the start of the development process, the problems got mitigated. The weekly video demo
from the offshore team and the feedback from our team to the offshore team had been
useful to keep the developers on track and our team satisfied. We made a big requirement
design, very detailed, in the beginning. Also we specified a lot of non-functional require‐
ments in the beginning, some of them were not useful because they were too specific
and, after the beginning of the programming part, we found out that they were not that

Fig. 5. Safepay payment schedule in Guru.com (Team2)

Using E-markets for Globally Distributed Work 217

http://Guru.com

usable. We learned that it is better to have fewer non-functional requirements in the
beginning of the project and specify them as the project progresses.

Development Process. We devised the development process as a combination between
the waterfall and the agile approach. Because of the challenges posed by the global
aspect of the development of the game, such as the time difference, cultural difference
and language barriers, waterfall has the advantage that specifying and designing the
game beforehand thoroughly before actual implementation, the developer knows what
has to be developed. This will not leave room for the developer to come up with his own
ideas for the game, which could be considered a disadvantage as well as an advantage.
As requirement engineers and designers are not fully aware of all technical capabilities,
the agile approach enables the developer to come up with his own ideas and (possible)
improvements for the game. By going completely agile, we think that the challenges
posed by the global aspect of the development of the game will outweigh the advantages
of agile. Agile requires frequent communication between all stakeholders of the devel‐
opment of the game. This can get time consuming because of the fact that much of the
communication will be asynchronous.

We received a 2nd video with a demo from Globussoft to show the progress of their
work. We had a feedback call with Globussoft to discuss the progress that was showed
in the videos. After multiple iterations (an iteration taking roughly a week), the game
was finished and installed on our server. On June 13th we received a link to play the
game and on June 19th code was delivered when the last payment was made.

We were a very heterogeneous group composed by people from different national‐
ities, different backgrounds and therefore different ways of thinking. This was an
advantage, on one hand, because we had different perspectives and different opinions
about the job, but on the other hand it was a disadvantage due to the difficulty to come
to an agreement in some circumstances. We improved the relationship with the
programmer by replying quickly to every question that he had. We also gave feedback
on the software’s milestones in a complete and quick way. We found out that it is
important to make a connection with the programmer (by talking about non work related
topics).

Use of Tools. We let the developer decide the tools to be used, as we did not force any
tooling upon the developer and let him use the tools he is familiar with. We used various
media to communicate with the developer. For face-to-face communication and for
feedback sessions we used Skype. We used the project management tool called Base‐
camp to communicate the project details. We attached documents from Google Drive
to Basecamp. We used Google Drive to share documents for the project internally. These
consisted of requirement documents, sketches of the interface, etc. Some of these, not
all, were shared through Basecamp with the developer. We contacted them for every
scheduled meeting on a weekly basis with a Skype call and privately with text messages
using Skype. We reported our remarks during the call, but we also used an Issue Tracker
that we shared with them on the Google drive. We always used a mix of synchronous
(Skype calls) and asynchronous (e-mails) for our communication, both of them were
very useful.

218 J. van Hillegersberg and C. Amrit

Project Success. It was aimed to construct a global team consisting of developers of
the developing party and our team, in order to enable the developers in the team to come
up with new ideas and possible improvements. This construction of a global team mate‐
rialise, as there was a clear distinction between them and us. They were hired to develop,
and we were their customers. In general, we found it easy to communicate with the
developers and explain our concerns. However, we faced difficulties in vocal commu‐
nication. Written chat was more effective in our case than the voice chat. A possible
reason could be the language and diverse accents. We noticed that it was difficult for
the offshore team to understand our accent and vice versa. However, from our team’s
perspective, this problem was somehow less severe as one member from our team was
able to understand and capture the offshore teams’ accent and speed of speech. After the
communication and language, the major coordination issue was difference in time zones.
The problem of time zone difference between our team and the offshore team was less
intense because of two major reasons. Firstly, the time zone difference between India
and The Netherlands is not that large and was successfully synchronized. In addition,
we observed that the offshore developer maintained a very professional (boss-employee)
relationship with our team where communication was quite precise.

The assessment of software quality metrics such as source code usability, reusability,
maintainability, complexity and a number of other metrics of code, are important. This
is especially the case since another party has created the code, it is important that the
code is understandable, in order to be able add functionality and perform maintenance.

The code for the game was written in Java. The code was imported in Eclipse to be
able to run some metrics on it. When importing and looking at the code, a big downside
was discovered immediately. There was no documentation in the code whatsoever. For
the purpose of the source code quality assessment, we used the Eclipse Metrics plugin
tool that. The quality of source code was measured on a number of different general
metrics e.g. number of packages, number of methods, number of interfaces, lines of code
to the specific quality metrics e.g. McCabe cyclomatic complexity, weighted methods
per class (WMC), lack of cohesion of methods (LCOM), etc. The final assessment of
the code quality was not so good. The metrics indicated some weak points. Even though
the results from the metrics were not dramatic, it was obvious that it will be hard to add
functionality to this code or maintain or update it in any way. This was caused by the
complete lack of documentation Javadoc in the code. The delivery of proper documen‐
tation was not put clearly in the requirements, which apparently was needed to get proper
code quality.

Team 3.

Choosing a Platform and Contractor. We quickly found out that Odesk was our
preferred website for the rest of the project. Most of the replies on our first Odesk posting
came from Indian and Pakistan developers. After several Skype sessions we selected a
programming agency, called Websumster Technologies. Initially, we thought we hired
a female programmer, but after the first Skype session our contact changed to a manager
from the same company. It took some time for us to clarify that we wanted our first sprint
needed to be finished within one week. During this week the manager told us that they

Using E-markets for Globally Distributed Work 219

were working on the project, and every time we spoke he said ‘within two days you can
see some progress’. However, after 1.5 weeks we did not see any progress at all, and
started pushing them to show us something. It took two hours, but then they sent us a
URL to an online environment where we could see their progress. When we took a closer
look, it turned out the code was copied from a chat box tutorial at CSSTricks.com. That
was reason for us to stop working with this company, because they could not give us a
reasonable explanation for copying the code. We told our story to the Odesk customer
service, and they have banned the initial developer’s account. After 1.5 weeks we had
to start our programmer selection process all over again. This time we changed our
approach, and asked developers to show us something (e.g. a html conversion of the
mock-ups) before we decided to hire them. This led to one Ukrainian programmer who
built almost 50 % of the total functionality of the first sprint in just a few hours, in order
to convince us to hire him. After a compelling Skype conversation we chose to hire this
programmer. He delivered the sprints as promised, and even surprised us by hiring a
special designer to redesign the whole layout without us having to pay more. The Ukrai‐
nian developer was quite young, was experienced with web development and asked the
right questions. Cultural differences were not present: just like our local team members,
he was straightforward, did not need small talk and kept his promises. Another advantage
was the fact that we could always access his server, so we could have an update whenever
we wanted.

Contracting. Odesk was the platform of our choice to recruit and pay our
programmer(s). Before we made a decision about the platform, we posted jobs on five
different platforms. On almost all of the platforms, we got bids or offers, but we saw the
most potential in the Odesk platform. Programmers reacted quickly and provided real‐
istic offers. The fee Odesk charges is at the higher end, but very clear: 10 % of the amount
is paid to Odesk. Programmers can add 11.11 % to their price for the final price. For us,
this fee was a nice bargaining leverage. Overall, Odesk worked quite intuitively, it was
easy to access and handle complaints.

Specifying Requirements. We would be lying if we said we had no problems in the
area. There were a couple of really basic things we overlooked in the first meetings with
our foreign programmers. The lesson we learned from this was fourfold. (1) Make sure
that the home-team has reached a complete consensus on what agreements need to be
made and what the negotiation scope is. Write it down and use it as a guide through the
meeting. Possible elements could be price, deadlines, getting updates, availability for
questions, tools, delivery of end product etc. (2) Use video meetings as a way to bond
with your away-team and do not worry about getting a bit informal. These moments
create trust amongst each other and create a better working environment. I.e. we used
some Ukrainian friends to write texts to our programmer in Russian. (3) When agree‐
ments are not met, take action. Be respectful, but very clear about what the expectations
are. Think about how you would react if the same situation would happen in your home-
team and use it as a guide to overcome the challenges. Be quick to act if the challenges
are not being tackled and resort to plan B. (4) Do not position yourself as dependant on

220 J. van Hillegersberg and C. Amrit

http://CSSTricks.com

the away-team. Setup your project in way that allows you to change plans and switch
programmers if necessary. Using this as requirements makes it clear for both sides.

Development Process. The project was divided into five steps, and in the week of May
2nd, we posted the first step on several websites. Within the group there was a consensus
for the approach, which was to use the agile approach. Continuing on this road we wrote
the specification on a 1.5 A4 sheet of paper with the design of the game in terms of the
end result. This description made it very clear for every group member on what our
objective for the development: the developer had to deliver functionality in sprints, with
the most value first. The rationale in favour of this approach was to get a better measure
of progress, as opposed to a waterfall-like approach, where all requirements are specified
up front and handed over to our developer. We thought that a more rigorous process
might give us a false promise of progress where a lot of work that should have been
addressed earlier becomes apparent near the deadline. Continuously adjusting the
process enabled us to find the appropriate amount of formality in controlling the devel‐
oper. In addition, the continuous adjustments allowed us to find the appropriate degree
of formality in communicating the requirements for each sprint that was appropriate for
the developer depending on what he understood and the degree of freedom he could
handle.

Use of Tools. When managing an outsourced project, we learnt that one should not use
tools for the sake of using specific tools. I.e. we set out to use Freedcamp in order to
manage our milestones and use it as a communication platform. In hindsight, it was not
used a lot, but the project communication did run more smoothly over Skype. We did
not have much experience with project management tools and working with Freedcamp
was the first for all of us. We mainly used Freedcamp to initialise our project, create a
planning and set-up all the necessary to-do’s. The programmers were able to look at the
entire environment except our to-do’s. Both our initial Indian programmers and our
Ukrainian developer were added to the project and we tried to use Freedcamp as a
communication and planning platform. Both programmers said they had some experi‐
ence using Freedcamp or similar tools i.e. Basecamp. When looking in hindsight at the
project, we can clearly say that the potential of Freedcamp was not completely used. It
was mainly used as a repository of sprint specifications and deadlines, which worked
quite efficiently.

Real-time collaboration on documents amongst all group members was made
possible using Google Drive. Because documents where always ‘in sync’ at every loca‐
tion, consistency of all requirements was ensured. Skype was used as the main medium
of communication with the developers. We used Skype in combination with a small tool
called ‘Skype Auto Recorder’ to record all audio conversations. Not all group members
had the time to join the interviews, so using the recordings everybody could listen back
to the conversations that had taken place. Quickly, it became clear that it’s easier to
communicate using Skype’s chat function than using audio or video conversations. Both
with our Indian as well as our Ukrainian programmer, we experienced low audio quality,
and thus decided to communicate using chat. However, we used the video chat option
to initialise some sort of bond. MockFlow was used in all sprints to created mock-ups

Using E-markets for Globally Distributed Work 221

and to illustrate clearly what had to be built. MockFlow is a cloud-based tool to create
mock-ups. This tool provides all the necessary elements of a web-page, such as tables
and buttons, which can be easily ‘dragged and dropped’ to a canvas. The free version
provided enough functionality to create all the necessary mock-ups.

Project Success. The final product of this outsourcing project was delivered on time
and having the functionality specified in the requirements. We qualitatively analysed
the delivered software using the ISO 9126 standard. We were confident that the software
functionality is sufficient to play the game. All requirements had been incorporated into
the application. The outputs of the program were exactly like the requirements stated
and as the project group intended. The application had a pleasant layout and beautiful
scaling. This increased the attractiveness for users.

For the interactions between the front-end and the server JavaScript was used. The
code is based on JQuery, a popular JQuery Library. The specific code written by our
programmer had been assessed using JSHint, a community-driven tool to detect errors
and potential problems in JavaScript. The results of the JSHint test are shown below
(see Fig. 6).

Fig. 6. Code quality assessment using JSHint (Team3)

Using PHPLoc we were able to analyse the size and structure of the project. Overall
the code quality can be classified as good. Since all code was put in classes (except for
the code in the index.php, the file to launch the system) we can conclude that the devel‐
oper adhered well to our requirement of using object-oriented design. Also the average
cyclomatic complexity, which is 3.28, shows that most methods have low complexity.

Team 4.

Choosing a Platform and Contractor. For this project we used freelancer.com to find
a suitable programmer and Freedcamp to keep track of the progress made. Freelancer
is a platform for both developers and project owners. The project owners are able to
upload their project, which is then readable for developers. The project owners find and
invite developers to look at their project. The developers are able to search for projects

222 J. van Hillegersberg and C. Amrit

http://freelancer.com

and place a bid. Freelancer requires you to upload a project description, the required
skills of the programmer and a project name. Additional details can be added using a
pdf file. We asked for bids for the entire project regardless of the hours needed. This
created a situation where it was the responsibility of the developer to create the software
within budget. Additional details were added containing all our requirements.

We were quite satisfied overall with Freelancer, as it got us in touch with the
programmer. Despite the relatively short time we needed to find an adequate
programmer, there were some major issues to the platform. First of all, upon placing a
project we received about eight proposals within the first three minutes. These were all
automatically generated and at seemingly random rates. Despite their randomness, they
all had 5/5 ratings and admiring comments. However, fake users placed all these
comments and ratings. This was tiresome and annoying to say the least, but on a more
serious note, it also made us doubt the great ratings that real users had. As a final remark,
it should be noted that there are some really strange features in the site. It does not allow
you to edit the project name, but you can edit the project description etc. You cannot
edit the final deadline, even when you’ve already handed the project over to a
programmer and you have mutually agreed that it should be postponed. This can only
be done with the help of the support team. Upon placing a fake project to test the website,
it turned out that ‘deleting’ the project would result in a 5$ fee, while ‘closing’ the project
was free. The only difference between these solutions was the fact that ‘deleting’ would
also make it undiscoverable through the Google search engine.

Contracting. Freelancer takes up part of the money because we had to pay project fees
 (10 %).

As our project cost was 660$, our programmer only got 600$ of the total amount.
Also.

Freelancer kept a percentage (2 %) of the amount of money transferred per transac‐
tion. This is something we found out once we paid the first milestone. In the future, to
choose a platform we probably would check this first and compare the different platforms
on their revenue model.

Specifying Requirements. We made functional, non-functional and technical require‐
ments that were supported by mock-ups, UCD and UML. Not only did we get insights
into the difficulty of managing the process of working together at a large distance, but
we also got to experience first hand what it took to write real requirements. After an
iteration, we gave our programmer feedback as soon as possible. He was very open
towards receiving feedback. As soon as he received the feedback the programmer started
revising the game. When he was ready he let us know straight away so we could test
what he had developed. In the beginning we had some trouble communicating between
our group and the programmer, this was mainly due to the fact that we work in a different
time zone and the effects of working in a flexible and agile way, as this required more
input from our side than we had anticipated. After switching to Skype on mobile, this
problem was quickly resolved.

Development Process. Even though many papers would suggest on to go with a fully
agile approach for such a small project, we decided we would not. One of the big benefits

Using E-markets for Globally Distributed Work 223

from agile is the reduced time in documenting, which means increased time for program‐
ming. In this project, we were not allowed to contribute to the code, which meant that
we had 5 people out of 6 in the team that had plenty of time to do proper documentation.
At the start, this meant a very extensive requirements document, which you would not
normally find in agile development. The document included information about the entire
application, thus it seemed as if we were following the waterfall model, despite of the
fact that we had told our developer that we would test what he had made every week
and we might change some of our requirements; a rather agile approach. We found
multiple benefits of starting the project in a waterfall manner. The first is that it was clear
to the programmer what the idea behind each milestone was and where the development
was heading. The second advantage was that the programmer was able to agree on a
price for the entire program. We have seen in the other student groups that the
programmer wanted more money after each sprint, after discovering that the group
became dependent of him. They worked it out, but we think the agile sprints did put
them in a difficult position. The third advantage was that our programmer worked at
unusual hours (weekends and night), which caused problems for providing synchronous
feedback. By giving him the entire project in one document, he was able to work at some
other part of the software when he was stuck. The next morning we were able to help
him, which ensured minimal delay. The last advantage was that our large team of 5 had
discussed the entire project before it would start. This minimized discussion and design
problems later on and ensured the programmer was able to talk to all of us and get the
same answers.

A disadvantage for the waterfall start was that the project needed two weeks before
it could be posted on freelancer. We also needed to make sure the developer did not get
obsessed with the document too much, and that it was merely a guideline for the situation
when he got stuck and when we were not available. We made sure that his progress was
visible to us, and that miscommunication or faults in the documents were found quickly.
To conclude, we started in a waterfall manner to get clarity on what needed to be done
and how much it would cost and from that point onwards we worked agile, to ensure
the project was heading in the right direction. We are very glad we did so, because there
were many miscommunications at the start and further on in the project and we discov‐
ered that the initial document was neither complete nor completely right on some
aspects.

Use of Tools. Freedcamp was used to keep track of our progress. Freedcamp can help
one monitor one’s entire project with posts, to-do’s, milestones and files. For informal
and fast feedback Skype is the ideal tool, especially in an international working envi‐
ronment. Next to synchronous calls and chat, the chat function also provides asynchro‐
nous communication. By using Skype on mobile, both the developer and our team were
available every day of the week. We created a new Skype account so that we would not
be involved privately. Google Drive was mainly used for file sharing within our team,
but some documents (e.g. bug lists and data file examples) were shared with the devel‐
oper as well. Initially, we started using Freedcamp for setting milestones and to-do lists.
However, later on we shifted to Skype and Google Drive for the communication and
file sharing. Although we see the positive aspects of Freedcamp when working in larger

224 J. van Hillegersberg and C. Amrit

projects, in our case we basically worked with the one external programmer. Within our
group we communicated through WhatsApp and one of us communicated the outcome
of our discussion to the programmer.

The group members, who were available when the code was delivered, performed
the testing. One of us logged in as the administrator and invited the rest to play the game.
While playing the game we mentioned it to each other on Skype if we encountered bugs.
We all were listing our bugs in a Google spreadsheet that was shared with the
programmer later on.

Project Success. The software worked well for its purpose, but could be designed and
documented better. For checking syntax we have use the tool PHP Code Sniffer. This
command line tool analyses all PHP, CSS and JS files and checks the syntax. Most errors
and warnings are because of syntactical errors, nothing too serious. Furthermore the
level of documentation is not very high which might cause some trouble in the future
when maintaining or extending this tool.

4 Conclusions and Discussion

While E-markets for global sourcing of projects have been established for over a decade
and more recently the market has consolidated by mergers of several leading players,
the phenomena is still under researched and its potential to source small and medium
sized software development projects is being debated. Extant research has mainly
focused on macro characteristics of E-markets. Detailed insight into successful practices
for developing software using E-markets is lagging. In this research we aim to provide
more insights into the potential of E-markets to successfully source software develop‐
ment projects. Through a field experiment in which four teams develop a software
product using identical initial requirements (budget and time schedule, but are otherwise
free to select an E-market, tooling, development process and vendor), we aim to gain
more insight in factors that determine success and the role of the E-market to facilitate
this success.

The research model developed by [9] provided a useful framework for our analysis.
Overall, our findings suggest that E-markets can be used to successfully develop a small
sized software system in quite spectacular timeframe and very limited budget. Three out
of four teams managed to have a working product according to the initial requirements
specifications. This result exceeded our expectations and contradicts the critical obser‐
vations and opinions in several blogs and news articles.

From the detailed experience reports and log files of the four teams several lessons
can be drawn that can aid buyers on E-markets to achieve success:

Choosing a Platform and Contractor: All platforms selected by the teams (Odesk, Guru
and Freelancer) did fulfil their key features. Still, a key issue is that too many bids are
either not legitimate or are automatically generated. Customer ratings seem to be no
guarantee. This in-turn makes the selection process cumbersome and time intensive.
Additional research on the developers and careful selection are a key requirement for
success.

Using E-markets for Globally Distributed Work 225

Contracting: The E-markets all offer useful services through predefined payment
conditions, where escrow services and guaranteed payments security is provided to both
the vendor and customer. However, sometimes hidden fees are applied and also some
vendors perceive the fees for each transaction as too high.

Specifying Requirements: Even more than in traditional outsourcing, it appears that
having very clear initial requirements and continuous communication about the require‐
ments is key. Cloud based document sharing tools and mock-up tools to visualize
screenshot designs are a useful addition. Conceptual models such as UML based activity
and class diagrams also proved useful. Non-functional requirements such as perform‐
ance and code quality are key as well, while these can be specified at a later stage, they
have to be clearly communicated and reviewed similar to the review of the functional
requirements.

Development Process: A full waterfall nor an agile process did function well for
sourcing a small project through an E-market. Carefully mixing the strengths of both
approaches worked best, using the waterfall style milestones, precise requirements and
contract specifications, combined with more agile rapid adaptation and frequent commu‐
nications between ‘product owners’ and developers.

Use of Tools: E-markets have come a long way in supporting more than just vendor
search, contracting and payment, and also offer communication tools and project
management support. Still, several other tools for communications, requirements spec‐
ification, modelling and code quality tests proved their value in reaching success, as
shown in previous research [10]. Cloud based tools to draw mock-ups greatly enhanced
communications. Use of video demo movies communicated intermediate results
between the remote and on-site teams. Skype was frequently used especially its basic
chat functionality. Remote access to the development server requires high mutual trust,
but allowed for frequent testing and feedback. Finally, the use of code quality assessment
tools enabled the customer team to assess code quality objectively.

Project Success: It is important to adopt a balanced view towards product success.
Usage of standards, like ISO 9126, facilitates a balanced view on product success,
including non-functional product quality. Even assessment of comments in the source
code should not be forgotten. When the customer has a tight budget and schedule, the
focus can be easily drawn to deliver functionality in time. By dividing roles at the
customer site to assess different quality aspects, the variety of quality attributes can be
guarded.

Gary Swart, CEO of Odesk writes on the company’s website communication on the
Odesk-Elance vision of the new combined company: “Just as Amazon reinvented retail,
and Apple iTunes transformed the music industry, together oDesk and Elance will revo‐
lutionize the way we work. This merger will create unprecedented freedom for people
to find job opportunities regardless of their location, and will allow businesses of all
sizes to more easily access the best available talent”.

Indeed our research confirms that it is feasible to run small sized systems develop‐
ment projects successfully through E-markets like Odesk-Elance. However, several

226 J. van Hillegersberg and C. Amrit

factors need to be taken into account and a skilled customer team with competences
including vendor selection, software contracting, software requirements specification,
development methods, cross cultural and virtual communications, use of various cloud
based tools, frequent functional and non functional testing are necessary. Other factors
such as socio-technical coordination [11, 12], also have to be taken into account for large
projects with multiple vendors or a vendor company employing multiple developers. By
no means is the use of these E-markets a guarantor for success. Future research could
focus on collecting more experiences and developing guidelines for enhancing the
chances of success for small and also larger development projects.

Acknowledgements. The authors would like to express their gratitude to the dedicated work of
the software vendors quoted in this paper and the skilled efforts and detailed high quality reporting
by the four project teams of class 2014 of the Global Project Management Course at the University
of Twente.

References

1. Sakthivel, S.: Managing risk in offshore systems development. Commun. ACM 50, 69–75
(2007)

2. Persson, J.S., Mathiassen, L., Boeg, J., Madsen, T.S., Steinson, F.: Managing risks in
distributed software projects: an integrative framework. IEEE Trans. Eng. Manag. 56,
508–532 (2009)

3. Amrit, C.: Coordination in software development: the problem of task allocation. In: ACM
SIGSOFT Software Engineering Notes, pp. 1–7. ACM, (Year)

4. http://techcrunch.com/2014/11/25/elance-odesk-30m-benchmark/
5. Anders, G.: Why Freelancers Are Dismayed At Elance’s Merger With oDes (2013)
6. Assemi, B., Schlagwein, D.: Profile information and business outcomes of providers in

electronic service marketplaces: an empirical investigation. In: Proceedings of the 23rd
Australasian Conference on Information Systems 2012, ACIS 2012, pp. 1–10. ACIS (Year)

7. Aguinis, H., Lawal, S.O.: eLancing: a review and research agenda for bridging the science–
practice gap. Hum. Resour. Manag. Rev. 23, 6–17 (2013)

8. Gefen, D., Carmel, E.: Is the world really flat? a look at offshoring at an online programming
marketplace. MIS Q. 32, 367–384 (2008)

9. Walter, A.: Success Factors in Leveraging Freelance Marketplaces in Software Development
Projects. University of Ottawa (2013)

10. Katsma, C., Amrit, C., van Hillegersberg, J., Sikkel, K.: Can agile software tools bring the
benefits of a task board to globally distributed teams? In: Oshri, I., Kotlarsky, J., Willcocks,
L.P. (eds.) Global Sourcing 2013. LNBIP, vol. 163, pp. 163–179. Springer, Heidelberg (2013)

11. Amrit, C., van Hillegersberg, J.: Coordination implications of software coupling in open
source projects. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll,
J. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 314–321. Springer, Heidelberg (2010)

12. Amrit, C., van Hillegersberg, J., Kumar, K.: Identifying coordination problems in software
development: finding mismatches between software and project team structures. arXiv
preprint. (2012) arXiv:1201.4142

Using E-markets for Globally Distributed Work 227

http://techcrunch.com/2014/11/25/elance-odesk-30m-benchmark/
http://arxiv.org/abs/1201.4142

	Using E-markets for Globally Distributed Work
	Abstract
	1 Introduction
	2 Related Literature
	3 Research Method: Field Experiment
	3.1 Sourcing Field Study Team Experiences

	4 Conclusions and Discussion
	References

