
A unifying view on template protection
schemes

Ileana Buhan Jeroen Doumen
Fac. EEMCS, DIES Group Fac. EEMCS, DIES Group

University of Twente University of Twente
The Netherlands The Netherlands

ileana.buhan@utwente.nl jeroen.doumen@utwente.nl
Pieter Hartel Raymond Veldhuis

Fac. EEMCS, DIES Group Fac. EEMCS, SaS Group
University of Twente University of Twente

The Netherlands The Netherlands
pieter.hartel@utwente.nl r.n.j.veldhuis@ewi.utwente.nl

Abstract

We show that there is a direct relation between the maximum length keys extracted
from biometric data and the error rates of the biometric system. This information can be
used a-priori to evaluate the potential of the biometric data in the context of a specific
cryptographic application. We model the biometric data more naturally as a continuous
distribution and we give a new definition for the fuzzy extractor that works better for
this type of data. We give three examples in this sense.

1 Introduction
Template protection can be used to store securely the biometric identity of a user. A
protected template reveal almost nothing about the biometric data. If a database with
secured biometric data is compromised, the attacker cannot learn anything about the
biometric data. Moreover if such an intrusion is detected the biometric is not lost, since
at any time the protection scheme can be reapplied on the original data.

As one needs measurements to obtain biometric data, another inherent problem with
biometrics is noise. One cannot use biometric data directly as a password (or key), since
classical cryptography cannot cope with the noisiness of the biometric data. Uniform
and reproducible randomness is the main ingredient for a good password. Unfortu-
nately, biometric measurements do not fit this directly. Template protection schemes
can be applied as a transformation function on biometric data to make the password
reproducible. By this transformation, biometrics can be used as passwords. Authors
estimate the error rate of their system in terms of FAR and FRR, but when it comes to
evaluating the strength of the resulting binary sequence different authors have different
opinions. Monrose et al. [6] compute the guessing entropy while Zhang et al. [9] try
to estimate the number of effective bits in the resulting key and propose a weighting
system for choosing the best combination. Chang et al. [3] analyze the security of a
sketch by investigating the remaining entropy of the biometric data, when the sketch is
made public. The same approach is taken by [2]. Fuzzy extractors [4] where proposed
as a general model capable of describing any template protection scheme that assumes
a discrete source initial data.



Contribution. Fuzzy extractors [4] were proposed as a general model capable of
describing any template protection scheme that assumes a discrete source initial data.
In this paper we extend the scope of the classical fuzzy extractors to continuous source
data. We propose CS-fuzzy extractors as a unifying view on template protection schemes.
This give us new insights. We show that the length and the quality of the bio-key de-
pends on the amount of distinguishing information that can be extracted from the initial
data. This gives a bound on the number of uniformly distributed bits that can be ex-
tracted from a given set of data. This information can be used a-priori to evaluate the
potential of the biometric data in the context of a specific cryptographic application. We
model existing template protection schemes in the framework of cs-fuzzy extractors.

2 Preliminaries
Notation and Definitions. We will use Ul to denote the set of uniformly distributed
binary sequences of length l. When referring to keys extracted from biometric data
we are interested in the probability that an adversary can guess the value of the key
on the first try. The min-entropy or the predictability of a random variable X denoted
by H∞(X) and defined as H∞(X) = − log2(maxx P (X = x)). The min-entropy
tells us the number of nearly uniform bits that can be extracted from the variable X .
The Kolmogorov distance or statistical distance between two probability distributions
A and B is defined as: SD(A,B) = supv|Pr(A = v) − Pr(B = v)|. For modelling
the process of randomness extraction from fuzzy data Dodis et al. [4] define the notion
of a fuzzy extractor. A fuzzy extractor extracts robustly a binary sequence s from a
noisy measurement w′ with the help of some public string Q. Enrollment is performed
by a function Gen, that on input of the noise free biometric w and the binary string s,
will compute a public string Q. The binary string s can be extracted from the biometric
data itself as in [8] or can be generated independently as in [5]. During authentication,
function Reg takes as input a noisy measurement w′ and the public string Q and it will
output the binary string s if w and w′ come from the same user. For a discrete source
M endowed with a metric d, the formal definition of a fuzzy extractor [2, 4] is:

Definition 1 (Fuzzy extractor) An (M, m, l, t, ε) fuzzy extractor is a pair of random-
ized procedures, 〈Gen, Reg〉, where:
Gen is a (necessarily randomized) generation function that on input w ∈ M extracts
a private string s∈ {0, 1}l and a public string Q, such that for all random variables W
over M such that H∞[W ] ≥ m and dependent variables 〈s, Q〉 ← Gen[w], it holds
that SD[〈s,Q〉, 〈Ul,Q〉] ≤ ε;
Reg is a regeneration function that given a word w′ ∈M and a public string Q outputs
a string s ∈ {0, 1}l, such that for any words w,w′ ∈ M satisfying d(w,w′) ≤ t and
any possible pair 〈s,Q〉 ← Gen[w] , it holds that s = Reg[w′,Q].

Distribution modelling. The biometric identity of a user is described by multiple fea-
tures. We assume that the features are independent. For simplicity, we consider a sin-
gle feature. Let Sa (the subscript a meaning authentic) be the cumulative probability
distribution that describes a user in the system. We denote with Sg the cumulative
probability distribution of the whole population, the subscript means global. Therefor,
pdfg = d

dxSg(x) and pdfa = d
dxSa(x) represents the probability density function of the

global distribution and the user distribution, respectively.
Error rates. The error rates of a biometric system are determined by the accuracy with



which the matching engine can determine the similarity between a measured sample w′

and the expected value w of distribution Sa [1]. We can construct two hypotheses:
[H0] the measured w′ is coming from the authentic user;
[H1] the measured w′ is not coming from the authentic user;
The matching engine has to decide whether H0 or H1 is true. To express the accuracy of
a biometric system the terms false acceptance rate, FAR and false rejection rate, FRR
are used. The false acceptance rate is a Type I error and represents the probability that
H0 will be accepted when in fact H1 is true. The false rejection rate is a Type II error
and represents the probability that the outcome of the matching engine is H1 but H0 is
true. We have a false acceptance every time another user, from the distribution Sg is
generating a measurement which is in the acceptance region described by the interval
〈T1, T2〉. We can then write FAR =

∫ T2

T1
pdfg(x)dx = Sg(T2) − Sg(T1). Every time

user Sa produces a sample that is in the rejection area, he will be rejected, thus FRR
=1−

∫ T2

T1
pdfa(x)dx = 1+Sa(T1)−Sa(T2). Dodis et al. [4] assume that the data source

M is discrete for the definition of fuzzy extractor. However, the class of template pro-
tection schemes that uses continuous sources does not fit this model. The subject of next
section is the extension of fuzzy extractor definition to continuous source distributions.

3 Fuzzy extractors for continuous distributions
We show in this section if we consider the case of a continuous distribution there is a
natural link between the parameters of a fuzzy extractor (M,m, l, t, ε).

3.1 From continuous to discrete sources
Definition 1 relies on a source M with min-entropy m. How can we construct a source
with min-entropy m out of a continuous distribution Sg? A common solution is to divide
the measurement axis into intervals. Each interval di has associated a discrete string si.
Example. In the setting of figure 1 the result of this division is the discrete distri-
bution Dg = 〈di〉, i = 1..n, n = 8 in this picture.The public string Q contains the
representation of the quantization. The probability of selecting an interval is com-
puted as pi = Pr[Dg = di] =

∫
di

(pdfg|Q)(x)dx where the integral is taken over
the interval di. The continuous distribution Sg has been transformed into the discrete
distribution Dg = 〈di〉, i = 1, . . . , n where n=8. A user Sa can be described by
only one authentic interval. We chose the authentic interval di for which the value
pauth =

∫
di

pdfa(x)dx is maximized. In figure 1, d7 best describes user Sa. Now we are
able to speak of the min-entropy of Dg denoted by m and defined as m = − log2 pmax

where pmax = maxi(Pr[Dg = di]). The effective key space size of a biometric was
linked to pauth in [7]. The effects of the discretization on the error rates, the FAR and
the FRR are shown in figure 1. If we associate to user Sa the discrete variable d7 the
FAR for this user will be equal to pauth, in figure 1 the doubledashed area. The proba-
bility of a false rejection is determined by what is left from the distribution of Sa after
removing pauth, in figure 1 the dashed area.

3.2 Relating min-entropy m and FAR

The above construction using the biometric data creates a tight relation between the
min-entropy m of distribution Dg and the error rates of the biometric system. For the
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Figure 1: Effects on the error rates of discretization of a continuous distribution

output sequence s to have a small chance of guessing the correct value from the first try
we have to maximize the min-entropy by lowering the values of all the probabilities pi.
Unfortunately, by lowering pi we increase the FRR .

Proposition 1 For the above defined distribution Dg we have m ≤ − log2 FAR with
equality when pauth = pmax.

Proof: We take pmax = maxipi. Since pmax ≥ pauth, we know that:

m = −log2pmax ≤ −log2pauth = −log2FAR

Corrolary 1 FAR ≤ 2−m with equality when pauth = pmax.

Fact: m is maximized when the probabilities associated with the discrete distribution
Dg are uniform.

3.3 Relating threshold t and FRR

According to definition 1 the Reg[w′,Q] procedure will output the same binary sequence
s as Gen[w] whenever w and w′ are close. This means that w and w′ probably belong
to the same user. In definition 1 this is written as d(w,w′) < t, where d is some metric,
for example the Euclidian distance or the set difference metric. The value of t, does not
say anything about the acceptance or the rejection probability of a user which, we feel,
is more relevant. Also a suitable metric is not always available in the case of continuous
sources. The probability of correctly identifying that two measurements belong to the
same user is the opposite of a Type II error, thus the detection probability Pd = 1−FRR
is a suitable generalization of the threshold t.

3.4 Relating min-entropy m and length l to ε

We show in this section that given the number of bits l that we want to extract, and
the min-entropy, m = H∞(Dg) for a feature we can estimate ε, the distance of the
output sequence distribution to the uniform distribution. We are interested in the statis-
tical distance between the ideal distribution of s where the generated key is distributed



uniformly, i.e. in Ul, and the actual distribution of s given the helper data Q.

ε = SD[〈S, Q〉, 〈Ul, Q〉] sup
s
|P (s ∈ S|Q ∈ Q)− P (s ∈ Ul|Q ∈ Q)|

Looking at the last term, since the uniform distribution is independent of the helper data,
we can write

P (s ∈ Ul|Q ∈ Q) = P (s ∈ Ul) = 2−l.

Introducing the notation P (s|Q) := P(s ∈ S|Q ∈ Q), this gives

ε = sup
s

∣∣∣P (s|Q)− 2−l
∣∣∣ .

= max
s

{
sups(P (s|Q)− 2−l) when P (s|Q) ≥ 2−l

sups(2−l − P (s|Q)) when P (s|Q) < 2−l

Note that the true value of ε will be the largest of these two cases. Studying the first
case, we get

sup
s

(
P (s|Q)− 2−l

)
=

(
sup

s
P (s|Q)

)
− 2−l = 2−m − 2−l,

while in the second case we get

sup
s

(
2−l − P (s|Q)

)
= 2−l − inf

s
(P (s|Q)) ≤ 2−l,

with equality when there exists a key sequence that is never attained. If we compare the
two cases, we see that the first case represents the value of ε if 2−m − 2−l > 2−l, i.e.
when m ≤ l− 1. To conclude, this shows that ε can be bounded from above in terms of
the min-entropy m and l as follows:

ε ≤ ε(m, l) =






0 if m = l,

2−l if l − 1 < m < l,

2−m − 2−l if ≤ l − 1.

3.5 CS-fuzzy extractors
The above relations lead us to the following definition of the fuzzy extractors for con-
tinuous sources.

Definition 2 An (Sg,m, l,FRR) cs-fuzzy extractor (continuous source fuzzy extractor)
for the user distribution Sa is a pair of randomized procedures, ”generate”, Gen, and
”regenerate”, Reg, with the following properties:
Gen is a (necessarily randomized) generation function that on an input Sa extracts a
private string s ∈ {0, 1}l and a public string Q, such that for any user distribution Sa if
〈s,Q〉 ← Gen[Sa] then SD[〈s,Q〉, 〈Ul,Q〉] ≤ ε(m, l), where ε(m, l) is defined above.
Reg is a regeneration function that given a measurement u′ sampled from Sa and a
public string Q outputs a string s ∈ {0, 1}l, s = Reg[u′,Q], where 〈s,Q〉 ← Gen[Sa],
with probability equal to the detection probability, Pd = 1− FRR.

Cs-fuzzy extractors preserve the mechanism of the generate and regenerate functions as
proposed in the original fuzzy extractors definition. The link between the used param-
eters in each model was described in the preceding sections, thus any fuzzy extractor is
also a cs-fuzzy extractor.



3.6 Examples
In the following we take three template protection schemes for continuous source data
from the literature and show that they can be fitted in our model. All schemes are
described for one feature only.
Reliable component scheme One of the most intuitive schemes in the area of template
protection is the reliable component scheme proposed by Tuyls et al. [8].
Gen During enrollment M samples 〈w1, w2, ..wM 〉 are measured. This is followed by
quantization, where a sequence 〈q1, q2, ..qM 〉 is computed. Here, each measured value
wj , j = 1..M is compared to the imposter mean µg. If wj ≤ µg then qj = 0 else
qj = 1. A feature is called reliable if all qj are equal. Only in that case will the feature
be used. The public string Q consists of the positions of the reliable components.
Reg During authentication, a noisy version of w, w′ is measured. For each reliable
component (we look at Q) its value is compared to µg. The result represents the key.
This scheme will extract 1 bit from every reliable component, with probability equal to
1-FRR . We write the reliable component as a (Sg, 1, 1,FRR) cs-fuzzy extractor where

FRR =






∫ µg

−∞ e
−(x−µa)2

2σa dx, µa > µg
∫∞
µg

e
−(x−µa)2

2σa dx, µa < µg.

Shielding functions Linnartz et al. [5] were among the first to suggest how to get keys
from continuously distributed sources. Their technique is inspired by watermarking.
They propose a multiple quantization level system with odd-even bands, see figure 2.
Gen For one feature, the bit s is embedded by shifting the mean w of the template
distribution to the center of the closest even-odd q interval if the value of the key bit s
is a 1, or to the center of the closest odd-even q interval if the value of the key bit s is a
0. The public string Q, called helper data is computed:
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Figure 2: Shielding function discretization, embedding a 0 value key bit.

Q =

{
(2n + 1

2)q − w when s = 1
(2n− 1

2)q − w when s = 0



Where n ∈ Z and is chosen such that: −q < Q < q.
Reg is defined as:

Reg[w′,Q] =

{
1, when 2nq ≤ w′ + Q < (2n + 1)q
0, when (2n− 1)q ≤ w′ + Q < 2nq

During authentication a noisy feature w′ is extracted. The key bit is 1 if the sum of the
noisy feature and the helper data is in an odd-even interval and is 0 otherwise. Whenever
the measured value has an error greater than q

2 we can get an error in the key computa-
tion. This scheme can be written as a:

(Sg, 1, 1, FRR) cs-fuzzy extractor where FRR = σa 2
√

2
∑∞

i=0

∫ (3+4i)

2
√

2
q

σa
(1+4i)

2
√

2
q
σ

e−x2
dx.

The FRR depends on the quantization step q. When q is larger, the noise tolerance is
higher as well. On the other hand, if q is smaller, the FAR goes down. The output
sequence is uniform in this scheme as well.
Chang multi-bit scheme. Chang et al. [3] select the distinguishable feature of a user
to extract multiple bits from each of these features. For each feature the left and the
right boundaries, L and R of the impostor distribution are selected so that with high
probability a measurement from any user falls in this interval.
Gen The selected FAR determines for each feature an authentic region, see figure 3,
delimited by T1, T2. The whole region L, R is divided in segments that have a length
equal to the segment determined by T1 and T2. A label is associated with each segment.
It can happen that some redundant segments are added to the left and to the right of L
respectively R to use all labels of a given length. In figure 3 three more segments with
the labels 000, 100 and 011 can be added, here the genuine interval has label 101. The
public string Q contains the description of the intervals and the associated labels.
Reg Every time a user submits his biometric data to the system his feature will fall in
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Figure 3: Chang discretization

one of the published intervals. The label associated with this interval represents the key
of this user. An authentic user will be in the authentic area with probability 1-FRR .

This process is repeated fr every user, for every feature. Thus they have defined

an (Sg,m, l,FRR) where m = log2
∫ µg+

|T2−T1|
2

µg− |T2−T1|
2

pdf(Sg)dx and l = log2
|L−R|

|T2−T1| . The

mathematical relation for FRR is 1−
∫ T2

T1
pdf(Sg)dx.



4 Conclusion and Future Work
Fuzzy extractors are a theoretical tool for modelling and comparing template protection
schemes which use a discrete source. We generalize the definition to cs-fuzzy extrac-
tors, which can also handle the continuous source cases. We applied our model on three
template protection schemes. Biometric authentication systems are evaluated using the
false acceptance rate and the false rejection rate. The link between the two was hitherto
not obvious even though they refer to the same data. In this paper we show, that there is
a natural connection between the false acceptance rate, false rejection rate and the pa-
rameters used to evaluate a template protection scheme implemented on the same data.
We also show that the error rates have a direct influence on the length and robustness
of the key extracted from the features of a user. In this paper we only consider the one
dimensional case. However, biometric data contains multiple features for each user. As
future work we want to investigate the influence of various feature aggregation methods
on the length and robustness of the key.
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