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Abstract.  This JIWY demonstrator is constructed in the context of the development 
of a design framework and software tools to efficiently support mechatronic 
engineers in developing sophisticated control computer code out of a set control 
laws. 
We use the CSP-based Communicating Threads –CT– library as the software com-
munication layer, our hard real-time ‘virtual machine’.  
JIWY (just a soundful name) is a little tabletop robot with 2 rotational degrees of 
freedom and a camera as its ‘end effector’, controlled via a joystick on a PC running 
Real-Time Linux. 
The control laws are stepwise refined to obtain the control software, enhancing the 
control-law block diagrams to CSP-diagrams, showing the communication and 
composition properties of the control software.  
Enhancements like adding homing and end stops for safety can easily be added in 
the CSP-diagrams, without adapting the control law design. This shows the 
orthogonality of the design steps. State charts were not needed to express all 
functionality, which leaves the design simple. 
The prize of this elegance, namely performance, has as yet not been investigated. 

1. Introduction 

We strive to allow mechatronic engineers to design control-computer code, despite lack in 
skills of software engineering. Main motivation is that nowadays it is impossible to separate 
control engineering from software engineering: the only efficient way to implement 
controllers is to transform them into computer code for the chosen computer target (see also 
the trends mentioned in [1]). In control engineering practice, used software development 
techniques suffer from insufficiencies in knowledge in disciplines of software modelling, 
familiarity with concurrency in software, ways of allowing for reusability, software testing 
and so forth. The resulting code functions correctly in first instance, but is generally not 
reliable, efficient nor extendable/updateable. 

The control-computer systems are Embedded Control System (ECS), because the control 
computer code is specific to the control system, for which the dynamic behaviour of the 
plant (i.e. the ‘machine’-part of the embedded system to be controlled) is essential for the 
functionality. Examples are robots, production machines like wafer steppers, motor 
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management and traction control of automobiles.  Furthermore, we separate the I/O 
interface boards from the computing system, because they are often dedicated to the ECS, 
although not necessary specifically developed. The software part consists of a layered 
structure of controllers and the user interface. The computing system is considered 
heterogeneous and distributed, because modern control systems are often composed of 
existing subsystems, having their own (low level) control software and processors [2]. 

The other class of ES is Embedded Data Systems, where the relevant behaviour of the 
plant can completely be described by waiting times between subsequent commands from 
the software. This class of ES is usually soft real-time which means that missing deadlines 
decrease the quality of service, but are not fatal. 

Our current research deals with the development of a design framework and a supporting 
software tool to efficiently support the mechatronic engineer in developing sophisticated 
control computer code out of a set of control laws. 

Normally, mechatronic design engineers start with modelling the dynamic behaviour of 
the plant, and derive a control law for it. This control law is then gradually transformed via 
Stepwise Refinement towards efficient concurrent algorithms (i.e. the control computer 
code). During this process, simulation is often used as a means of verification. In the end 
phase, realization can also be done stepwise, namely by letting parts of the total system stay 
simulated, and letting other parts be in the final realization [3]. Especially the step from 
control law design to implementation is recognized as critical and not methodologically 
covered by existing approaches and tools.  

For the modelling control law design parts including their simulations, existing tools [4, 
5] suffice. Often, graphical modelling languages, e.g. block diagrams, are used in this 
design process for structuring the complexity of the control structures. 

In this paper we show by means of the JIWY case, that the software development step 
can conceptually be covered using the CSP parallel processing paradigm. Since tools for 
modelling and control law design nowadays are graphically oriented, we use for the 
software development part the CSP-diagrams [6] instead of CSP expressions. CSP 
diagrams are basically block diagrams of communicating processes. The Stepwise 
Refinement process thus transforms the control law into an execution model that is ready to 
be translated into control software, whereby one can easily specify concurrency with CSP 
in a block diagram.  

As the process communication abstraction layer, we use the Communicating Threads –
CT– library [7]. 

First, the CT library and the CSP-diagrams are briefly introduced in section 2. Then, the 
robotic case is described in section 3. Our design solution is presented in section 4. 

2. The target software layer 

2.1 Communicating Threads –CT– library 

The Communicating Threads –CT– library is an implementation of the CSP channel 
concept in Java, C++ and C [7-9]. Besides the communication facilities, also the process 
scheduling is taken care of.  

The CT–library’s philosophy is to puts all embedded software responsibilities in 
designer-defined processes, which are supported by the OS-independent real-time kernel – 
a substantial internal part of the CT library. This means that process orientation and 
modelling the system that way are included in the very early phases of reasoning about the 
problem at hand. This also means independence – thus portability – of any real-time OS to 
the extent that an OS is not even necessary any more. This is indeed the case in designs 
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where small and cheap processing units are involved: DSPs, MCUs, FPGAs or in all 
(typical) cases when it is intended that the design fits into hardware resources as small 
(cheap) as possible. 

The CT–library delivers fundamental elements for creating building blocks to implement 
a communication framework using channels. Besides the prototype in Java (CTJ), which 
serves as a design pattern, implementations in C++ (CTCPP) and C (CTC) were developed. 

For the data communications, channels are used exclusively. Channels are simply 
synchronisation primitives that provide communication between concurrent and/or 
distributive processes. Processes may only communicate through the channels using read 
and write methods, as shown in Figure 1, using the CSP waiting rendezvous principle. 
Synchronisation, scheduling and the actual data transfer are encapsulated in the channel. 
Channels are fully synchronised and basically unbuffered. However, buffers may be added 
to compensate communication latencies between the hard real-time parts and the soft real-
time parts. 

write read 
channel Process A Process B 

dataflow 

link 
driver 

write read 

hardware 
dependent 

channel 

link 
driver 

hardware 
independent 

 
Figure 1 Channel implementation for multiprocessor systems [7] 

Using channels encapsulates thread programming. Scheduling is no longer a part of an 
OS but is hidden by the channels, and thus has become part of the application instead [7]. 
Thus, the application schedules itself to guarantee real-time behaviour independent of the 
underlying real-time OS; it is the application that must be real-time in the first place.  

When a channel communication occurs between processes on different processors, 
channel and link-driver objects are present on both processors: the link drivers implement 
the specific communication protocol used, like CAN, TCP, PCI, USB, RS232 etc. Hence, 
the distributiveness of the design is also addressed, in a way that can be made rather 
transparent to the designer. 

The CT library is available from our JavaPP website [10] and is used by several 
universities and companies. Furthermore, we use it at our 4th year class on Real-Time 
Software Development. 

2.2 CSP-diagrams 

As presented in [6], CSP-diagrams show processes and their interrelationships graphically. 
The execution model of the resulting network of processes is shown: It enables to specify 
real-time and parallel software architectures. CSP-diagrams are an addition to the block 
diagrams used in control engineering, which show the data-flow between the different 
subparts of the control system. Block diagrams can thus be seen as data-flow diagrams.  

The extra information we need to add to a data-flow diagram is how the blocks are 
grouped into processes and what the concurrency of these processes is. This information is 
put into the newly applied edges between the vertices that remain the data-flow processes. 
The most essential interesting enhancements are the compositional relationships, showing 
whether processes run in parallel or in sequence. 
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3. JIWY: the robotic case study  

JIWY is a mechatronic set up for orienting some device, a camera in this case. The 
acronym JIWY is just a soundful name, and does not mean anything. The construction 
contains two revolute joints that allow the camera to rotate on a horizontal axis and a 
vertical axis. A user can control the set up and view the pictures from remote via a network 
connection. Currently, we use a joystick coupled to the JIWY control computer (Figure 2). 

Figure 2 The JIWY set up (20-SIM model) 

The operating vertical angle is 165o and the operating horizontal angle is 120o. The 
maximum swing is limited by end stops. The maximum angles between the end stops are 
respectively 300o and 150o. These end stops prevents full swings so that the wires cannot be 
twisted or damaged. Each joint is equipped with one DC motor and one incremental 
encoder. The wires between these devices and the I/O-interface are bundled in one cable 
together with a watchdog signal lead. The watchdog signal is a clock signal that is used for 
detecting whether the cable is damaged or disconnected. Thus, each joint is separately 
controlled and independently connected by a separate cable. Currently, the end switches 
and watchdog signals are not yet implemented.  

The amplifiers for steering the motors, electronics for the sensors, and a power supply to 
supply JIWY with power are placed in a separate box. The controlling PC is a 200MHz 
Pentium based standard personal computer, running under RT Linux operating system, 
version 3.1 of FSMlabs with Linux Slackware 8.0 [11]. The I/O card is the National 
Instruments PCI 6024E with 2 D/A, 16 A/D 12-bits converters (200 Ks/s), 8 digital 
input/output lines and 3 real-time clocks. See Figure 3 for the architecture of JIWY. This 
leaves space for additional functionality to further explore and expand the control software. 

We expect that this JIWY set up enables a sufficient complex case study for 
demonstrating multi-loop servo control problems. Besides the controller, a variety of 
safeguarding can be built-in, like swing limiting via end switches, steering limiting, and 
cable conditioning monitoring using the watchdog signals. 

Using the extensions mentioned above, JIWY is protected by redundant safety-guards. 
Each safeguard is independent developed from each other as concurrent processes. This 
way, safeguarding becomes fault-tolerant; thus, if one guard fails then another pops in.  
Concurrency allows us to build fault-tolerance software that is reliable, robust, and that is 
scalable with complexity. 
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Figure 3 Control Architecture of JIWY 

From a software design point of view it is interesting to see what impact each safeguard 
has on the entire software. We try to eliminate anomalies as much as possible so that we 
end up with a clean design that is easily maintainable, extendable and reusable. 

4. The software design solution 

By notions of StepWise Refinement (SWR) of the model of solution, the design starts with 
a coarse sketch of the system in minds. To that end, the modelling tool 20-SIM [4] is used. 

4.1 20-SIM control system model 

The design problem addressed here is engineering of embedded computer system based on 
two closed control loops. The engineer starts with a sketch of overall system (Figure 2), and 
gradually refines the model of solution in the course of understanding the problem in hand. 
A typical control system consists of three main subsystems: appliance (industrial process, 
plant, set up) to be controlled, software which provides all control functionalities and 
specific I/O. 

20-SIM can be used very well for early phases of SWR, because it allows organizing the 
model in the abstractions of high levels building blocks; the building blocks are partitioned 
in hierarchies of simpler and simpler building blocks, which can be easily accompanied 
with basic default dynamic behaviour. In that manner, simulations can be used as 
verification means in very early phases of the system design. Figure 4 shows the 
specification of one level deeper in the hierarchy than Figure 2. Both are simulateable. Note 
that all the block-diagram blocks are basic building blocks available in 20-SIM. 

It turned out that the signals from the analogue joystick were polluted with noise that 
likely will make JIWY slightly shake. Analogue filters did not have the desired effect of 
eliminating the noise and closer analysis showed that the noise seemed to be digital spikes 
generated by the counter logics of the analogue joystick input. In order to eliminate the 
digital noise we had to add a digital filter for each of the axis. The digital filters are 
functional blocks that were placed before the controller blocks. The digital filters provided 
the desired effect. 

Next steps of refinement will be focused on the “Control” component only, which 
means: refinement of the control software. 
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Figure 4 Simulateable JIWY system 

4.2 CSP diagrams of control software components 
 

CSP diagrams capture composition and communication aspects of the concurrent 
software components designed due to CSP principles. In perspective, CSP diagrams will be 
recognized as an extension to software modelling language UML. 

As in UML, software design is approached via multiple views, captured by families of 
diagrams. CSP diagrams encompass two orthogonal kinds of views/graphs: communication 
graphs and composition graphs, as explained in [6]. 

For the starting point in reasoning about design of control software, Figure 5 can be 
arranged in a slightly different way, which reveals the possibilities of parallel processing: 
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Figure 5 Simulateable JIWY prepared for parallel processing 

The code generated by the current version of 20-SIM is placed in one single loop, such 
that parallelism is not possible. It is a sequential implementation, which is optimised for 
simulation. By using the CSP diagrams, we can specify exactly what we mean and how the 
execution framework should fulfil our requirements. CSP allows us to overcome the 
limitations of the previous mentioned simulator framework. In short, by designing CSP 
diagrams we will have complete control over the execution framework of the controller 
software and we can extent the execution model with additional processes that cannot (yet) 
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be dealt with by 20-SIM. 
The communication diagram of the controller is given in  Figure 6, and the composition 

diagram is given in Figure 7, showing that all processes run in parallel. The processes in 
both diagrams are the same. Furthermore, layout of these processes is also kept the same, to 
optimally show the relation between the two diagrams. 

 Figure 6 Communication graph of the controller 

Figure 7 Composition graph of the controller 

The µ-processes in Figure 7 indicate that the process at the other end of the relationship, 
to which it is connected, will be executed in an infinite loop. Via the parenthesis symbols 
‘o’ and their indices, it is indicated that the upper two processes will be executed 
independently from the lower two processes. This way, the decoupling of the two axes is 
indicated (See [6] for explanation of this syntax). 

The scheduling of the processes will be determined by the data-flow that is depicted by 
the communication diagram. The channels between the concurrent processes perform 
scheduling and synchronized data-transfers between the processes. Thus, the reactivity and 
responsiveness is determined by the network of communicating processes. 

The sampling rate is set for the input-channels and output-channels and the depending 
processes automatically adapt to that rate. This makes it easy to add multiple sampling rates 
with or without multiplication to the model. The input-channels and output-channels are 
concerned with interrupt handling, timer control, and other hardware issues. As a 
consequence, the processes become hardware independent and highly portable. This is 
conform to Figure 1. 

4.3 Enhancing the controller 
In certain systems it could be desired to stop the controller when a stop-button is 

pressed. For example, how can we update the model so that we can stop a controller when 
we press a joystick button? When we press a joystick button we should be able to terminate 
a controller loop. The model as depicted in Figure 8 specifies this feature. We added for 
each loop a choice operator ‘ð’ that executes the control loop until a joystick button to be 
pressed. When a button is pressed a corresponding Boolean variable is set to true so that the 
condition of µ-process becomes false and the µ-process terminates. Furthermore, the 
indexes of the parenthesis have been incremented to correct the compositions of processes 
and relationships.  
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The ?-process is a primitive reader process. The reader process is conditionally related to 
the choice operator. The reader will read from the channel buttonchan1 when 
buttonchan1 is ready (i.e. a writer writes to the channel) and condition is true (i.e. 
[true]); otherwise the reader will not be selected. If both the channel is ready and the 
expression is true then the choice operator may select the reader. The reader will 
immediately read channel buttonchan1. Also Boolean stoph will be set to true. This is 
similar for buttonchan2.  

 
 

Figure 8 Stop button added 

After a joystick button is pressed some process should take care of the stopped joint. For 
example, a homing process could be a last action that moves the join to its initial position. 
The processes HomingHorizontal and HomingVertical can easily be added in the 
communication diagram and composition diagram (Figure 9 and Figure 10). 
 

 
Figure 9 Communication diagram with Stop buttons and Homing 
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Figure 10 Composition diagram with Stop buttons and Homing 

 
In Figure 10 two exception-handling processes ExceptionVertical and 

ExceptionHorizontal have been added. The exception operator ‘ ∆
ur

’ deals with 
exceptions in the system. Exception handling could take care of many things such as 
sending the user a message, retying to establish connection, or eventually terminating the 
loop. Process ExceptionHorizontal catches exception caused in 
DigitalFilterX, in ControllerHorizontal, or in reading the joystick button. 
Process ExceptionHorizontal does not cover process HomingHorizontal. A 
source of exception could for example be division-by-zero or a failure in an external 
channel, like a DA-converter stopped converting data or the cable of the joystick has been 
disconnected. This is similar for ExceptionVertical.  

5. Conclusion 

In the work described above, we met the following advantages: 
• The CSP diagram extensions only concern the edges of the graphs, and can as such 

be done without necessity to change the vertices (i.e. processes / submodels). This 
allows for easy switching between the different graphical formalisms. Automation 
can therefore be straightforward. 

• The refinements per step are rather small. This implies that the SWR process can be 
performed really stepwise. 

• Separate control loops (having may be different sample frequencies) can be shown 
clearly. Also hierarchies can be used in CSP diagrams. This can make the overall 
drawings more clear. 

• State charts are not necessary to express concurrent behaviour and choices. So 
combinatorial explosion of number of states is not an issue here. 

 
Further research will deal with the following aspects: 
• Code generation itself from the CSP diagrams to CT code. In most cases the target 

will be either CTC++ or CTC (i.e. C++ code or C code), because of availability of 
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compilers for the target platform. 
• Prototyping of a graphical tool to demonstrate the CSP diagrams, and support 

checks. 
• Performance analysis of resulting code, which is of course highly dependent on the 

target, the quality of the target compiler and the suitability of the target to run the 
CT library. 

Indeed, the prize of this elegant embedded software development design methodology, 
namely performance and memory footprint, has as yet not been investigated. Especially, 
in the more high-volume embedded systems, performance and memory sizes are 
essential design criteria, since material costs are a crucial factor. 
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