
Communicating Process Architectures 2002 321
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

A Communicating Threads –CT– case
study: JIWY∗)

Dusko JOVANOVIC, Gerald H. HILDERINK, Jan F. BROENINK
Twente Embedded Systems Initiative,

Cornelis J. Drebbel Institute for Mechatronics and Control Laboratory,
Dept. of Electrical Engineering, University of Twente,

P.O.Box 217, 7500 AE, Enschede, the Netherlands
d.jovanovic@utwente.nl

Abstract. This JIWY demonstrator is constructed in the context of the development
of a design framework and software tools to efficiently support mechatronic
engineers in developing sophisticated control computer code out of a set control
laws.
We use the CSP-based Communicating Threads –CT– library as the software com-
munication layer, our hard real-time ‘virtual machine’.
JIWY (just a soundful name) is a little tabletop robot with 2 rotational degrees of
freedom and a camera as its ‘end effector’, controlled via a joystick on a PC running
Real-Time Linux.
The control laws are stepwise refined to obtain the control software, enhancing the
control-law block diagrams to CSP-diagrams, showing the communication and
composition properties of the control software.
Enhancements like adding homing and end stops for safety can easily be added in
the CSP-diagrams, without adapting the control law design. This shows the
orthogonality of the design steps. State charts were not needed to express all
functionality, which leaves the design simple.
The prize of this elegance, namely performance, has as yet not been investigated.

1. Introduction

We strive to allow mechatronic engineers to design control-computer code, despite lack in
skills of software engineering. Main motivation is that nowadays it is impossible to separate
control engineering from software engineering: the only efficient way to implement
controllers is to transform them into computer code for the chosen computer target (see also
the trends mentioned in [1]). In control engineering practice, used software development
techniques suffer from insufficiencies in knowledge in disciplines of software modelling,
familiarity with concurrency in software, ways of allowing for reusability, software testing
and so forth. The resulting code functions correctly in first instance, but is generally not
reliable, efficient nor extendable/updateable.

The control-computer systems are Embedded Control System (ECS), because the control
computer code is specific to the control system, for which the dynamic behaviour of the
plant (i.e. the ‘machine’-part of the embedded system to be controlled) is essential for the
functionality. Examples are robots, production machines like wafer steppers, motor

∗ This research is supported by PROGRESS, the embedded system research program of the Dutch organization
for Scientific Research, NWO, the Dutch Ministry of Economic Affairs and the Technology Foundation STW.

322 D. Jovanovic et al. / A CT case study: JIWY

management and traction control of automobiles. Furthermore, we separate the I/O
interface boards from the computing system, because they are often dedicated to the ECS,
although not necessary specifically developed. The software part consists of a layered
structure of controllers and the user interface. The computing system is considered
heterogeneous and distributed, because modern control systems are often composed of
existing subsystems, having their own (low level) control software and processors [2].

The other class of ES is Embedded Data Systems, where the relevant behaviour of the
plant can completely be described by waiting times between subsequent commands from
the software. This class of ES is usually soft real-time which means that missing deadlines
decrease the quality of service, but are not fatal.

Our current research deals with the development of a design framework and a supporting
software tool to efficiently support the mechatronic engineer in developing sophisticated
control computer code out of a set of control laws.

Normally, mechatronic design engineers start with modelling the dynamic behaviour of
the plant, and derive a control law for it. This control law is then gradually transformed via
Stepwise Refinement towards efficient concurrent algorithms (i.e. the control computer
code). During this process, simulation is often used as a means of verification. In the end
phase, realization can also be done stepwise, namely by letting parts of the total system stay
simulated, and letting other parts be in the final realization [3]. Especially the step from
control law design to implementation is recognized as critical and not methodologically
covered by existing approaches and tools.

For the modelling control law design parts including their simulations, existing tools [4,
5] suffice. Often, graphical modelling languages, e.g. block diagrams, are used in this
design process for structuring the complexity of the control structures.

In this paper we show by means of the JIWY case, that the software development step
can conceptually be covered using the CSP parallel processing paradigm. Since tools for
modelling and control law design nowadays are graphically oriented, we use for the
software development part the CSP-diagrams [6] instead of CSP expressions. CSP
diagrams are basically block diagrams of communicating processes. The Stepwise
Refinement process thus transforms the control law into an execution model that is ready to
be translated into control software, whereby one can easily specify concurrency with CSP
in a block diagram.

As the process communication abstraction layer, we use the Communicating Threads –
CT– library [7].

First, the CT library and the CSP-diagrams are briefly introduced in section 2. Then, the
robotic case is described in section 3. Our design solution is presented in section 4.

2. The target software layer

2.1 Communicating Threads –CT– library

The Communicating Threads –CT– library is an implementation of the CSP channel
concept in Java, C++ and C [7-9]. Besides the communication facilities, also the process
scheduling is taken care of.

The CT–library’s philosophy is to puts all embedded software responsibilities in
designer-defined processes, which are supported by the OS-independent real-time kernel –
a substantial internal part of the CT library. This means that process orientation and
modelling the system that way are included in the very early phases of reasoning about the
problem at hand. This also means independence – thus portability – of any real-time OS to
the extent that an OS is not even necessary any more. This is indeed the case in designs

 D. Jovanovic et al. / A CT case study: JIWY 323

where small and cheap processing units are involved: DSPs, MCUs, FPGAs or in all
(typical) cases when it is intended that the design fits into hardware resources as small
(cheap) as possible.

The CT–library delivers fundamental elements for creating building blocks to implement
a communication framework using channels. Besides the prototype in Java (CTJ), which
serves as a design pattern, implementations in C++ (CTCPP) and C (CTC) were developed.

For the data communications, channels are used exclusively. Channels are simply
synchronisation primitives that provide communication between concurrent and/or
distributive processes. Processes may only communicate through the channels using read
and write methods, as shown in Figure 1, using the CSP waiting rendezvous principle.
Synchronisation, scheduling and the actual data transfer are encapsulated in the channel.
Channels are fully synchronised and basically unbuffered. However, buffers may be added
to compensate communication latencies between the hard real-time parts and the soft real-
time parts.

write read
channel Process A Process B

dataflow

link
driver

write read

hardware
dependent

channel

link
driver

hardware
independent

Figure 1 Channel implementation for multiprocessor systems [7]

Using channels encapsulates thread programming. Scheduling is no longer a part of an
OS but is hidden by the channels, and thus has become part of the application instead [7].
Thus, the application schedules itself to guarantee real-time behaviour independent of the
underlying real-time OS; it is the application that must be real-time in the first place.

When a channel communication occurs between processes on different processors,
channel and link-driver objects are present on both processors: the link drivers implement
the specific communication protocol used, like CAN, TCP, PCI, USB, RS232 etc. Hence,
the distributiveness of the design is also addressed, in a way that can be made rather
transparent to the designer.

The CT library is available from our JavaPP website [10] and is used by several
universities and companies. Furthermore, we use it at our 4th year class on Real-Time
Software Development.

2.2 CSP-diagrams

As presented in [6], CSP-diagrams show processes and their interrelationships graphically.
The execution model of the resulting network of processes is shown: It enables to specify
real-time and parallel software architectures. CSP-diagrams are an addition to the block
diagrams used in control engineering, which show the data-flow between the different
subparts of the control system. Block diagrams can thus be seen as data-flow diagrams.

The extra information we need to add to a data-flow diagram is how the blocks are
grouped into processes and what the concurrency of these processes is. This information is
put into the newly applied edges between the vertices that remain the data-flow processes.
The most essential interesting enhancements are the compositional relationships, showing
whether processes run in parallel or in sequence.

324 D. Jovanovic et al. / A CT case study: JIWY

3. JIWY: the robotic case study

JIWY is a mechatronic set up for orienting some device, a camera in this case. The
acronym JIWY is just a soundful name, and does not mean anything. The construction
contains two revolute joints that allow the camera to rotate on a horizontal axis and a
vertical axis. A user can control the set up and view the pictures from remote via a network
connection. Currently, we use a joystick coupled to the JIWY control computer (Figure 2).

Figure 2 The JIWY set up (20-SIM model)

The operating vertical angle is 165o and the operating horizontal angle is 120o. The
maximum swing is limited by end stops. The maximum angles between the end stops are
respectively 300o and 150o. These end stops prevents full swings so that the wires cannot be
twisted or damaged. Each joint is equipped with one DC motor and one incremental
encoder. The wires between these devices and the I/O-interface are bundled in one cable
together with a watchdog signal lead. The watchdog signal is a clock signal that is used for
detecting whether the cable is damaged or disconnected. Thus, each joint is separately
controlled and independently connected by a separate cable. Currently, the end switches
and watchdog signals are not yet implemented.

The amplifiers for steering the motors, electronics for the sensors, and a power supply to
supply JIWY with power are placed in a separate box. The controlling PC is a 200MHz
Pentium based standard personal computer, running under RT Linux operating system,
version 3.1 of FSMlabs with Linux Slackware 8.0 [11]. The I/O card is the National
Instruments PCI 6024E with 2 D/A, 16 A/D 12-bits converters (200 Ks/s), 8 digital
input/output lines and 3 real-time clocks. See Figure 3 for the architecture of JIWY. This
leaves space for additional functionality to further explore and expand the control software.

We expect that this JIWY set up enables a sufficient complex case study for
demonstrating multi-loop servo control problems. Besides the controller, a variety of
safeguarding can be built-in, like swing limiting via end switches, steering limiting, and
cable conditioning monitoring using the watchdog signals.

Using the extensions mentioned above, JIWY is protected by redundant safety-guards.
Each safeguard is independent developed from each other as concurrent processes. This
way, safeguarding becomes fault-tolerant; thus, if one guard fails then another pops in.
Concurrency allows us to build fault-tolerance software that is reliable, robust, and that is
scalable with complexity.

X axis
command

Y axis
command

Y axis steering

X axis steering

X axis feedback

Y axis feedback

RTLinuxWorkstation

Joystick

Interface box

JIWY_robot

 D. Jovanovic et al. / A CT case study: JIWY 325

PC IO card Amplifiers Motors

Encoders

End
Switches

Encoder
Interface

Camera

Joy Stick

Figure 3 Control Architecture of JIWY

From a software design point of view it is interesting to see what impact each safeguard
has on the entire software. We try to eliminate anomalies as much as possible so that we
end up with a clean design that is easily maintainable, extendable and reusable.

4. The software design solution

By notions of StepWise Refinement (SWR) of the model of solution, the design starts with
a coarse sketch of the system in minds. To that end, the modelling tool 20-SIM [4] is used.

4.1 20-SIM control system model

The design problem addressed here is engineering of embedded computer system based on
two closed control loops. The engineer starts with a sketch of overall system (Figure 2), and
gradually refines the model of solution in the course of understanding the problem in hand.
A typical control system consists of three main subsystems: appliance (industrial process,
plant, set up) to be controlled, software which provides all control functionalities and
specific I/O.

20-SIM can be used very well for early phases of SWR, because it allows organizing the
model in the abstractions of high levels building blocks; the building blocks are partitioned
in hierarchies of simpler and simpler building blocks, which can be easily accompanied
with basic default dynamic behaviour. In that manner, simulations can be used as
verification means in very early phases of the system design. Figure 4 shows the
specification of one level deeper in the hierarchy than Figure 2. Both are simulateable. Note
that all the block-diagram blocks are basic building blocks available in 20-SIM.

It turned out that the signals from the analogue joystick were polluted with noise that
likely will make JIWY slightly shake. Analogue filters did not have the desired effect of
eliminating the noise and closer analysis showed that the noise seemed to be digital spikes
generated by the counter logics of the analogue joystick input. In order to eliminate the
digital noise we had to add a digital filter for each of the axis. The digital filters are
functional blocks that were placed before the controller blocks. The digital filters provided
the desired effect.

Next steps of refinement will be focused on the “Control” component only, which
means: refinement of the control software.

326 D. Jovanovic et al. / A CT case study: JIWY

JIWY_robotControl

Joystick

IO

x_signal

y_signal

Control_X

Control_Y

Filter_X

Filter_Y

A
D

DA1

A
D

AD1

A
D

DA2

A
D

AD2

K

power_amp_phi

K

Gain_Encoder_X

K

power_amp_theta

K

Gain_Encoder_Y

Motor_phi

Motor_theta

Figure 4 Simulateable JIWY system

4.2 CSP diagrams of control software components

CSP diagrams capture composition and communication aspects of the concurrent
software components designed due to CSP principles. In perspective, CSP diagrams will be
recognized as an extension to software modelling language UML.

As in UML, software design is approached via multiple views, captured by families of
diagrams. CSP diagrams encompass two orthogonal kinds of views/graphs: communication
graphs and composition graphs, as explained in [6].

For the starting point in reasoning about design of control software, Figure 5 can be
arranged in a slightly different way, which reveals the possibilities of parallel processing:

JIWY_robot
Control IOJoystick

x_signal

y_signal

Control_X

Control_Y

Filter_X

Filter_Y

A
D

DA1

A
D

AD1

A
D

DA2

A
D

AD2

K

power_amp_phi

K

Gain_Encoder_X

K

power_amp_theta

K

Gain_Encoder_Y

Motor_phi

Motor_theta

Figure 5 Simulateable JIWY prepared for parallel processing

The code generated by the current version of 20-SIM is placed in one single loop, such
that parallelism is not possible. It is a sequential implementation, which is optimised for
simulation. By using the CSP diagrams, we can specify exactly what we mean and how the
execution framework should fulfil our requirements. CSP allows us to overcome the
limitations of the previous mentioned simulator framework. In short, by designing CSP
diagrams we will have complete control over the execution framework of the controller
software and we can extent the execution model with additional processes that cannot (yet)

 D. Jovanovic et al. / A CT case study: JIWY 327

be dealt with by 20-SIM.
The communication diagram of the controller is given in Figure 6, and the composition

diagram is given in Figure 7, showing that all processes run in parallel. The processes in
both diagrams are the same. Furthermore, layout of these processes is also kept the same, to
optimally show the relation between the two diagrams.

 Figure 6 Communication graph of the controller

Figure 7 Composition graph of the controller

The µ-processes in Figure 7 indicate that the process at the other end of the relationship,
to which it is connected, will be executed in an infinite loop. Via the parenthesis symbols
‘o’ and their indices, it is indicated that the upper two processes will be executed
independently from the lower two processes. This way, the decoupling of the two axes is
indicated (See [6] for explanation of this syntax).

The scheduling of the processes will be determined by the data-flow that is depicted by
the communication diagram. The channels between the concurrent processes perform
scheduling and synchronized data-transfers between the processes. Thus, the reactivity and
responsiveness is determined by the network of communicating processes.

The sampling rate is set for the input-channels and output-channels and the depending
processes automatically adapt to that rate. This makes it easy to add multiple sampling rates
with or without multiplication to the model. The input-channels and output-channels are
concerned with interrupt handling, timer control, and other hardware issues. As a
consequence, the processes become hardware independent and highly portable. This is
conform to Figure 1.

4.3 Enhancing the controller
In certain systems it could be desired to stop the controller when a stop-button is

pressed. For example, how can we update the model so that we can stop a controller when
we press a joystick button? When we press a joystick button we should be able to terminate
a controller loop. The model as depicted in Figure 8 specifies this feature. We added for
each loop a choice operator ‘ð’ that executes the control loop until a joystick button to be
pressed. When a button is pressed a corresponding Boolean variable is set to true so that the
condition of µ-process becomes false and the µ-process terminates. Furthermore, the
indexes of the parenthesis have been incremented to correct the compositions of processes
and relationships.

DigitalFilterX

DigitalFilterY

ControllerHortizontal

ControllerVertical

||

||

||

µ
→

µ

→

2

2

3
... ←

3
... →

DigitalFilterX

DigitalFilterY

ControllerHortizontal

ControllerVertical

NoisyXaxis

NoisyYaxis

MotorHorizontal

MotorVertical

AngleHorizontal

AngleVertical

Xaxis

Yaxis

328 D. Jovanovic et al. / A CT case study: JIWY

The ?-process is a primitive reader process. The reader process is conditionally related to
the choice operator. The reader will read from the channel buttonchan1 when
buttonchan1 is ready (i.e. a writer writes to the channel) and condition is true (i.e.
[true]); otherwise the reader will not be selected. If both the channel is ready and the
expression is true then the choice operator may select the reader. The reader will
immediately read channel buttonchan1. Also Boolean stoph will be set to true. This is
similar for buttonchan2.

Figure 8 Stop button added

After a joystick button is pressed some process should take care of the stopped joint. For
example, a homing process could be a last action that moves the join to its initial position.
The processes HomingHorizontal and HomingVertical can easily be added in the
communication diagram and composition diagram (Figure 9 and Figure 10).

Figure 9 Communication diagram with Stop buttons and Homing

DigitalFilterX

DigitalFilterY

ControllerHortizontal

ControllerVertical

NoisyXaxis

NoisyYaxis

MotorHorizontal

MotorVertical

AngleHorizontal

AngleVertical

Xaxis

Yaxis

HomingHortizontal

HomingVertical

buttonchan1

buttonchan2

ExceptionVertical

ExceptionHorizontal

?

?

DigitalFilterX

DigitalFilterY

ControllerHortizontal

ControllerVertical

||

||

||

µ

→

µ

→

?

?

ð
ð

2

2

3

3

skip [!stoph]

buttonchan1 [true] stoph = true

skip [!stopv]

buttonchan2 [true] stopv = true

[!stoph]

[!stopv]

4

4

boolean stoph, stopv
stoph = false
stopv = false

...

... ←

→

 D. Jovanovic et al. / A CT case study: JIWY 329

Figure 10 Composition diagram with Stop buttons and Homing

In Figure 10 two exception-handling processes ExceptionVertical and

ExceptionHorizontal have been added. The exception operator ‘ ∆
ur

’ deals with
exceptions in the system. Exception handling could take care of many things such as
sending the user a message, retying to establish connection, or eventually terminating the
loop. Process ExceptionHorizontal catches exception caused in
DigitalFilterX, in ControllerHorizontal, or in reading the joystick button.
Process ExceptionHorizontal does not cover process HomingHorizontal. A
source of exception could for example be division-by-zero or a failure in an external
channel, like a DA-converter stopped converting data or the cable of the joystick has been
disconnected. This is similar for ExceptionVertical.

5. Conclusion

In the work described above, we met the following advantages:
• The CSP diagram extensions only concern the edges of the graphs, and can as such

be done without necessity to change the vertices (i.e. processes / submodels). This
allows for easy switching between the different graphical formalisms. Automation
can therefore be straightforward.

• The refinements per step are rather small. This implies that the SWR process can be
performed really stepwise.

• Separate control loops (having may be different sample frequencies) can be shown
clearly. Also hierarchies can be used in CSP diagrams. This can make the overall
drawings more clear.

• State charts are not necessary to express concurrent behaviour and choices. So
combinatorial explosion of number of states is not an issue here.

Further research will deal with the following aspects:
• Code generation itself from the CSP diagrams to CT code. In most cases the target

will be either CTC++ or CTC (i.e. C++ code or C code), because of availability of

DigitalFilterX

DigitalFilterY

ControllerHortizontal

ControllerVertical

||

||

||

µ

→

µ

→

?

?

ð
ð

2

2

4

4

skip [!stoph]

buttonchan1 [true] stoph = true

skip [!stopv]

buttonchan2 [true] stopv = true

[!stoph]

[!stopv]

5

5

boolean stoph, stopv
stoph = false
stopv = false

...

... ←

HomingHortizontal

HomingVertical

↓

↓

ExceptionVertical

ExceptionHorizontal

>↓

>↓
2

2

330 D. Jovanovic et al. / A CT case study: JIWY

compilers for the target platform.
• Prototyping of a graphical tool to demonstrate the CSP diagrams, and support

checks.
• Performance analysis of resulting code, which is of course highly dependent on the

target, the quality of the target compiler and the suitability of the target to run the
CT library.

Indeed, the prize of this elegant embedded software development design methodology,
namely performance and memory footprint, has as yet not been investigated. Especially,
in the more high-volume embedded systems, performance and memory sizes are
essential design criteria, since material costs are a crucial factor.

References
[1] L. D. J. Eggermond, Embedded Systems Roadmap 2002: STW Technology Foundation, 2002.
[2] H. Kopetz, Real-Time Systems, Design principles for Distributed Embedded Applications. Boston:

Kluwer Academic Publishers, 1997.
[3] J. F. Broenink and G. H. Hilderink, “A structured approach to embedded control systems

implementation,” presented at 2001 IEEE International Conference on Control Applications, México
City, México, 2001.

[4] -, “20-SIM” http://www.20sim.com: Controllab Products, 2002.
[5] -, “Matlab, Simulink” http://www.mathworks.com: Mathworks, 2002.
[6] G. H. Hilderink, “A graphical Specification Language for Modelling Concurrency based on CSP,”

presented at Communicating Process Architectures 2002, Reading UK, 2002.
[7] G. H. Hilderink, A. W. P. Bakkers, and J. F. Broenink, “A distributed Real-Time Java system based

on CSP,” presented at Proc. Third IEEE Int. Symp. On Object Oriented Real-Time Distributed
Computing ISORC'2000, Newport Beach, CA, USA, 2000.

[8] G. H. Hilderink, J. F. Broenink, and A. W. P. Bakkers, “Communicating threads for Java,” presented
at Proc. 22nd World Occam and Transputer User Group Technical Meeting, Keele, UK, 1999.

[9] G. H. Hilderink, “Communicating Java Threads Reference Manual,” presented at Proc. WoTUG-20
on Parallel programming and Java, Enschede, Netherlands, 1997.

[10] G. H. Hilderink, “JavaPP project at UT: http://www.ce.utwente.nl/JavaPP”
http://www.ce.utwente.nl/JavaPP, 2002.

[11] -, “FSMlabs” http://fsmlabs.com, 2002.

