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Abstract

In this paper, we consider graph models which represent the
communication in wireless ad-hoc networks. In such networks,
each node equipped with a radio has a certain transmission
range, and all surrounding nodes in this range can receive
a transmission sent. In ideal settings, this transmission range
creates a circular disk around each node, so that disk intersec-
tion graphs are common models. We review some properties
of these disk graphs and introduce more realistic and sophis-
ticated geometric graphs to model wireless communication.

These models are explored and exploited to obtain approx-
imability results for two important problems: maximum in-
dependent sets and minimum dominating sets. Although these
more realistic models have less structure , the same complexity
status as for disk graphs can be achieved. Furthermore, we
present simple, constant factor approximation algorithms for
the problems that run locally in each node, and that do not
rely on positional information, making them independent of
localization.

1. INTRODUCTION

A wireless, ad-hoc network is created by the wireless com-
munication links between a collection of radio transceivers.
The characteristics coming from this setting give the resulting
communication graph certain structures. In this paper, we look
at these structures and present geometrically inspired graphs
that model the resulting network.

The network we look at consists of a possibly large set of
wireless nodes that are spread out in a certain area. This setting
closely reflects wireless sensor networks (WSNs), whose pur-
pose is physical environment monitoring, and providing this
information to the user (application). Each node is equipped
with one or more sensors, whose readings are transported via
intermediate nodes towards a data sink. In WSNs, there are
additional challenges with respect to the wireless communi-
cations due to the lack or shortage of resources, especially
energy.

The graph models we present are geometric intersection and
containment graphs of objects that represent the area where a
transmission of a certain node can be received by others. In
the most basic (and ideal) case, this area is a disk centered at
the node’s position. Objects, fading, reflections etc. influence
this area. Thus, assuming circular areas may not reflect the
reality of wireless communication close enough. We therefore

extend these disk graphs towards more general objects. So-
called Coverage Area Graphs need no specific shape, only
a minimum volume of the area where communication is
possible.

In the context of efficient wireless networking, certain
subgraphs have a prominent role for several communication
strategies. In this paper, we focus on independent and dom-
inating sets. A subset of the nodes is called independent if
no two nodes from this set are able to communicate with one
another directly. A subset is called dominating if all nodes of
the network are in reach of at least one node of this subset.
We are interested in the problem of finding independent sets of
maximum cardinality, and dominating sets of minimum size.

The graph models allow for strong results on the perfor-
mance of algorithms solving the above problems. They admit a
(centralized) polynomial-time approximation schemes (PTAS)
with a (1+ε) performance ratio. However, especially in large-
scale, low-resource wireless networks, like WSNs, the lack of
a fixed networking infrastructure calls for decentralized, or
localized, distributed algorithms. We present constant factor
approximations by a locally executed algorithm for the prob-
lems.

Localization plays an important role in these networks.
However, for example after the initial employment of the
sensor nodes, positional information may not (yet) be available
at all the nodes. Nevertheless, some structures need to be set
up and maintained during all phases of a network’s lifetime to
ensure efficient operation. Reliable localization is a non-trivial
task [24].

For the most basic model, where all nodes have the same
circular transmission range, the problem of computing a feasi-
ble location for each of the nodes is an NP-hard problem [4],
similar results are known for other graph models [15]. So,
on a practical level, algorithms that work without relying on
positional information are preferable, and we therefore put a
focus on algorithms creating independent and dominating sets
which do not rely on localization algorithms.

The remainder of this paper is organized as follows. In
the next section, we introduce the maximum independent
set problem and the minimum dominating set problem in
more detail and give some applications where these problems
are used for efficient network operations. In Section 3, we
propose four geometrically inspired graph models for wireless
communication. Then, in Section 4, we present strategies to
solve the considered optimization problems and explore their



performance with respect to the wireless graph models. The
paper concludes with a short summary of the results obtained.

2. PROBLEMS AND APPLICATIONS

There is a great number of basic structures and resulting
optimization problems in graph theory that are important when
dealing with efficient wireless communication strategies. Two
of the most prominent structures are independent and domi-
nating sets, which we introduce next, and focus on throughout
the remainder of this paper. In this section, we then continue
to give a short overview of some of the applications where
these structures are a vital part.

Generally speaking, communication in networks is modeled
by a directed graph G = (V, A). In our case, the set V
represents the nodes, each equipped with a radio for wireless
communication. The edges then represent the possible recipi-
ents of messages, i.e. there is an edge (u, v) ∈ A if and only if
a transmission from node u ∈ V can be received by a neighbor
v ∈ V . We denote by N(v) ⊂ V the set of all neighbors of
a node v ∈ V . By nature of the wireless medium, a message
broadcast by a node can be received by all neighbors.

The problems we are considering involve the creation of
subsets of the nodes with certain properties:

• A subset I ⊂ V is called independent if no two nodes in
I are connected by an edge in G, and

• D ⊂ V is a dominating set if every node is either
contained in D or there exists an edge connecting a node
from D to this node.

Nodes in an independent set do not interfere each other during
simultaneous transmissions, and nodes in a dominating set can
be used to efficiently reach the entire network by broadcasts
from only these nodes. If, additionally, a dominating set
consists of only one connected component, it is referred to
as connected dominating set.

An independent set is called maximal if no other node can
be added to it without violating the independence property.
It is easy to see that any maximal independent set is also
a dominating set in the graph. In fact, any non-dominated
node could be added to the independent set while keeping
the property.

We are now interested in the problems of finding an in-
dependent set of large cardinality, the Maximum Independent
Set (MIS) problem, and finding a dominating set of small size,
the Minimum Dominating Set (MDS) problem.

Both problems are known to be NP-hard, and for a general
graph, there are known lower bounds on the best possible
approximation (unless P=NP). A maximum independent set
is not approximable within a factor of |V |1/2−ε for any ε > 0
[10], and there is an O(|V |/(log |V |)2)-approximation given
in [3]. A minimum dominating set cannot be approximated
within c log |V |, for c > 0 [22], but there is an algorithm
with a performance guarantee of 1+ log |V | [13]. This means
that, especially in large networks, an efficient approximation
is almost not possible.

Besides the introduced basic versions of the considered
problems, there also exist weighted versions: each node is

given a weight, and the goal is to find a structure of mini-
mum/maximum weight, which is computed by summing up
the weights of the nodes in the respective subsets. A weight
may correspond to a node’s capability to perform additional
duties. It can be determined taking into consideration aspects
like the residual energy of a node, its memory and processing
capabilities, the number of neighbors, or mobility indicators.
Usually, these weights are computed locally in each node, and
may depend on the application the structure is used for.

The MIS and MDS problems are used in a variety of
different applications, especially at the lower levels of the
network protocol stack. Some of the applications directly
dealing with the topology of the wireless, ad-hoc network are
given next.

A. Clustering

Cluster-based control structures allow for more efficient use of
resources. A hierarchical view of the network created through
clustering decreases the complexity of the underlying network,
especially in sensor networks which are expected to consist of
large amounts of individual nodes. Also, a clustered structure
can make a highly mobile topology appear more static and
thus alleviate the effects of mobility.

On a topology level, clustering is usually done by grouping
nodes inside a certain area, which are then controlled by
a designated node. For the lower layers of the networking
protocol stack, clusters are created based on proximity, i.e.
based on nodes that are in each other’s radio range.

Many proposed clustering schemes work by identifying
control nodes that form a (maximal) independent set in the
network, and which then perform certain specific tasks like
allocation of bandwidth and channel [2], [5], [9].

B. Flooding and Broadcasting

Many on-demand routing algorithms designed for ad-hoc net-
works rely on efficient flooding strategies, including DSR [14]
and AODV [21]. Basic, network-wide flooding causes the so-
called broadcast storm problem [18], resulting in excessive
contention and collisions, i.e. a large protocol overhead. Using
a (connected) dominating set of small size as a virtual back-
bone to propagate flooding messages, overcomes this problem
by greatly reducing the number of messages [1], [7].

A virtual backbone also supports efficient broad- and mul-
ticast traffic, e.g. the propagation of link quality information
in QoS-routing [23].

C. Sleeping Patterns

Wireless sensor networks are expected to be in operation for
long periods of time. Running on batteries this is a challenging
task. Sensor networks, for example in event detection, have
long periods of inactivity. These networks are also expected to
be rather dense so that the given redundancy can be exploited
and allow several nodes to turn off their radio and other
parts to conserve energy. However, for the network to remain
operational, connectivity needs to be maintained in such a
way that if a node with inactive radio senses something of
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Fig. 1: Example of different geometric intersection graphs.

importance, it can become active and successfully route this
information to a central user.

An example of a connected dominating set based solution
is given in [12], where the nodes locally decide on their
participation in the network.

3. GRAPH MODELS FOR WIRELESS COMMUNICATION

As seen in the previous section, assuming the communication
graph G = (V, A) to be a general graph does not allow for
efficient algorithms to create independent or dominating sets,
especially in large-scale networks. However, in general, the
nature of wireless transmissions does not lead to an arbitrary
graph, but to a graph with some structure. In this section, we
therefore propose geometrically inspired models for wireless
communication.

For these models, we may suppose that the wireless nodes
are placed in the 2-dimensional euclidean plane, i.e. for the
nodes, there exists a mapping f : V → R

2 which gives each
node v ∈ V its location f(v) ∈ R

2 in the plane. Furthermore,
each node v ∈ V has a certain area which is covered by
the node’s radio. This area is represented by Av ⊂ R

2. As a
consequence another node u ∈ V can receive a transmission
sent by v if f(u) ∈ Av holds.

The localization function f : V → R
2, together with the

coverage area Av of each node v ∈ V , is called a geometric
representation of V . Communication graphs are then defined
using the geometric objects that present the coverage area of
a node’s radio.

There are two ways of defining the communication graph,
i.e. the set set of edges of the graph. The first way is the

containment model, which is characterized by

(u, v) ∈ A ⇐⇒ f(u) ∈ Av.

This model gives the possible direct communication between
the nodes, it is thus a directed communication graph.

If we only look at the coverage areas of the nodes, we can
also define the intersection model as follows:

(u, v) ∈ A ⇐⇒ Au ∩ Av �= ∅.

With this symmetric model, interference during simultaneous
transmissions can be explored. If two nodes transmit at the
same time, a third node in the nonempty intersection receives
both transmissions and may thus not be able to reconstruct the
messages (hidden terminal problem).

We now define a Coverage Area Graph (CAG) as follows.
Definition 1: Consider a set V of nodes, and for each v ∈ V

a coverage area Av . Then, the resulting geometric intersection
(containment) graph is called an intersection (containment)
Coverage Area Graph (CAG).−

The intersection graph is undirected. If we consider each
undirected edge to be a two-way edge, we can state the
following relationship between the two models:

Lemma 1: Let Av ⊂ R
2, v ∈ V, be a collection of geomet-

ric objects. Furthermore, let G = (V, A) and G′ = (V, A′)
be the resulting geometric intersection and containment graph
respectively. Then G′ is completely contained in G.−

Proof: From the definitions, clearly A′ ⊂ A holds.
We now look at specially structured coverage areas Av,

which then result in specially structured geometric graphs for
the wireless communication.



In ideal settings, e.g. open field without obstacles, the
transmission area is a circle centered around the position of the
node. The most basic model used for wireless communication
is the Unit Disk Graph (UDG). Suppose that all nodes send
with the same signal strength and thus have the same circular
coverage area with radius c > 0. The set of edges then satisfies
the following simple characterization:

(u, v) ∈ A ⇐⇒ ‖f(u) − f(v)‖ ≤ c.

Scaling the model, we may assume the transmission range to
be of unit length. Note that for the communication graph of
unit disks, containment and intersection graph are basically
the same, and all communication links are bidirectional.

When the nodes are able to adjust the transmission power,
different circular coverage areas emerge. Suppose that the
maximum transmission range of a node is given by C >
0. Furthermore, in order to achieve any communication, a
minimum signal strength is needed, which we assume to create
a coverage area of radius c > 0. This yields a set of disks of
different radii, whose resulting graph is referred to as Bounded
Disk Graph (BDG). In this case, and the following models,
intersection and containment model result in different graphs.
For a BDG, we define dBDG := c/C to be a parameter which
gives the ratio between smallest and largest disks. Also, this
model may be scaled such that C = 1.

While the above two graph models are widely used to obtain
strong theoretic results for graph algorithms, one might argue
that they are not that realistic since they assume too ideal
settings for radio propagation. Next, we go on to present more
realistic geometric models for wireless communication graphs.

Refining the idea behind Bounded Disk Graphs by no
longer limiting the reasons of different radii to signal power
adjustment, but also to environmental reasons like objects,
we can define a Quasi Disk Graph (QDG,[16]). In such a
graph, there are two circles of radius c > 0 and C > c
which are placed around each node u ∈ V with the following
characteristics for communication: Any node v ∈ V with
‖f(u) − f(v)‖ ≤ c receives transmissions sent by u, and a
node v̄ ∈ V with ‖f(u) − f(v̄)‖ ≥ C cannot receive such a
transmission from u. In the area between this minimum and
maximum range, c and C, the existence of a communication
edge is not specified. The coverage area, within these limits,
may thus take any shape. Again, let dQDG := c/C denote
the parameter of a QDG giving information about the relation
between the smallest and largest possible transmission range.

For some nodes, e.g. mounted on concrete walls, it may
not be possible to give a positive radius on the transmission
range where there is coverage. Completely leaving the idea
of transmission radii, we come back to the CAG. In contrast
to the previous three models, we no longer demand the
transmission area to be centered around (or even intersecting
with) the actual location of a node. For the CAG model, let
C > 0 denote the minimum radius around f(v), such that
the disk with this radius covers the area Av . In other words,
any node v̄ ∈ V with ‖f(v) − f(v̄)‖ ≥ C cannot receive a
transmission from v for all nodes v ∈ V . Further, we define

a > 0 to be the minimum area of all transmission areas, i.e.
a := minv∈V {vol(Av)}. Then, a parameter d2

CAG := C2/a
gives the relation between maximum transmission area and
minimum coverage area. Note that in this case, we compare
the areas of coverage. Therefore, d can be seen as an indicator
of the respective ranges, but especially

√
a needs not to give

the actual value for the smallest transmission range like in the
previous three models.

Note that the latter two models, QDG and CAG, not only al-
low for modeling the influence of objects on the transmission,
but also for fading and resulting unreliable transmissions. All
that is needed to apply these models is an area where there is
certain reception (inside area) and another area where there is
no reception (outside area). Unreliable transmissions, fading
etc. may occur in the area that lies in between these two, as
radio propagation details in this area need not to be specified.

A graphic overview of the different geometric communica-
tion graph models is presented in Figure 1, effects of fading
have been neglected in (c) and (d).

Denote by GUDG the set of all Unit Disk Graphs, by GBDG

the set of all BDGs, etc. It is easy to see the following
relationship between the above graph models:

Lemma 2:

GUDG ⊂ GBDG ⊂ GQDG ⊂ GCAG.−
For the remainder of this paper, for all the models, we

assume the parameters d for the communication graphs to be
fixed (or bounded). For given wireless nodes, the values for d
are usually determined experimentally. Note that an extension
of the concepts and graphs to geometric spaces of higher
dimensions is straightforward.

4. ALGORITHMS AND PERFORMANCE

In this section, we present simple algorithms to solve both
the MIS and MDS problems on communication graphs. In
a general, undirected graph, algorithmic performance bounds
depend on the size of the graph. In contrast to this, the wireless
transmission graphs presented in Section 3 allow for size-
independent, and thus better bounds.

In this section, we do not differentiate between containment
and intersection graph model, the obtained results hold for
both models. Since the problems of Section 2 are defined
for undirected graphs, we assume all arcs resulting from the
geometric models to be undirected as well. This assumption
follows the applications, as bidirectionality is usually assumed
for wireless communications. It can be achieved by eliminating
unidirectional edges.

Both problems, MIS and MDS, admit a polynomial-time
approximation scheme (PTAS) on all the geometric graphs
presented earlier [19], [20]. For any ε > 0, a (1 + ε)-
approximation can be computed in polynomial time, and the
respective algorithms do not need a geometric representation
for this.

In the context of ad-hoc, wireless networks, a centrally
executed algorithm may not be feasible, and topology changes
may force many recalculations. In the following we therefore



INPUT: Graph G = (V, A)
I := ∅;
WHILE V �= ∅ DO

Choose v ∈ V ;
I := I ∪ v;
V := V \ N(v);

END;

Fig. 2: Generic Greedy Algorithm.

present a simple, distributed strategy that gives a constant
factor approximation for the graph models. The performance
guarantees come from a forbidden induced subgraph property.
This property is satisfied by the graph models, and it allows
for bounding the worst-case performance of the algorithms
presented.

A graph is said to be K1,p-free if it contains no induced
subgraph that is isomorphic to a (1, p)-bipartite graph. We
state two results about K1,p-free graphs from [11] and [17].

Lemma 3: Let G = (V, A) be a K1,p-free graph. Then
• any maximal independent set is a (p− 1)-approximation

of a maximum independent set in G, and
• the cardinality of any maximal independent set is at most

p − 1 times that of a minimum dominating set.−
Probably the easiest way to create a maximal independent

set in any graph is a greedy strategy: Adding a node to the
(partial) subset and then eliminate this node and all neighbors
from the graph. This generic greedy approach is presented in
Figure 2.

It is easy to modify the centrally executed greedy algorithm
to run locally, where each node only needs to interact with its
direct neighbors. Such an algorithm is better suited for large-
scale networks, as it runs (almost) independent of the network
size. Suppose that each node has a unique weight assigned to
it, e.g. an id-number. The local version of the algorithm then
works as follows:

• all nodes start out in an undecided state,
• an undecided node with largest weight in its neighbor-

hood, which does not yet contain a master-node, declares
itself as master-node, and

• nodes that learn about a neighboring master node declare
themselves as slave-nodes.

It can be shown that this algorithm is equivalent to the
greedy strategy. Moreover, it is efficient in the sense that
for the algorithm to complete, only one fixed-size message
per node is sufficient to create the desired structure (master-
nodes). Furthermore, the local algorithm can be extended by
maintenance routines so that the structure is kept up during
topology changes due to mobility, node failures etc., e.g. [2].

For the weighted version of the MIS problem, a small
adjustment has to be made to the greedy algorithm: we always
need to add a node with largest weight in its neighborhood to
the partial subset in order to obtain the (p− 1)-approximation
guarantee [17].

Next, we show for each of the geometric graph models that
there is a bound on p, making each of the resulting graphs

Fig. 3: A UDG is K1,6-free.

K1,p-free. Thus, by Lemma 3, we know that a greedy strategy
leads to a (p−1)-approximation. Especially if p is a constant,
we obtain a constant factor approximation.

It is easy to see that a UDG is K1,6-free, as it is impossible
to arrange 6 non-touching disks that are still intersecting with
a central disk (Figure 3).

For a Bounded Disk Graph, we look at the largest disk of
radius C surrounding a node v ∈ V . Inside this disk with
area πC2, we can place no more than π(C+c)2

πc2 = O( 1
d2
BDG

)
centerpoints of disks with smallest radius c < C in such a
way that they do not intersect with each other. Thus, a BDG
is K1,p-free for p = O( 1

d2 ), and the greedy strategy yields an
O( 1

d2 )-approximation for the problems.
A similar argument as for BDGs, looking at the minimum

and maximum transmission range of nodes, gives the same
O( 1

d2
QDG

) approximation guarantee for Quasi Disk Graphs.
For Coverage Area Graphs, we again consider the number

of nodes we can place independently inside a disk of radius
C > 0. Obviously, in the extreme case, each of these nodes’
coverage areas is minimal, i.e. vol(Av) = a. However, the
coverage area may stretch up to C away from a node. We
therefore look at placing the nodes inside a disk of radius C,
where the coverage area is allowed to be as far as C away
from the node’s position. Overall, we can thus place no more
than (2C)2

a = O( 1
d2
CAG

) of the nodes.
In the unweighted case, the above results are independent

of the greedy choice of the node that will be added to the
respective subset. For the MIS problem, a more sophisticated
choice of the node may yield a better approximation guarantee.
If the graph is a UDG, always choosing the “leftmost” node
will yield a 3-approximation. Furthermore, this approach can
be adjusted to the case when no geometric representation is
available [17]. For BDGs, a maximum independent set can
be approximated within a factor of 5 by always choosing a
node with smallest remaining transmission range. This node,
together with its neighborhood, is then locally K1,6-free.

So far, we have only stated results for the general case
of the Maximum Independent and Minimum Dominating Set
problem. If a connected dominating set is required, extending
the greedy strategy to connect the dominating nodes also
yields a constant-factor approximation. This is a consequence
of the following, well-known lemma which states that any



Maximum (Weight) Independent Set
G GUDG GBDG GQDG GCAG

bound |V |1/2−ε

central O(
|V |

(log |V |)2 ) 1 + ε 1 + ε 1 + ε 1 + ε

local O(|V |) 31[52] 53[O( 1
d2 )] O( 1

d2 ) O( 1
d2 )

1 unweighted 2 weighted 3 with representation

Minimum Dominating Set
G GUDG GBDG GQDG GCAG

bound c log |V |
central 1 + log|V | 1 + ε 1 + ε 1 + ε 1 + ε

local O(|V |) 5 O( 1
d2 ) O( 1

d2 ) O( 1
d2 )

TABLE 1: PERFORMANCE GUARANTEES.

dominating set is a factor of less than 3 away from a connected
dominating set.

Lemma 4: For any dominating set D in a connected graph
G, it is (greedily) possible to find at most 2|D| − 2 nodes to
connect D.−

Summarizing, for the graph models proposed for wireless
communication graphs, Table 1 gives the performance guar-
antees of centralized and local, polynomial-time algorithms
for the MIS and MDS problem. Here, G denotes the set of
all graphs. Unless otherwise stated, the results refer to the
weighted version of the MIS, and the respective algorithms
do not assume a geometric representation given as part of the
input, i.e. work without localization.

5. CONCLUSIONS

In this paper, we review and propose geometric containment
and intersection graph models for communication in ad-
hoc, wireless networks. These range from ideal assumptions,
resulting in a Unit Disk Graph, to more realistic approaches,
resulting in Coverage Area Graphs. All these graphs allow
more efficient algorithms of optimization problems common
in many networking issues:
A simple greedy-strategy already yields a constant-factor ap-
proximation of the maximum (weight) independent set and
minimum (connected) dominating set problems. Moreover,
these algorithms can run locally and distributed in each node
in a very efficient manner. For centrally executed algorithms,
a (1 + ε)-approximation is possible.

With respect to to geometric representations, it is possible
to achieve the same approximation results without relying
on the information given by a localization algorithm, but
by connectivity information alone. Also, areas of unreliable
transmissions can easily be incorporated into the model.
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