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Abstract In the Prologue I recall, among others, the period of the Cold War
in which, thanks to Polish colleagues, scientific contacts between East
and West were maintained . After that, several aspects of the flow of
mixtures of air and water will be discussed and illustrated by examples.

Finally I will give some comments on the differences and similarities
between fundamental and applied science and scientists.
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1. Prologue

It is a great honour to be invited to deliver the Opening Lecture at
ICTAM 2004, especially now that it is here in Warsaw, a city of great
significance for Mechanics. It reminds me of the Cold War when East was
East and West was West. They could nevertheless meet here in Poland,
where W ladek Fiszdon organized once in two years a “Symposium on
Advanced Problems and Methods in Fluid Mechanics”. Participation
was on invitation and those invited travelled to Warsaw and stayed there
one night. The next day they were transported by bus to some place
found by magician W ladek where there was food and accommodation,
modest but sufficient. One could meet in this way with famous Russian
scientists as Barenblatt, Zel‘dovich, Ladyshenskaya and others. The
fluid dynamics community is greatly indebted to W ladek Fiszdon for
organizing these Symposia. Unfortunately, his health condition does
not allow him to be here today. From this place I would like to thank
him for all he did for Fluid Mechanics in this way.

The first time that I was invited to participate in such an event was in
1969 in Kazimierz (not named after my friend and colleague Kazimierz
Sobczyk who will present the Closing Lecture next Friday). George
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Batchelor was a key figure in these Symposia. He had great authority
(he was a Foreign Member of the Polish Academy of Sciences), W ladek
Fiszdon asked his advice whom to invite and he was always very relaxed
and willing to lecture on everything that he was working on. I remember
very well that he gave a lecture on the sedimentation problem on which
he was working at the time and what was to become the subject of his
celebrated paper “Sedimentation in a dilute dispersion of spheres” [1].
This concerns the velocity with which a cloud of heavy particles sedi-
mentates in a fluid. The, until that time unsolved, difficulty in this and
similar problems is that the velocity which a small particle induces in
its vicinity falls off very slowly, as the reciprocal distance from its cen-
ter. The calculation of the average sedimentation speed results, because
of this in not uniformly convergent integrals, with which J.M. Burgers
struggled already in the 1930‘s. George found a way, a renormalization,
to overcome this difficulty. His renormalization technique has found wide
application in other areas. His presentation in Kazimierz induced me to
think about the analogous problem where a cloud of bubbles rises under
buoyancy.

2. Air and Water

The flow around a bubble is, to a good approximation, a potential
flow. The velocity which one bubble induces in another falls off as (dis-
tance from centre to centre) −3. In contrast with the falling particle
inertia effects are here dominant, the Reynolds number is large. This
(distance)−3 behaviour is faster than that with the falling particle but
not fast enough to overcome difficulties with not uniformly convergent
integrals. When a bubble is accelerated, the surrounding liquid exerts
a reaction force on the bubble, which is proportional to the acceleration.
The multiplying factor has dimension of mass and is called virtual or
added mass, because in calculations it can be treated as a virtual mass
of the bubble which is itself of course almost massless. It appears that
this mass depends on the presence of nearby bubbles in a manner which
gives rise to convergence problems. Consider N bubbles in a configu-
ration CN with probability density P (CN ). When there is always one
bubble in the point r0, such a configuration is indicated with CN−1| r0

and the corresponding probability density with P (CN |r0).In the course
of the calculation one needs to know the average velocity in the centre
of a bubble in the presence of all the others, and with respect to the
volume velocity U 0 of the suspension,

〈u〉 − U0 = 1/N !

∫
{u(r

0
, CN ) − U0}P (CN |r0)dCN . (1)
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For low concentration by volume one considers, just as in the case of
dilute gases, the interaction between two particles only or, in this case,
bubbles. Then Eq. (1) becomes

〈u〉 − U0 =

∫
{u(r

0
+ r, r0) − U0}P (r0 + r|r0)d3r. (2)

The quantity in curly brackets in Eq. (2) behaves at large distance r
as r−3 and therefore the integral does not converge. The essence of
Batchelor‘s renormalisation technique starts in this case with noting that
if in Eq. (1) we take just P (CN ),that means when we consider the average
velocity in a point whether in fluid or in gas, then the result is zero,

0 = 1/N !

∫
{u(r

0
, CN ) − U0}P (CN )dCN . (3)

When reduced to the interaction of two bubbles also this integral does
not converge. The only difference with the right-hand side of Eq. (1)
is that there is in the latter always a bubble in r0 and in Eq. (3) –
sometimes. However we know the exact result Eq. (3). Now we subtract
Eq. (3) from Eq. (1). Since in the absence of long-range order in the
suspension we have at a large distance from r0

P (CN |r0) = P (CN ),

the difference of the two integrals converges when the configuration is
reduced to two bubbles and this overcomes the problem because we are
left with the calculation of the integral

∫
{u(r

0
, r0 + r) − U0}{P (r0 + r|r0) − P (r0 + r)}d3r,

which is now convergent. Although this problem could be solved, [2],
the general problem to understand the dynamics of air-water mixtures
is today far from being solved.

Particle – liquid flow can either show random configurations or fixed
configurations. With air and water many more topologies are possible.
I mentioned as a first example the bubbly suspension, a common device
in the chemical industry where it serves as a reactor column.

Some more examples are:

Niagara Falls (American and Canadian).

Air is first entrained by river water falling down and mixes with this
during its fall. The air leaves eventually together with only a little
bit of water, forming with it a spray, or mistflow. There are in fact
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Figure 1. The Niagara Falls, in the foreground the horseshoe-shaped Fall on the
Canadian side, and the American Fall in the background.
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two falls, one on the Canadian side, with the shape of a horseshoe,
and one on the American side. Although the picture is not very
good, you can clearly see that with the Canadian fall water droplets
are in the upward flow entrained with the air above the original
level from where they originated. They derive some energy from
the air. This does not happen at the American fall. The reason
seems to me that there is, in the restricted space available for the
downflow of the Canadian one, a pressure built up pushing a strong
upward air flow entraining droplets.

Breaking wave with trapped air.

In the case of a breaking wave air is trapped in the overturning
wave. This entrained air plays an important role in the dynamics
of the wave, and of its impact on walls. A striking effect of the
trapped air is a tremendous change in the compressibility of the
mixture. Even an air concentration of a few percent dramatically
alters the sound velocity which is directly related to the compress-
ibility. This can be made clear as follows.

Denoting the velocity of sound of the mixture with cm, we have
from thermodynamics

(cm)2 = (dp/dρ)s, (4)

Figure 2. A breaking wave at Coogee Beach, Sydney, Australia. Photograph taken
by D.H. Peregrine, University of Bristol, and reproduced here with his permission.
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where p, ρ and s denote pressure, density and entropy respectively.
The density is made up from that of air, with volume fraction α,
and that of water, with volume fraction 1−α. Referring to air and
water with subscripts a and w respectively, we have therefore

ρ = α ρa + (1 − α) ρw. (5)

We neglect a possible velocity difference between air and water.
Then the mass of air in a unit mass of the mixture is constant,
whence

ρa α/{ρa α + ρw(1 − α)} = constant. (6)

We assume further that the pressure in water and air is the same
(later we shall see when this ceases to be realistic). Then it follows
from Eq. (4)–Eq. (6) that for α not too close to zero or to unity

(cm)2 = γp/ρw(1 − α)α, (7)

γ being the ratio of specific heats of the air. In Fig. 3 graphs of the
complete expression are shown for various ambient pressures. Even
with a volume concentration α of air of one percent, the velocity of
sound is in an air-water mixture only 100 m/s, far below the sound
speed in either air or water. (Air was, of course, also involved in the
generation of the wave. That is an old problem in hydrodynamics.

Figure 3. The sound velocity, c, in a mixture of air and water. The air concentration
by volume α is indicated along the horizontal axis, the sound velocity along the vertical
axis.
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In the last 50, or so, years much has been clarified but it is not
completely solved.)

The air trapped in water has also a profound effect on the radiation
of sound when the flow is turbulent. The late Sir James Lighthill
has shown in one of his finest contributions to fluid mechanics,
[3], that turbulence produces, inefficiently, quadrupole sound. The
presence of air gives a new, by far dominating, monopole contribu-
tion, which leads as shown by Crighton and Ffowcs Williams [4],
for not too low void fraction, to a sound emission larger by a fac-
tor (cw/cm)4 which can be for air and water of the order 106 or an
intensity increase of 60 dB. Think about this when you hear these
waves speak!

Cavitation.

Another two-phase situation is encountered in cavitation, for exam-
ple at a hydrofoil, see Fig. 4. Due to the low pressure in the flow
along the hydrofoil, a propeller blade, microscopic nuclei become
unstable and grow to macroscopic size. In a region of higher pres-
sure these bubbles, filled with air and vapour, collapse again and
may cause at the final stage of the collapse considerable damage
to the blade.

Figure 4. Cavitation on a ship‘s model propeller turning in a water tunnel. There is
cavitation on the blade but also in the tip vortex. Courtesy of the Maritime Research
Institute of the Netherlands (MARIN) at Wageningen.
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In all these cases there is interaction between the gaseous phase
and the liquid phase and the title of my lecture refers to this. In
a further part of the lecture I shall in a symbolic way imagine the
air which is above as the domain of fundamental research and the
water, down below,as applied science, which will give opportunity
to share some thoughts about science and engineering with you.

In the spray above the Niagara waterfall we have a lot of air and
some water, in the case of a bubbly suspension we have a lot of
water and some air. At both ends there are unsolved problems
forming a challenge for fluid mechanics.

3. Bubbly Flow

Compared with the Niagara fall, the rising suspension looks quiet and
peaceful. But lo and behold what happens when we increase, with bub-
bles of about 1mm radius, the void fraction to about 25 %. A violent
transition to slug flow occurs. (During the presentation a video of the
transition to slug flow was shown). Both phenomena, the homogeneous
rise at low concentration and the transition to slug flow are ill under-
stood.

Let us start with the former. The interest in bubbles has always
been great. Bubbles smaller than about 0.8 mm radius rise in a straight
line. For example bubbles rising in champagne or beer. The application
in champagne is due to Dom Pérignon who was a contemporary of Sir
Isaac Newton. Their simultaneous occupations are described by Michel
Onfray [5] as “while the first (Pérignon) prepares beverages with rising
bubbles, the second (Newton) derives formulas based on falling fruits“
(my translation from the French text). This quotation from the chapter
“Une petite théorie des bulles” of Onfray‘s book illustrates on a day like
this very appropriately the unity of mechanics.

Bubbles with a radius above 0.8 mm do not rise linearly in water
but perform spiralling or zigzag motion, in contrast to falling particles
which fall in a straight line. This was already known to Leonardo da
Vinci, who made a sketch of what he saw, Fig. 5, and is therefore called
nowadays Leonardo‘s Paradox, see e.g. Ohl, Tijink and Prosperetti [6].

Recently, see e.g. de Vries et al. [7], it has been observed that these
spiralling bubbles have a wake trailing behind them consisting of two
vorticity bearing threads, see Fig. 6. The relevant bifurcation has been
also described numerically, Maugin & Magnaudet [8], but the underlying
physical mechanism is not yet understood.

The flow around a bubble rising in clean water is well described by
potential flow supplemented with thin boundary layers. These, of the
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Figure 5. Sketch by Leonardo da Vinci of a spiralling bubble (Courtesy of Musée du
Louvre, Paris). The “ Paradox”, for further details see [6], is in the fact that a falling
particle has a straight trajectory but a rising bubble – a spiralling path.

Figure 6. Two mutually perpendicular projections of a bubble spiralling in hyper-
clean water. The effective bubble radius is about 1mm. Clearly seen is the double
–threaded wake behind the rising bubble. Courtesy of Christian Veldhuis.
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same thickness as with rigid bodies, have now only to overcome the
difference in shear stress between the outer flow and the zero stress at
the interface. Just as in the study of dilute gases, it is natural to start
with looking at binary interactions. Numerical work and analytical work
with this model unfortunately predict clustering of bubbles and not the
homogeneously rising bubbles as observed in experiments. This can
be made plausible as follows: Imagine two bubbles with their line of
centres making, at time t = 0, an angle of more than 36 degrees with
the vertical direction which is parallel to gravity. The hydrodynamic
forces are such that after a time of order a/V , where a is the bubble
radius and V the terminal velocity, the line of centres is horizontal.
This is therefore a statistically highly probable situation. But in this
configuration there is only an attractive force between the bubbles. They
bounce for a while but even when this is a purely elastic collision, the
motion gets exhausted by viscous friction, which explains the clustering
in the numerical simulation.

How in reality the lack of repulsive forces, the basic reason for the
clustering, is overcome is another unsolved problem of two-phase flow.
I have made recently [9]) the suggestion that the above mentioned two-
threaded wakes could play a role here.

To continue with unsolved problems in two-phase flow I recall the
transition to slug flow. Also this awaits an explanation. There is an
analogeous phenomenon in fluid beds. There the homogeneous bed be-
comes unstable, big gas bubbles are formed, as a result of the instability
of concentration waves. It has been thought for some time that transi-
tion to slug flow is similarly due to instability of such waves. Evidence,
Lammers & Biesheuvel [10] shows this not to be the case. The instability
of concentration waves (or void fraction waves) occurs but before slugs
appear, there is an intermediate flow regime characterized by a pointed
transverse velocity and concentration distribution.

You might have the impression by now that in two-phase flow there are
mainly riddles and unsolved problems. This is certainly not the case.
I will illustrate this with two examples. The first is about expansion
waves in a two-phase flow. We have seen that the bubbly suspension
has a low velocity of sound. So, we can play at low velocities the whole
organ of compressible gases. For example the theory and experiments
of waves of finite amplitude. There is, however, an important difference.
If pressure changes become very rapid, the relation Eq. (7) for the speed
of sound is no longer valid. My compatriot Marcel Minnaert measured
in the 1930‘s the frequency of volume oscillations of small air bubbles
in water in an ingenious way, described in [11]. He determined the
frequency of the audible popping sound of the bubbles formed in his
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apparatus by means of tuning forks. He also derived a formula for this
frequency, f , say,

f = 1/(2πa){3γ(p − pv)/ρl}
1/2. (8)

This is for a bubble with radius of 1mm about 3 kHz. When now in
a bubbly suspension pressure changes are not far from this Minnaert fre-
quency, the bubbles do no longer passively follow the pressure changes
but pressure differences between the two phases develop due to the in-
ertia of the liquid. As a result the medium becomes dispersive which
expresses itself in various ways. One of these is that the velocity of prop-
agation of a wave of finite amplitude depends not only on the amplitude,
as is the case for “normal” compressible fluids, but also of the frequency,
or wavelength. With weak nonlinearity and weak dispersion the famous
Korteweg-de Vries equation is valid for the pressure in the wave. Some
time ago we did [12] the following experiment:

At the entrance of a semi-infinite bubbly flow, a time-dependent pres-
sure was established in the form of a rectangular triangle, a shock wave
followed by a rarefaction. For this special initial profile the KdV equa-
tion can be solved exactly with help of the so-called inverse scattering
theory. The evolution in the mixture of this initial profile is into a train
of solitons according to this theory. The nice thing about this is that
the associated mathematical equation, a Schrödinger equation, has for
this particular profile an exact solution in the form of an Airy function
and that the number of evolving solitons is equal to the zeros of this
Airy function in a certain interval. In the experiment that we did, the
shape of the evolving waves was not quite that of solitons (they were
still evolving) but the number agreed exactly with the predictions, see
Fig. 7.

Another example is directly connected to Minnaert‘s early finding.
Much later it was discovered that also the sound of rain on a water
surface is due to bubbles but in a special way.

The falling drop forms a crater in the water which is filled with air. As
the crater closes again the air escapes but sometimes a small air bubble is
trapped. This produces noise while oscillating in its Minnaert frequency.
Experiments, see Oǧuz & Prosperetti [13], with drops of various speeds
and sizes show that a bubble is trapped only in a narrow portion of
the speed/size plane (see Fig. 8). In nature the speed of the raindrop
depends on its size and hence the intersection of this line with the above
mentioned area gives the size of the raindrops producing bubbles and ac-
companying sound. This explains the rather narrow frequency spectrum
of rain noise.
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Figure 7. From an initial pressure profile shaped in terms of time as a rectangular
triangle by a shock wave followed by an expansion wave, (left-hand side of picture)
develops, after the wave has travelled a long distance in the bubbly flow, a series of
solitons (right-hand side of picture).

Figure 8. The shaded area bounds that portion out of the diameter/impact plane
of falling drops, that marks the occurrence of a trapped air bubble. The broken line
represents the relation between diameter and impact velocity of raindrops. Hence
the intersection of this line with the shaded area gives the range of raindrops which
produce air bubbles and thereby sound. The picture is from [13] and reproduced here
with permission of Ann. Rev. Fluid Mech.
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4. Fundamental and Applied, The Scientist and
the Engineer

I will now use the freedom of the lecturer on an occasion as this
one to compare in a symbolic sense the interplay just described with
the interplay between fundamental and applied science. Fundamental
science high up in the air, the applications down below where the water
is. Sometimes the interplay is not obvious. Famous are the words spoken
by the German mathematician David Hilbert when he was asked to
comment on the relation between pure and applied science. He said
“Meine Herren, sie haben gar nichts mit einander zu tun” (they have
nothing to do with each other). This points at a lack of appreciation.
In my case I have been lucky to see a lot of both in my professional
life. Both have their peculiarities of which I shall give two examples.
First the “∼” and the “=”. What do I mean by this? Suppose you are
designing a device which includes flow of water, of kinematic viscosity
ν = 10−6 m2/s, with a velocity U=0.10 m/s in a pipe with diameter
D=1 cm. You want to know for the operation of your device, what
entry length l is needed for the flow to become fully developed. You
turn for advice to a theoretical physicist. He takes his copy of Landau
& Lifshitz, Fluid Mechanics [14], from the shelf in his office and finds on
page 150

l/D ∼ Re. (9)

This means that the dimensionless entrance length l is a multiple of
order unity times the Reynolds number UD/ν. Landau & Lifshitz point
out that the thickness δ of the laminar boundary layer along the pipe
wall grows, with x running along the pipe axis, as

δ ∼ (νx/U)1/2,

where again ∼ means that the boundary layer thickness is a multiple of
order unity times the shown quantity. Putting now the thickness equal
to the diameter gives Eq. (9) for the entrance length l. In this particular
case Re is 1000. You feel uneasy over it and you ask the physicist, do I
really need thousand diameters, which is 10 m? The physicist does not
listen anymore. Your problem is now an engineering problem and he
does not care. So, you turn to an engineer, for example R.S. Brodkey,
who tells you in his book Brodkey 1967 [15] on page 129 that exact
calculation gives

l/D = 0.06 Re. (10)

This is, to your great relief, only 60 diameters or 60 cm.
As another example I mention granular materials. This is nowadays

a popular subject in physics. It has been,however, widely studied in
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civil engineering and in mechanical engineering since long ago. In the
second part of the last century A.W. Jenike (1914-2003) has dominated
research in the field of bulk solids. The research in this field has had
results. During the last ICTAM of the last century, Chicago 2000, in one
invited lecture, Roux & Radjäı [16], we read “ The quasi-static behav-
iour of granular materials is already a mature field in which a number
of elastico-plastic models reproduce very accurately the available exper-
imental tests. They allow us to design civil engineering structures with
confidence”. The authors of these lines come from civil engineering. At
the same ICTAM there was another invited lecturer, Goldhirsch [17],
a physicist, from whose lecture I quote: “Granular matter is often de-
scribed as “unpredictable”, “irreproducible” or “erratic”. These and
other adjectives used to characterize granular matter are a clear sign
that much is still lacking in our understanding of these “materials” (my
italics). In my opinion the physicists could have in this case more ap-
preciation for the work done and results obtained by engineers.

5. Epilogue

The great experience in ICTAM is that both fundamental and ap-
plied scientists can listen to each other and talk to each other during
and outside the many sessions. And in spite of differences of approach,
illustrated in the previous Section with some examples, there are many
aspects in their work that they share. Whereas consultant firms apply
high per-hour rates for every service that they deliver, we all are referees
and editors for journals, sit in committees, do work for funding organisa-
tions, you name it, without payment or at most a modest compensation
for subsistence costs. Why do we do that? There are immaterial re-
wards in the form of prizes and other signs of recognition. But above
all it is out of a sense of duty to the scientific community. The British
writer and philosopher Iris Murdoch [18] points out that our sense of
duty stems from the fact that we are not perfect beings, “A totally good
being would not experience the call of duty, might be said to lack or not
need the concept since all acts and decisions would emerge from virtu-
ous insight and its orderly process”. But just this sense of duty saves
us, according to an Editorial in Science [19], from becoming victims of
human frailty. I quote from this article entitled “The Roots of Scien-
tific Integrity”: “The system of rewards and punishments tends to make
honest, vigorous, conscientious hardworking scholars out of people who
have human tendencies of slothfulness and no more rectitude than the
law requires”.
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With this quotation Mr Chairman, intended to make us all feel good,
I come to the end of my presentation. I wish you all an enjoyable and
rewarding ICTAM 2004 and I thank you for your attention.

I thank my colleagues of the Physics of Fluids Group of the Univer-
sity of Twente for their helpful comments, Michel Versluis for teaching
me Power Point and Raymond Bergmann, Peter Eshuis, and Christian
Veldhuis for their expert help in preparing the Power Point version of
this lecture.
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