Inter-library Service Brokeragein LicenseScript

Cheun Ngen Chorlg Sandro Etallg, Pieter Hartél, Rieks Joosteh and Geert
Kleinhuis®

L University of Twente, P.O. Box 217, 7500 AE Enschede
{chong, et al | e, pi eter }@s. ut went e. nl
2 TNO Telecom Groningen, P.O. Box 15000, 9700 CD Groningen
{H. J. M Joost en, G Kl ei nhui s}@el ecom t no. nl

Abstract. Inter-library loan involves interaction among a dynamianier of
digital libraries and users. Therefore, inter-libraryvée® management is com-
plex. We need to handle different and conflicting requiretm@h services from
the digital libraries and users. To resolve this problempvesent the concept of
a packager who acts as a service broker. We also present Bmieation using
our Prolog based LicenseScript language.

1 Introduction

Federated digital libraries rely on a complex variety oftegss, services and policies
that must interwork seamlessly. To illustrate some of thaés, consider:

Example 1. Alice uses her PDA to request a high-resolution video cliyprfthe univer-
sity library, but a lower-resolution one is available in tgy library.

Several questions need to be answered, such as: (1) canrétjcest the video clip
directly from the city library; (2) can the university libgaobtain the lower-resolution
video clip from the city library on behalf of Alice; (3) candttity library somehow
benefit from providing the video clip; (4) can Alice use thdeo clip on another device;
(5) can Alice use the video clip in her own work, etc.

To provide a solution, we present the concept of a packager adts as a ser-
vice broker to handle inter-library service managemené packager can provide con-
venience to users to seek, choose and use a wide varietgee@wailable from the
libraries, e.g. to find a cheaper item. We present an impléstien as part of th&esi-
dential Gateway Environment (RGE) project [7].

We have derived the complex infrastructure for the serviemagement from a
semi-formal high-level description: the “Calculating woncept” (CC) [5]. The reader
may refer to our technical report for more details [2]. Weadeall aspects of service
brokerage in LicenseScript [1]. LicenseScript is based o and multiset rewrit-
ing and allows one to exprefisenses, i.e. conditions of use on dynamic data. Prolog
has the advantage of combining an operational semantied¢dee.g., in negotiations)
with a straightforward declarative reading. Our additidmuultiset rewriting to Pro-
log allows to encode in an elegant and semantically soundthastate, and thestate
transitions of a license. The semantics of LicenseScript is given in $eofitraces [1].

2 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Riekgdiopand Geert Kleinhuis

We demonstrate the practical value of LicenseScript bygugias intelligent messag-
ing middleware for the RGE project. The resultis a largeritigted software platform
which we describe in this paper.

Silva and Delgado [8] suggest an agent-based approach tatmédtween libraries
and users. We have refined this approach into a full-fledgedeirfor inter-library
service management using LicenseScript. Halpern and Weis46] propose a pol-
icy language based on first-order logic and derive variolisipe for digital libraries.
However, the Halpern and Weissman policy language is ifadeps reconciling con-
flicting policies; LicenseScript provides the hooks foistbut the mechanisms have to
be programmed specifically.

Our contribution is two-fold: (1) The inter-library sereienanagement infrastruc-
ture can be specified concisely and prototyped rapidly bygukicenseScript; and (2)
The infrastructure supports tracking of resources by ukiognseScript [3] and secure
audit logging [4].

Section 2 presents the overall infrastructure of RGE semwianagement and presents
an example of inter-library service management by the pgaksapecified in Licens-
eScript. Section 3 presents a prototype. Finally, sectioontludes.

2 Service Management

The RGE architecture supports four main roles: the deviogslie residential gateway
(RG), the packager (P) and the service providers (SPs)icggmoviders are the digital
libraries, which provide services to users. The packagbabes as a service broker,
being able to manipulate and integrate the services prdvigethe various SPs. The
residential gateway implements the concept oduathorized domain [9]. An authorized
domain is a network of compliant devices, which ensuresdbatent is only used in
the authorized domain. A device is used to render a digisluece obtained from the
digital libraries. It is connected (wired/wirelessly) twetRG.

Now, we describe inter-library service management withpghekager in Licens-
eScript. We refine Example 1, as shown in Figure 1. Due to spawstraints, we have
put our LicenseScript code in the appendix of this paper. Wedlp illustrate the steps
involved in the process here:

0 Initially, both the digital librariesni _| i b andci ty_l i b) and the authorized do-
mains ¢s_r ge andmat h_r ge) have established business contracts with the pack-
ager pack). We use the LicenseScript objembn (for digital libraries) andser
(for authorized domains) to capture the attributes of thereats, e.g. expiry date,
compensation, etc. Each authorized domain has a LiceripeSiojectdom which
stores a list of compliant devices and users identities.

1 Alice makes a request from heda to cs.r ge for thecl i p fromuni i b. A
LicenseScript objeateq is created, which stores her requirements ofahép,
e.g. resolution, and other information such as the idepfityerpda.

2 cs_rge checks if Alice’spda belongs to the authorized domain. If the check is
successfulgcs_r ge forwardsr eq to pack, after updating some of the data, e.g.
to enter the identity of s _r ge.

Inter-library Service Brokerage in LicenseScript 3

alice
1: req(clip,alice,pda,uni_lib,...)
\ 2: req(clip,alice,cs_rge,uni_lib,...)
6: lic(clip,alice,pda,city_lib,...) Cs_rge
3: cat(clip,pack,uni_lib,...)
0: dom(cs_rge,...) / 4: cha(clip,uni_lib,no,...)
bob \

5: lic(clip,alice,cs_rge,city_lib,...) pa

4: cha(clip,city_lib,yes,...)
0: con(pack,uni_lib,...)

0: con(pack,city_lib,...)

math_rge 0: ser(pack,cs_rge,...)
0: ser(pack,math_rge,...)
carol 0: dom(math_rge,...)

3: cat(clip,pack,city_lib,...)

Fig. 1. A service management infrastructure with a packager.

3 pack requests to inspect the cataloguat of bothuni Ii b andcity_lib for
the whereabouts and detailed characteristita of cl i p.

4 pack receivexcha of cl i p, which stores the status and other propertiesldfp,
fromuni i bandcity._lib.pack firstcompares eqwith chafromuni i b.
If cl i pisnotavailable or it does not match Alice’s requirements.(®r quality),
it checks withcha fromcity_l i b.

5 pack generates a LicenseScript licerisec if the validation ofr eq with one of the
cha’s succeedypack sendd i c tocs.r ge.

6 cs_rge assigng i c to Alice’'s pda. Alice can then use hgrda to rendercl i p. If
compensation is required Iy t y _| i b, Alice has to pay before accessiabi p.

We have omitted all error reports here to avoid clutterirggghesentation. We have
also omitted payment and the transmission of the actlap fromci ty_l i b to Al-
ice’spda because it is not the main focus of our paper. We emphasizeathsuggested
by the figure, all objects are dynamically generated, inclygdat step 5, the license.

The role of the broker is central to our infrastructure arelghrvice management
it provides. Yet the precise details of matching the consefatlable to the user’s re-
quests is fully programmable. For example, different cacts will contain different
rules about this matching and all other relevant aspectsrofce brokerage.

3 Prototype

In the prototype, the Prolog-based components includeEME S* Prolog inference
engine and the LicenseScript Interpreter. In addition, aeeha Java user interface and
a RMI interface with RGE components, such as the Tomcat §dviysSQL database,
JDBC database interface, etc: 50 JSP (Java Server PageRfl&WVF (Shockwave
Flash) files. The reader is invited to refer to our techniepbrt [2] for more details on
our prototype.

4 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Riekgdiopand Geert Kleinhuis

4 Conclusions

We present the concept of tipackager, which acts as a service broker in inter-library
service management. We present its implementation in alo@based LicenseScript
language. To represent complex services in a flexible andezffimanner one needs
to employ executable (mobile) code of some kind. Prolog iéqoe for this. Services
should not only be executable, but should have a clear antlssosemantics (after all,
they ardicenses). The close relation between operational and the declarstimantics
of Prolog is an invaluable advantage. Prolog is ideal to megguirements, and good
at resolving conflicts. Therefore it is a natural platformgervice brokerage.

References

1. C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonked #nW. Law. LicenseScript: A
novel digital rights language and its semantics. In K. NgBGsch, and P. Nesi, editor3rd
International Conference on Web Delivering of Music (WEDELMUSIC), pages 122—-129, Los
Alamitos, California, United States, September 2003. |IEEBputer Society Press.

2. C. N. Chong, S. Etalle, P. H. Hartel, R. Joosten, and G.nKigs. Service brokerage with
prolog. Technical Report TR-CTIT-04-14, Centre for Teléicmand Information Technology,
Univ. of Twente, The Netherlands, February 2004.

3. C.N.Chong, Y. W. Law, S. Etalle, and P. H. Hartel. Approating fair use in LicenseScript.
In T. M. T. Sembok, H. B. Zaman, H. Chen, S. R. Urs, and S. H. Mgaeditors 6th Inter-
national Conference of Asian Digital Libraries (ICADL’ 2003), volume 2911 of. NCS pages
432-443. Springer-Verlag, December 2003.

4. C. N. Chong, R. van Buuren, P. H. Hartel, and G. Kleinhuiscu8ity attribute based digital
rights management (SABDRM). In F. Boavida, E. Monteiro, dn@rvalho, editorsjoint Int.
Workshop on Interactive Distributed Multimedia Systems/Protocols for Multimedia Systems
(IDMS/PROMS), volume 2515 of.NCS, pages 339-352. Springer-Verlag, November 2002.

5. R. M. Dijkman, L. F. Pires, and S. M. M. Joosten. Calculgtimith Concepts: a technique
for the development of business process support. In A. E\@nBErance, A. Moreira, and
B. Rumpe, editorsProceedings of the UML 2001 Workshop on Practical UML-Based Rig-
orous Development Methods, volume 7 ofLecture Notes in Informatics, pages 87-98. GI-
Edition, October 2001.

6. J.Y.Halpern and V. Weissman. Using first-order logic s about policies. IRroceedings
of 16th IEEE Computer Security Foundations Workshop (CSFW 03), pages 187-201. IEEE
Computer Society Press, July 2003.

7. R.Joosten, J-W. Knobbe, P. Lenoir, H. Schaafsma, andéhliiis. Specifications for the rge
security architecture. Technical Report Deliverable DBt@ject TSIT 1021, TNO Telecom
and Philips Research, The Netherlands, August 2003.

8. A. Silva and J. Delgado. Agentspace as a framework to stipgerlibrary cooperation. In
Proeedings of 5th International Conference Crimea 1998, page To appear, 1998.

9. S.A.F.A. van den Heuvel, W. Jonker, F.L.A.J. Kampermand B.J. Lenoir. Secure content
management in authorised domainsThe World's Electronic Media Event IBC 2002, pages
467-474, September 2002.

Inter-library Service Brokerage in LicenseScript 5

Appendix: LicenseScript code

LicenseScript is based on logic programming and multisetitieg. The basic con-
struct is the license, which has the following form:

object_name(Content, Clauses, Bindings)

Here object_name is the name of the LicenseScript obje€tontent is the unique
identifier of the associated contefitjauses is a list of Prolog clauses that decide if the
operations requested are allowed or forbidden; Biwddings is a list of attributes that
carry the status of the LicenseScript object.

A clause has the following form:

head :- body 1, body 2,...,body n.

Here head is the head of the clause (i.e., the name and parameters alahse),
and the conjunction dfody_1, . . . , body _n is the body of the clause. Authorization
rules, obligations, conditions and mutability are capdurg the clauses.

LicenseScriptlicenses are notionally gathered in a neiléa which multiset rewrite
rules operate. These capture aspects of communicationptatas. The rewrite rules
take the following form:

rule_name(arguments) : multiset; — multisets

<— conditions

Hererule_name is the name for the rulejrguments are the arguments for this rule;
multiset; andmultiset, refer to the multiset of before and after the execution of the
rule, respectively; ancbnditions must be satisfied for the rule to apply. The conditions
invoke queries over the clauses.

To describe inter-library service management with the pgekin LicenseScript,
we refine Example 1. The description follows closely thatesft®on 2 (we suggest that
the reader skips step O on a first reading):

0 Initially, a number of digital libraries have establishegsimess contracts with the
packager to perform service brokerage. For instance, thenkeScript contract
con, which captures the contract betwaemi _| i b andpack, can be written as
follows:

con(pack,

[(canconpl y(Bconl, Bcon2, Breql, Breqg2, Bchal, Bcha2,Blic) :-
get _val ue(Bconl, al | owabl e_donai ns, Domai ns),
get _val ue(Breql, donmain, D), is_nenber (D, Donai ns),
get _val ue(Breql, requirenents, Reqs),
get _val ue(Bchal, properti es, Chas),
val i dat e_r equi rement s(Regs, Chas),
set _val ue(Bconl, paid,true, Blic),
set _val ue(Bchal, avail ability, fal se, Bcha2)),

(canconpensat e(Bconl, Bcon2, Breql, Breg2, Bl i c, Com): -

get _value(Breql,digital _library, DL1),

Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Riekgdiopand Geert Kleinhuis

get _val ue(Bconl,digital _library,DL2),DL1 =/= DL2,
get _val ue(Bconl, conmpensati on, O),
set _val ue(Bconl, conmpensation, C Blic),
set _val ue(Bconl, pai d, fal se,Blic),
(canseek(Bconl, Bcon2) : -
true)]
[digital _library=uni_lib, compensation=0. 1,
currency=eur o, pai d=f al se,
al | owabl e_donai ns=[cs_rge, math_rge]])

Here,get val ue(W X, Y) andset .val ue(W X, Y, Z) are primitives to get
(respectively set) the valdéassociated witlXin binding listW bindingal | owabl e_donmai ns
stores a list of authorized domains that are allowed to nethéeresourcesti gi tal | i brary
stores the identity of the universitui _| i b) to which this request is made; and

val i dat e_requi renment s(-) is a function to perform requirements valida-

tion, which will be explained later.

The clausesanconpl y,canconpensat e andcanseek are Prolog clauses to
determine if the operation performed by a user is allowedifidencanconpl y

checks whether the user’s authorized domain is authorzedd¢ess the resource,

and validates the requirements of the user with the charistits of the resource (in

our casepai d indicates whether the compensationis madeaarad | abi l ity

indicates whether the resource is availald@yyconpensat e determines whether
compensation is required by the digital library, it setskimglingconpensat i on

in Bl i c (of | i c)to the value otonpensati on in Bcon (of con); canseek
allowspack to ask for updated information of the digital resource fréwa digital

libraries, which will be explained later.

Similarly, different residential gateways environmeR&E) have established ser-

vice contracts with the packager for service brokerage g@ment. For instance, a

simple form of the LicenseScript service contreet betweerpack andcs_r ge

can be written as follows:

ser (pack,
[canr equest ser (Devi ce, B1, B2) : -

get _val ue(B1, domai n, D), D==Devi ce],
[domai n=cs_rge])

Here,canr equest ser (-) is a clause that determines whetliXvi ce is al-
lowed to make a request pack.

Initially, each residential gateway (RG) has a Licensggddmain listdom which
stores a list of compliant device identitidevi ces and user identitiesser s:

don(cs_rge,
[canr equest don(Subj ect, Devi ce, B1, B2) : -

get _val ue(B1, devi ces, Ds),

get _val ue(B1, users, Us),

i s_menber (Devi ce, Ds), i s_nenber (Subj ect, Us)],
[devi ces=[pda, conputer], users=[al i ce, bob]])

Here,canr equest don{ -) is a clause that determines whetl$etbj ect is al-
lowed to make a request ts _r ge usingDevi ce.

Inter-library Service Brokerage in LicenseScript 7

1 Alice uses hepdato send arequestts_r ge to ask forcl i p fromuni _l i b. The
LicenseScript objeateq captures the necessary data (for brevity, here we omit the
details of creating eq by clauses and rules):

req(clip,

[...1,

[requestor=alice,digital _library=uni _|ib, device=pda,
requi rement s=[avail abi lity=true, resol uti on=100]])

Here, binding equest or stores Alice’s identitydi gi t al _| i br ar y storesthe
library identity from which Alice asks for thel i p. There are two requirements
stored in the list equi r enent s, namelyavai | abi | i ty indicates thecl i p
must be available; andesol ut i on denotes the minimum required resolution of
thecl i p.

2 cs._rge C?leCkS ifpda belongs to the authorized domain. If the check is successful
cs_r ge forwards the request to the packagerck after updating the binding
devi ce (compare ta eq from step 1):

req(clip,

[...1,

[requestor=alice,digital _library=uni _|ib, device=cs_rge,
requi rement s=[avail abi lity=true, resol uti on=100]])

3 pack sends LicenseScript objectit to uni _Ii b andcity_li b, respectively
requesting the updated characteristicg bf p by executing the rulseek (with
canseek as shown in step 0):

seek(Obj ect)
con(pack, Ccon, Bconl) ->
con(pack, Ccon, Bconl),
cat (nj ect, Ccon, Bcon2)

<= Ccon |- canseek(Bconl, Bcon2)
The LicenseScript objectat for uni _| i b is as follows:
cat (clip,

[...1,
[packager =pack, digital _library=uni _lib])

4 pack validates Alice’s requesteq with cha of cl i p fromuni _I i b.
We use a LicenseScript objecha to capture characteristics, i.e., current sta-
tus (e.g. availability etc.) and other properties (e.gok&fon, number of pages,
etc.) of a digital library resource. The packager receatea from uni _| i b and

city_lib.Forinstancechaofcli pfromuni _li bis:
cha(clip,

[...1,

[digital _library=uni_lib, borrower=bob,

properties=[avail ability=no, resol uti on=500]])

Here, the bindingr oper t i es storesalist of propertiesof i p,i.e.,avai l ability
andr esol uti on.

The packager validates the requirements for step 2 usingaaryedric approach, in
which the list of requirements to be complied with is complacethe characteristics

by the functiorval i dat e_r equi renent s:

8

Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Riekgdiopand Geert Kleinhuis

validate_requirements([].[])-

val i date_requi rement s([[Reg_nane| Req_val ue] | Regs], Chas) : -
get _val ue(Chas, Req_nane, Cha_val ue),
check_requi renent (Req_val ue, Cha_val ue),
val i dat e_r equi renment s(Regs, Chas).

Here,check_r equi r ement (R, C) is a function to check the requirement value
Rand the characteristic val@ We simply use (in)equalities to compare two values
incheck_requirements(R, O):

check_requi renent s(Req_val ue, Cha_val ue) : -
Req_val ue == Cha_val ue.

We can define a more complex and flexible requirement vatidgiblicy by us-
ing more elaborate data structures for the requirementcharicteristics, and a
matchingcheck._r equi r enent s rule.

To validate and permit Alice’s request, the packager execoiultiset rewrite rule
permt:

perm t (Qbj ect)
con(pack, Ccon, Bconl),
req(oj ect, Creq, Breql),
cha(oj ect, Cchal, Bchal) ->
con(pack, Ccon, Bcon2),
cha(oj ect, Ccha2, Bcha2),
lic(nject,dic,Blic)

<= Ccon |- canconpl y(Bconl, Bcon2, Breql, Breq2, Bchal, Bcha2, Blic),

Ccon |- canconpensat e(Breql, Breqg2, Bconl, Bcon2, Bl i c¢)

Here,Ccon | - canconpl y(-) andCcon |- canconpensat e(-) arethe
two conditions of the rul@er ni t .
In our example, the validation fails becauski p is not available atini _I i b,

therefore the packager validateeq with cha fromcity.li b. As theclip
is available ati ty_li b, a LicenseScripti c is generated for Alice to use the
clip:

lic(clip,
[(canassi gn(B1, B2, Subj ect, Devi cel, Devi ce2) :-
get _val ue(B1, requestor, S), S==Subj ect,
get _val ue(B1, devi ce, D), D==Devi cel,
set _val ue(B1, devi ce, Devi ce2, B2)),
(canvi ew(B1, B2, Subj ect, Devi ce) : -
get _val ue(B1, devi ce, D), D==Devi ce,
get _val ue(B1, requestor, S), S==Subj ect,
get _val ue(B1, paid, P), P=true)),
(canpay(B1, B2) : -
get _val ue(B1, conpensati on, C),
get _value(Bl,digital _|ibrary,DL),
pays(C, DL), set _val ue(B1, paid,true, B2))],
[requestor=alice, paid=false,digital |library=city_lib,
devi ce=cs_r ge, conpensati on=0. 1])

Inter-library Service Brokerage in LicenseScript 9

Here, there are three clauses, nanmednassi gn, which can be invoked to de-
cide if Subj ect can assign the license frobevi cel to Devi ce2; canvi ew,
which determines iSubj ect allows to viewcl i p onDevi ce; andcanpay,
which is executed to make the paymarays(X, Y) is a primitive to perform pay-
ment of moneyX to entity Y. When the compensation is made, the bindiag d
is set tot r ue.

5 The packager then sends the liceh$e to cs_r ge. cs_r ge can then assign this
license to Alice’'spda by executing the following rule:

assi gn(oj ect, Subj ect, D1, D2) :
lic(nject, d auses, Bl)->
lic(nject, d auses, Bl),
lic(nject, d auses, B2)
<= Cl auses |- canassign(B1l, B2, Subj ect, D1, D2)

6 Alice can view thecl i p by executing the multiset rewrite rulé ew (i.e., clicking
a “View” button on her PDA):

vi ew(Qbj ect, Subj ect, Devi ce)
lic(nject, d auses, Bi ndingsl) ->
lic(nject, d auses, Bi ndi ngs2)
<= O auses |- canvi ew(Bi ndi ngs1, Bi ndi ngs2, Subj ect, Devi ce)

However, to view thel i p, Alice is required to pay the compensatiorciat y_l i b
by executing multiset rewrite ruleay:

pay(Obj ect)
lic(nject, dauses, Bi ndingsl) ->
lic(nject, d auses, Bi ndi ngs2)
<= Cl auses |- canpay(Bi ndi ngs1, Bi ndi ngs2)

Here, the consequence of executing oy, the bindingpai d is set tot r ue,
which indicates that Alice is now allowed to viesV i p.

