
Inter-library Service Brokerage in LicenseScript

Cheun Ngen Chong1, Sandro Etalle1, Pieter Hartel1, Rieks Joosten2, and Geert
Kleinhuis2

1 University of Twente, P.O. Box 217, 7500 AE Enschede
{chong,etalle,pieter}@cs.utwente.nl

2 TNO Telecom Groningen, P.O. Box 15000, 9700 CD Groningen
{H.J.M.Joosten,G.Kleinhuis}@telecom.tno.nl

Abstract. Inter-library loan involves interaction among a dynamic number of
digital libraries and users. Therefore, inter-library service management is com-
plex. We need to handle different and conflicting requirements of services from
the digital libraries and users. To resolve this problem, wepresent the concept of
a packager who acts as a service broker. We also present an implementation using
our Prolog based LicenseScript language.

1 Introduction

Federated digital libraries rely on a complex variety of systems, services and policies
that must interwork seamlessly. To illustrate some of the issues, consider:

Example 1. Alice uses her PDA to request a high-resolution video clip from the univer-
sity library, but a lower-resolution one is available in thecity library.

Several questions need to be answered, such as: (1) can Alicerequest the video clip
directly from the city library; (2) can the university library obtain the lower-resolution
video clip from the city library on behalf of Alice; (3) can the city library somehow
benefit from providing the video clip; (4) can Alice use the video clip on another device;
(5) can Alice use the video clip in her own work, etc.

To provide a solution, we present the concept of a packager who acts as a ser-
vice broker to handle inter-library service management. The packager can provide con-
venience to users to seek, choose and use a wide variety services available from the
libraries, e.g. to find a cheaper item. We present an implementation as part of theResi-
dential Gateway Environment (RGE) project [7].

We have derived the complex infrastructure for the service management from a
semi-formal high-level description: the “Calculating with Concept” (CC) [5]. The reader
may refer to our technical report for more details [2]. We encode all aspects of service
brokerage in LicenseScript [1]. LicenseScript is based on Prolog and multiset rewrit-
ing and allows one to expresslicenses, i.e. conditions of use on dynamic data. Prolog
has the advantage of combining an operational semantics (needed, e.g., in negotiations)
with a straightforward declarative reading. Our addition of multiset rewriting to Pro-
log allows to encode in an elegant and semantically sound waythestate, and thestate
transitions of a license. The semantics of LicenseScript is given in terms of traces [1].

2 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

We demonstrate the practical value of LicenseScript by using it as intelligent messag-
ing middleware for the RGE project. The result is a large distributed software platform
which we describe in this paper.

Silva and Delgado [8] suggest an agent-based approach to mediate between libraries
and users. We have refined this approach into a full-fledged model for inter-library
service management using LicenseScript. Halpern and Weissman [6] propose a pol-
icy language based on first-order logic and derive various policies for digital libraries.
However, the Halpern and Weissman policy language is incapable of reconciling con-
flicting policies; LicenseScript provides the hooks for this but the mechanisms have to
be programmed specifically.

Our contribution is two-fold: (1) The inter-library service management infrastruc-
ture can be specified concisely and prototyped rapidly by using LicenseScript; and (2)
The infrastructure supports tracking of resources by usingLicenseScript [3] and secure
audit logging [4].

Section 2 presents the overall infrastructure of RGE service management and presents
an example of inter-library service management by the packager specified in Licens-
eScript. Section 3 presents a prototype. Finally, section 4concludes.

2 Service Management

The RGE architecture supports four main roles: the devices (D), the residential gateway
(RG), the packager (P) and the service providers (SPs). Service providers are the digital
libraries, which provide services to users. The packager behaves as a service broker,
being able to manipulate and integrate the services provided by the various SPs. The
residential gateway implements the concept of anauthorized domain [9]. An authorized
domain is a network of compliant devices, which ensures thatcontent is only used in
the authorized domain. A device is used to render a digital resource obtained from the
digital libraries. It is connected (wired/wirelessly) to the RG.

Now, we describe inter-library service management with thepackager in Licens-
eScript. We refine Example 1, as shown in Figure 1. Due to spaceconstraints, we have
put our LicenseScript code in the appendix of this paper. We briefly illustrate the steps
involved in the process here:

0 Initially, both the digital libraries (uni lib andcity lib) and the authorized do-
mains (cs rge andmath rge) have established business contracts with the pack-
ager (pack). We use the LicenseScript objectcon (for digital libraries) andser
(for authorized domains) to capture the attributes of the contracts, e.g. expiry date,
compensation, etc. Each authorized domain has a LicenseScript objectdom, which
stores a list of compliant devices and users identities.

1 Alice makes a request from herpda to cs rge for the clip from uni lib. A
LicenseScript objectreq is created, which stores her requirements of theclip,
e.g. resolution, and other information such as the identityof herpda.

2 cs rge checks if Alice’spda belongs to the authorized domain. If the check is
successful,cs rge forwardsreq to pack, after updating some of the data, e.g.
to enter the identity ofcs rge.

Inter-library Service Brokerage in LicenseScript 3

cs_rge

alice

bob

math_rge

carol

pack

uni_lib

city_lib

0:
con(pack,uni_lib,…)

0:
con(pack,city_lib,…)

0:
ser(pack,cs_rge,…)

0:
ser(pack,math_rge,…)

1:
req(clip,alice,pda,uni_lib,…)

2:
req(clip,alice,cs_rge,uni_lib,…)

4:
cha(clip,uni_lib,no,…)

4:
cha(clip,city_lib,yes,…)

5:
lic(clip,alice,cs_rge,city_lib,…)

6:
lic(clip,alice,pda,city_lib,…)

0:
dom(cs_rge,…)

0:
dom(math_rge,…)

3:
cat(clip,pack,uni_lib,…)

3:
cat(clip,pack,city_lib,…)

Fig. 1. A service management infrastructure with a packager.

3 pack requests to inspect the cataloguecat of bothuni lib andcity lib for
the whereabouts and detailed characteristicscha of clip.

4 pack receivescha of clip, which stores the status and other properties ofclip,
fromuni lib andcity lib.pack first comparesreqwith cha fromuni lib.
If clip is not available or it does not match Alice’s requirements (e.g. for quality),
it checks withcha fromcity lib.

5 pack generates a LicenseScript licenselic if the validation ofreq with one of the
cha’s succeeds.pack sendslic to cs rge.

6 cs rge assignslic to Alice’s pda. Alice can then use herpda to renderclip. If
compensation is required bycity lib, Alice has to pay before accessingclip.

We have omitted all error reports here to avoid cluttering the presentation. We have
also omitted payment and the transmission of the actualclip from city lib to Al-
ice’spda because it is not the main focus of our paper. We emphasize that, as suggested
by the figure, all objects are dynamically generated, including, at step 5, the license.

The role of the broker is central to our infrastructure and the service management
it provides. Yet the precise details of matching the contentavailable to the user’s re-
quests is fully programmable. For example, different contracts will contain different
rules about this matching and all other relevant aspects of service brokerage.

3 Prototype

In the prototype, the Prolog-based components include: theECLiSe Prolog inference
engine and the LicenseScript Interpreter. In addition, we have a Java user interface and
a RMI interface with RGE components, such as the Tomcat Server, MySQL database,
JDBC database interface, etc: 50 JSP (Java Server Page) files, 20 SWF (Shockwave
Flash) files. The reader is invited to refer to our technical report [2] for more details on
our prototype.

4 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

4 Conclusions

We present the concept of thepackager, which acts as a service broker in inter-library
service management. We present its implementation in our Prolog based LicenseScript
language. To represent complex services in a flexible and efficient manner one needs
to employ executable (mobile) code of some kind. Prolog is perfect for this. Services
should not only be executable, but should have a clear and concise semantics (after all,
they arelicenses). The close relation between operational and the declarative semantics
of Prolog is an invaluable advantage. Prolog is ideal to match requirements, and good
at resolving conflicts. Therefore it is a natural platform for service brokerage.

References

1. C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonker, and Y. W. Law. LicenseScript: A
novel digital rights language and its semantics. In K. Ng, C.Busch, and P. Nesi, editors,3rd
International Conference on Web Delivering of Music (WEDELMUSIC), pages 122–129, Los
Alamitos, California, United States, September 2003. IEEEComputer Society Press.

2. C. N. Chong, S. Etalle, P. H. Hartel, R. Joosten, and G. Kleinhuis. Service brokerage with
prolog. Technical Report TR-CTIT-04-14, Centre for Telematics and Information Technology,
Univ. of Twente, The Netherlands, February 2004.

3. C. N. Chong, Y. W. Law, S. Etalle, and P. H. Hartel. Approximating fair use in LicenseScript.
In T. M. T. Sembok, H. B. Zaman, H. Chen, S. R. Urs, and S. H. Myaeng, editors,6th Inter-
national Conference of Asian Digital Libraries (ICADL’2003), volume 2911 ofLNCS, pages
432–443. Springer-Verlag, December 2003.

4. C. N. Chong, R. van Buuren, P. H. Hartel, and G. Kleinhuis. Security attribute based digital
rights management (SABDRM). In F. Boavida, E. Monteiro, andJ. Orvalho, editors,Joint Int.
Workshop on Interactive Distributed Multimedia Systems/Protocols for Multimedia Systems
(IDMS/PROMS), volume 2515 ofLNCS, pages 339–352. Springer-Verlag, November 2002.

5. R. M. Dijkman, L. F. Pires, and S. M. M. Joosten. Calculating with Concepts: a technique
for the development of business process support. In A. Evans, R. France, A. Moreira, and
B. Rumpe, editors,Proceedings of the UML 2001 Workshop on Practical UML-Based Rig-
orous Development Methods, volume 7 ofLecture Notes in Informatics, pages 87–98. GI-
Edition, October 2001.

6. J. Y. Halpern and V. Weissman. Using first-order logic to reason about policies. InProceedings
of 16th IEEE Computer Security Foundations Workshop (CSFW’03), pages 187–201. IEEE
Computer Society Press, July 2003.

7. R. Joosten, J-W. Knobbe, P. Lenoir, H. Schaafsma, and G. Kleinhuis. Specifications for the rge
security architecture. Technical Report Deliverable D5.2Project TSIT 1021, TNO Telecom
and Philips Research, The Netherlands, August 2003.

8. A. Silva and J. Delgado. Agentspace as a framework to support interlibrary cooperation. In
Proeedings of 5th International Conference Crimea 1998, page To appear, 1998.

9. S.A.F.A. van den Heuvel, W. Jonker, F.L.A.J. Kamperman, and P.J. Lenoir. Secure content
management in authorised domains. InThe World’s Electronic Media Event IBC 2002, pages
467–474, September 2002.

Inter-library Service Brokerage in LicenseScript 5

Appendix: LicenseScript code

LicenseScript is based on logic programming and multiset rewriting. The basic con-
struct is the license, which has the following form:

object name(Content, Clauses, Bindings)

Here object name is the name of the LicenseScript object;Content is the unique
identifier of the associated content;Clauses is a list of Prolog clauses that decide if the
operations requested are allowed or forbidden; andBindings is a list of attributes that
carry the status of the LicenseScript object.

A clause has the following form:

head :- body_1,body_2,...,body_n.

Herehead is the head of the clause (i.e., the name and parameters of theclause),
and the conjunction ofbody 1,...,body n is the body of the clause. Authorization
rules, obligations, conditions and mutability are captured by the clauses.

LicenseScript licenses are notionally gathered in a multiset on which multiset rewrite
rules operate. These capture aspects of communication and updates. The rewrite rules
take the following form:

rule name(arguments) : multiset1 −→ multiset2

⇐= conditions

Hererule name is the name for the rule;arguments are the arguments for this rule;
multiset1 andmultiset2 refer to the multiset of before and after the execution of the
rule, respectively; andconditions must be satisfied for the rule to apply. The conditions
invoke queries over the clauses.

To describe inter-library service management with the packager in LicenseScript,
we refine Example 1. The description follows closely that of section 2 (we suggest that
the reader skips step 0 on a first reading):

0 Initially, a number of digital libraries have established business contracts with the
packager to perform service brokerage. For instance, the LicenseScript contract
con, which captures the contract betweenuni lib andpack, can be written as
follows:

con(pack,
[(cancomply(Bcon1,Bcon2,Breq1,Breq2,Bcha1,Bcha2,Blic) :-

get_value(Bcon1,allowable_domains,Domains),
get_value(Breq1,domain,D),is_member(D,Domains),
get_value(Breq1,requirements,Reqs),
get_value(Bcha1,properties,Chas),
validate_requirements(Reqs,Chas),
set_value(Bcon1,paid,true,Blic),
set_value(Bcha1,availability,false,Bcha2)),

(cancompensate(Bcon1,Bcon2,Breq1,Breq2,Blic,Com):-
get_value(Breq1,digital_library,DL1),

6 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

get_value(Bcon1,digital_library,DL2),DL1 =/= DL2,
get_value(Bcon1,compensation,C),
set_value(Bcon1,compensation,C,Blic),
set_value(Bcon1,paid,false,Blic),

(canseek(Bcon1,Bcon2) :-
true)]

[digital_library=uni_lib,compensation=0.1,
currency=euro,paid=false,
allowable_domains=[cs_rge,math_rge]])

Here,get value(W,X,Y) andset value(W,X,Y,Z) are primitives to get
(respectively set) the valueY associated withX in binding listW; bindingallowable domains
stores a list of authorized domains that are allowed to render the resources;digital library
stores the identity of the university (uni lib) to which this request is made; and
validate requirements(·) is a function to perform requirements valida-
tion, which will be explained later.
The clausescancomply,cancompensate andcanseek are Prolog clauses to
determine if the operation performed by a user is allowed or forbidden:cancomply
checks whether the user’s authorized domain is authorized to access the resource,
and validates the requirements of the user with the characteristics of the resource (in
our case,paid indicates whether the compensation is made, andavailability
indicates whether the resource is available);cancompensatedetermines whether
compensation is required by the digital library, it sets thebindingcompensation
in Blic (of lic) to the value ofcompensation in Bcon (of con); canseek
allowspack to ask for updated information of the digital resource from the digital
libraries, which will be explained later.
Similarly, different residential gateways environments (RGE) have established ser-
vice contracts with the packager for service brokerage management. For instance, a
simple form of the LicenseScript service contractser betweenpack andcs rge
can be written as follows:

ser(pack,
[canrequestser(Device,B1,B2) :-

get_value(B1,domain,D),D==Device],
[domain=cs_rge])

Here,canrequestser(·) is a clause that determines whetherDevice is al-
lowed to make a request topack.
Initially, each residential gateway (RG) has a LicenseScript domain listdom, which
stores a list of compliant device identitiesdevices and user identitiesusers:

dom(cs_rge,
[canrequestdom(Subject,Device,B1,B2) :-

get_value(B1,devices,Ds),
get_value(B1,users,Us),
is_member(Device,Ds),is_member(Subject,Us)],

[devices=[pda,computer],users=[alice,bob]])

Here,canrequestdom(·) is a clause that determines whetherSubject is al-
lowed to make a request tocs rge usingDevice.

Inter-library Service Brokerage in LicenseScript 7

1 Alice uses herpda to send a request tocs rge to ask forclip fromuni lib. The
LicenseScript objectreq captures the necessary data (for brevity, here we omit the
details of creatingreq by clauses and rules):

req(clip,
[...],
[requestor=alice,digital_library=uni_lib,device=pda,
requirements=[availability=true,resolution=100]])

Here, bindingrequestor stores Alice’s identity;digital library stores the
library identity from which Alice asks for theclip. There are two requirements
stored in the listrequirements, namelyavailability indicates theclip
must be available; andresolution denotes the minimum required resolution of
theclip.

2 cs rge checks ifpda belongs to the authorized domain. If the check is successful,
cs rge forwards the request to the packagerpack after updating the binding
device (compare toreq from step 1):

req(clip,
[...],
[requestor=alice,digital_library=uni_lib,device=cs_rge,
requirements=[availability=true,resolution=100]])

3 pack sends LicenseScript objectcat to uni lib andcity lib, respectively
requesting the updated characteristics ofclip by executing the ruleseek (with
canseek as shown in step 0):

seek(Object) :
con(pack,Ccon,Bcon1) ->
con(pack,Ccon,Bcon1),
cat(Object,Ccon,Bcon2)

<= Ccon |- canseek(Bcon1,Bcon2)

The LicenseScript objectcat for uni lib is as follows:

cat(clip,
[...],
[packager=pack,digital_library=uni_lib])

4 pack validates Alice’s requestreq with cha of clip fromuni lib.
We use a LicenseScript objectcha to capture characteristics, i.e., current sta-
tus (e.g. availability etc.) and other properties (e.g. resolution, number of pages,
etc.) of a digital library resource. The packager receivescha from uni lib and
city lib. For instance,cha of clip fromuni lib is:

cha(clip,
[...],
[digital_library=uni_lib,borrower=bob,
properties=[availability=no,resolution=500]])

Here, the bindingproperties stores a list of properties ofclip, i.e.,availability
andresolution.
The packager validates the requirements for step 2 using a parametric approach, in
which the list of requirements to be complied with is compared to the characteristics
by the functionvalidate requirements:

8 Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and Geert Kleinhuis

validate_requirements([],[]).
validate_requirements([[Req_name|Req_value]|Reqs],Chas) :-

get_value(Chas,Req_name,Cha_value),
check_requirement(Req_value,Cha_value),
validate_requirements(Reqs,Chas).

Here,check requirement(R,C) is a function to check the requirement value
R and the characteristic valueC. We simply use (in)equalities to compare two values
in check requirements(R,C):

check_requirements(Req_value,Cha_value) :-
Req_value == Cha_value.

We can define a more complex and flexible requirement validation policy by us-
ing more elaborate data structures for the requirements andcharacteristics, and a
matchingcheck requirements rule.
To validate and permit Alice’s request, the packager executes multiset rewrite rule
permit:

permit(Object) :
con(pack,Ccon,Bcon1),
req(Object,Creq,Breq1),
cha(Object,Ccha1,Bcha1) ->
con(pack,Ccon,Bcon2),
cha(Object,Ccha2,Bcha2),
lic(Object,Clic,Blic)

<= Ccon |- cancomply(Bcon1,Bcon2,Breq1,Breq2,Bcha1,Bcha2,Blic),
Ccon |- cancompensate(Breq1,Breq2,Bcon1,Bcon2,Blic)

Here,Ccon |- cancomply(·) andCcon |- cancompensate(·) are the
two conditions of the rulepermit.
In our example, the validation fails becauseclip is not available atuni lib,
therefore the packager validatesreq with cha from city lib. As theclip
is available atcity lib, a LicenseScriptlic is generated for Alice to use the
clip:

lic(clip,
[(canassign(B1,B2,Subject,Device1,Device2) :-

get_value(B1,requestor,S),S==Subject,
get_value(B1,device,D),D==Device1,
set_value(B1,device,Device2,B2)),

(canview(B1,B2,Subject,Device) :-
get_value(B1,device,D),D==Device,
get_value(B1,requestor,S),S==Subject,
get_value(B1,paid,P),P=true)),

(canpay(B1,B2) :-
get_value(B1,compensation,C),
get_value(B1,digital_library,DL),
pays(C,DL),set_value(B1,paid,true,B2))],

[requestor=alice,paid=false,digital_library=city_lib,
device=cs_rge,compensation=0.1])

Inter-library Service Brokerage in LicenseScript 9

Here, there are three clauses, namelycanassign, which can be invoked to de-
cide if Subject can assign the license fromDevice1 to Device2; canview,
which determines ifSubject allows to viewclip on Device; andcanpay,
which is executed to make the payment.pays(X,Y) is a primitive to perform pay-
ment of moneyX to entityY. When the compensation is made, the bindingpaid
is set totrue.

5 The packager then sends the licenselic to cs rge. cs rge can then assign this
license to Alice’spda by executing the following rule:

assign(Object,Subject,D1,D2) :
lic(Object,Clauses,B1)->
lic(Object,Clauses,B1),
lic(Object,Clauses,B2)

<= Clauses |- canassign(B1,B2,Subject,D1,D2)

6 Alice can view theclip by executing the multiset rewrite ruleview (i.e., clicking
a “View” button on her PDA):

view(Object,Subject,Device) :
lic(Object,Clauses,Bindings1) ->
lic(Object,Clauses,Bindings2)

<= Clauses |- canview(Bindings1,Bindings2,Subject,Device)

However, to view theclip, Alice is required to pay the compensation tocity lib
by executing multiset rewrite rulepay:

pay(Object) :
lic(Object,Clauses,Bindings1) ->
lic(Object,Clauses,Bindings2)

<= Clauses |- canpay(Bindings1,Bindings2)

Here, the consequence of executing rulepay, the bindingpaid is set totrue,
which indicates that Alice is now allowed to viewclip.

