
A Multi-Pattern Scheduling Algorithm

Yuanqing Guo Cornelis Hoede Gerard J.M. Smit

University of Twente, Department of EEMCS

P.O. Box 217, 7500AE Enschede, The Netherlands

Abstract

In a coarse-grained reconfigurable architec-
ture, the function of resources such as Arith-
metic Logic Units (ALU) can be reconfigured
at run-time. The traditional scheduling algo-
rithms always assume a fixed resource pattern.
In this paper, we propose an efficient schedul-
ing algorithm assuming that different resource
patterns are given. The multi-pattern schedul-
ing algorithm is based on the list scheduling al-
gorithm. The complexity of the proposed al-
gorithm is linear in the number of given pat-
terns.

1 Introduction

The scheduling problem is concerned with as-
sociating tasks of a Control Data Flow Graph
(CDFG) to clock cycles such that certain con-
straints are met. This is an optimization prob-
lem, and is specified in several ways depending
on the constraints: (1) Unconstrained schedul-
ing finds a feasible schedule that obeys the
precedence constraints on the graph. (2) Time-
constrained scheduling minimizes the num-
ber of required resources when the number of
clock cycles is fixed. (3) Resource-constrained
scheduling minimizes the number of clock cy-
cles when the number of resources is given.

There are many resource-constrained
scheduling algorithms existing in the litera-
ture. Most of them assume that the constraint
is given in terms of the number of tasks of
each type. For example, there are two multi-
pliers and four adders in the system. If the
combination of concurrent existing resources
is called a pattern, the traditional work on
resource-constrained scheduling algorithms

uses only one fixed pattern.

Recently reconfigurable systems have drawn
more and more attention for its combination
of flexibility with programmability. In a re-
configurable system, the types and number of
resources can be changed by reconfiguring the
resources at run-time. In a coarse-grained re-
configurable system such as the Montium [1],
designed by the University of Twente, differ-
ent patterns are allowed when the total num-
ber of computational cores is fixed. A Mon-
tium tile has five computational cores which,
for instance, can be configured to compute two
additions and three multiplications during the
first clock cycle, and one addition, two sub-
stractions and two bit-or operations during the
second clock cycle. One Montium tile allows
up to 32 different configurations, i.e., patterns.
In this paper we propose an efficient schedul-
ing algorithm assuming given multiple resource
patterns.

Most scheduling problems are NP-complete
problems. To solve the scheduling problems,
exact algorithms, which find optimal solu-
tions, or heuristic algorithms, which find feasi-
ble (possibly suboptimal) solutions have been
used. Most exact algorithms employ Integer
Linear Programming (ILP) to compute the
optimal solutions [5]. Two commonly used
heuristic algorithms are: list scheduling [2][3]
and force-directed scheduling[4]. These algo-
rithms iteratively select and schedule one op-
eration at a time within an appropriate clock
cycle. Among them, list scheduling is more
often used in resource constrained scheduling
problems.

1



2 Problem Description

On a CDFG a node represents an operation
and a directed edge denotes a conditional de-
pendency between two operations.

The depth of a node is defined as the length
of the largest path of the node in the data flow
graph. We assume that the node without suc-
cessors has depth equal to 1.

Given a set of patterns P1, P2, · · ·PR, the
scheduling problem is to assign nodes on a
CDFG to clock cycles such that the conditional
dependencies between nodes are satisfied, and
within each clock cycle, the needed resources
are according to the resources defined by one of
the given patterns, and furthermore, the num-
ber of clock cycles is minimized.

3 A Multi-Pattern List Schedul-

ing Algorithm

3.1 Algorithm Description

A list based algorithm maintains a candidate
list of candidate nodes, i.e., nodes whose pre-
decessors have already been scheduled. The
candidate list is sorted according to a prior-
ity function of these nodes. In each iteration,
nodes with higher priority are scheduled first
and lower priority nodes are deferred to a later
clock cycle. Scheduling an node within a clock
cycle makes other successor nodes candidates,
which will then be added to the candidate list.

For multi-pattern scheduling, for one clock
cycle, not only nodes but also a pattern should
be selected. The selected nodes should not use
more resources than the resources presented in
the selected pattern. For a specific candidate
list C and a pattern Pi, a selected set S(Pi, C)
is defined as the set of nodes from C that will
be scheduled if the resources are given by Pi.

The multi-pattern scheduling algorithm is
given in Figure 1. In total two types of pri-
ority functions are defined here, the node pri-
ority and the pattern priority. The former is
for each node in the graph and the latter is
for scheduling a candidate list by one specific
pattern.

1. Compute the priority function for each node in
the graph.
2. Get the candidate list.
3. Sort the nodes in the candidate list according to
their priority functions.
4. Schedule the nodes in the candidate list from
high priority to low priority using each given pat-
tern.
5. Compute the priority function for each pattern
and keep the one with highest priority function.
6. Update the candidate list.
7. If the candidate list is not empty, go back to 3;
else end the program.

Figure 1: Multi-Pattern List Scheduling Algo-
rithm

3.2 Node Priority

In the algorithm, the following priority func-
tion for graph nodes is used:

f(n) = s × depth + t × #direct successors
+#all successors

(1)
Here #direct successors is the number of the
successors that follow the node directly, and
#all successors is the number of all successors.
Parameter s and t are used to distinguish the
importance of the factors. s and t should sat-
isfy the following conditions:

s ≥ max{t × #direct successors
+#all successors}

t ≥ max{#all successors}
(2)

These conditions guarantee that the node with
largest depth will always have the highest pri-
ority; For the nodes with the same depth,
the one with more direct successors will have
higher priority; For the nodes with both the
same depth and the same number of direct suc-
cessors, the one with highest number of succes-
sors will have highest priority.

3.3 Pattern Priority

Intuitively for each clock cycle we want to
choose the pattern that can cover most nodes
in the candidate list. This leads to a definition
of the priority function for a pattern P corre-
sponding to a candidate list C.

F (P, C) = number of nodes inS(P, C).
(3)



On the other hand, the nodes with higher
priorities should be scheduled before those with
lower priorities. That means that we prefer the
pattern that covers more high priority nodes.
Thus we define the priority of a pattern as the
sum of priorities of all nodes in the selected set.

F (P, C) =
∑

n∈S(P,C) f(n). (4)

3.4 Example

Figure 2: Multi-pattern scheduling example:
3FFT algorithm

Table 2: Final scheduling
clock cycle scheduled nodes

1 a2,a4,b6

2 a7,a24,b3,c10,c11

3 a8,a16,b5,c12

4 a17,b1,c13,c14

5 a18,a20,a21,c9

6 a15,a22,a23

7 a19

We explain the algorithm with the help of
the 3-point Fast Fourier Transform (3FFT) al-
gorithm. The CDFG of 3FFT consists of ad-
ditions, subtractions and multiplications, as
shown in Figure 2. The nodes denoted by
“a”s are additions; while those with “b” repre-
sent subtractions and the nodes with “c” mul-
tiplications. Two patterns are assumed to be
given here: pattern1 = “aabcc” and pattern2
= “aaacc”. The scheduling procedure is shown
in Table 1. Initially, there are six candidates:
{a2, a4, b1, b3, b5, b6}. If we use pattern1
{a2, a4, b6} will be scheduled, and if we use
pattern2 {a2, a4} will be scheduled. Because
the priority function of pattern1 is larger than
that of pattern2, pattern1 is selected. For the

second clock cycle, pattern1 covers nodes {a7,
a24, b3, c10, c11} while pattern2 covers {a7,
a16, a24, c10, c11}. The difference between
the use of the two patterns lies in the differ-
ence between b3 and a16. If we use the pat-
tern priority function of Equation (3), the two
patterns are equally good. The algorithm will
pick one at random. If we use Equation (4) as
pattern priority function, pattern1 will be cho-
sen because the depth of b3 is larger than that
of a16. The final scheduling result using Equa-
tion (4) as pattern priority is shown in Table
2.

3.5 Complexity comparison with fixed-

pattern list scheduling

For each clock cycle, the multi-pattern schedul-
ing algorithm schedules the nodes in the can-
didate list using every given pattern. The rest
is the same as in the traditional resource con-
strained list scheduling algorithm which uses
a fixed pattern. The computational complex-
ity of the multi-pattern scheduling algorithm
is therefore O(R×Complexity of fixed-pattern
list algorithm), where R is the number of given
patterns.

4 Experimental Results

We ran the multi-pattern scheduling algorithm
on 3-, 5- and 15-point Fast Fourier Transform
(3FFT, 5FFT and 15FFT) algorithms. For
each algorithm two different pattern priorities
were tested. See Table 3 for the experimental
results. The number gives the number of clock
cycles needed. From the simulation results we
have the following observations:

• As more patterns are allowed the number
of needed clock cycles gets smaller. This
is the benefit we get from reconfiguration.

• In most cases the pattern priority function
Equation (4) leads to better scheduling
than the priority function given by Equa-
tion (3). However because of the greedy
strategy of the list algorithm, there is no
single priority function which can guaran-
tee to find the best solution.



Table 1: Scheduling Procedure
clock cycle candidate list pattern1 =“aabcc” pattern2 =“aaacc” selected pattern
1 a2,a4,b1,b3,b5,b6 a2,a4,b6 a2,a4 1

2 b1,b3,b5,c11,a24, a16,c10,a7 a7,a24,b3,c10, c11 a24,a16,a7,c11, c10 1

3 a8,a16,b1,b5,c12 a8,a16,b5,c12 a8,a16,c12 1

4 b1,c14,a17,c13 a17,b1,c13,c14 a17,c13,c14 1

5 a18,a20,a21,c9 a18,a20,c9 a18,a20,a21,c9 2

6 a15,a22,a23 a15,a22 a15,a22,a23 2

7 a19 a19 a19 1

Table 3: Experimental results: Number of Clock cycles in Final Scheduling
3FFT 5FFT 15FFT

number of nodes 24 62 544
pattern priority Eq. (3) Eq. (4) Eq. (3) Eq. (4) Eq. (3) Eq. (4)
“aabcc” 8 17 153
“aabcc”,“aaacc” 7 7 16 16 139 139
“aabcc”,“aaacc”,“aaaac” 7 7 16 15 143 134
“aabcc”,“aaacc”,“aaaac”,“aabbc” 6 7 14 14 127 117
“acccc”,“abbbc”,“aaaaa”,“aabbc” 119 110
”abcaa”,“ccccc”,“aaaaa”,”bbbbb” 109 109

• The selection of patterns has very strong
influence on the scheduling results!

5 Conclusions and Future Work

This paper presents an efficient scheduling al-
gorithm for reconfigurable architectures where
multiple resource patterns are allowed. The
multi-pattern scheduling algorithm is a list
based algorithm which chooses the best pat-
tern as well as the best nodes according to pri-
ority functions for each clock cycle. Two pat-
tern priority functions have been tested in the
simulation. One of them shows better results
than the other. The algorithm has low com-
putational complexity, i.e., it is linear in the
number of patterns. Due to the use of more
patterns, fewer clock cycles are needed for an
application.

From the simulation we can see that the
choice of patterns is very important for
scheduling! This leads to another research
topic: pattern selection, which will be ad-
dressed in our future work.

References

[1] Paul M. Heysters, Gerard J.M. Smit, E.
Molenkamp: “A Flexible and Energy-Efficient
Coarse-Grained Reconfigurable Architecture
for Mobile Systems”, The Journal of Super-
computing, Vol 26, No. 3, Kluwer Academic
Publishers, Boston, U.S.A., November 2003,
ISSN 0920-8542.

[2] B.M. Pangrle and D.D. Gajski, “Design Tools
for Intellegent Compilation,” IEEE Trans.
Computer-Aided Design, Vol. CAD-6, No. 6,
Nov.1987, pp. 1098-1112.

[3] T.C. Hu, “Parallel Sequencing and Assembly
Line Problems,” Operations Research, Vol.9,
No.6, Nov.1961. pp. 841-848.

[4] P.G. Paulin and J.P. Knight, “Algorithms for
High-Level Synthesis,” IEEE Design and Test
of Computers, Vol.6, No.4, Dec. 1989, pp.18-
31.

[5] L.J.Hafer and A.C. Parker, “A Formal
Method for the specification, Analysis, and
Design of Register-Transfer Level Digital
Logic,” IEEE Trans. Computer-Aided Design,
Vol. CAD-2, No.1, Jan. 1983, pp. 4-18.


