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Abstract. Context-aware applications use and manipulate context information 
to detect high-level situations, which are used to adapt application behavior. 
This paper discusses the specification of situations in context-aware applica-
tions and introduces a rule-based approach to detect situations. Situations are 
specified using a combination of UML class diagrams and OCL constraints. We 
support a wide range of situations, which can be composed of more elementary 
kinds of context. We discuss how to cope with distribution and to exploit it 
beneficially for context manipulation and situation detection. We employ a ge-
neric rule-based platform (DJess [2]) to support the derivation of situations in a 
distributed fashion. 

1   Introduction 

Context-aware applications use and manipulate context information to detect the 
situations of users and adapt their behaviour accordingly. Context-awareness has 
become an important and desirable feature for ubiquitous computing, in which 
applications not only use context information to react on a user’s request, but also 
take initiative as a result of (continuously-running) context reasoning activities. In 
this sense, ubiquitous context-aware applications can be characterized as attentive in 
addition to reactive. An example is an application that adapts the quality of audio and 
video streams automatically according to battery power consumption and the kind of 
network connectivity available, without user intervention.  

The design of context-aware applications is a challenging task, which justifies the 
development of novel methods, abstractions and infrastructures (e.g., [1, 3, 4, 6, 14]). 
This paper proposes an approach to the specification and realization of situation 
detection for attentive context-aware applications. Our aim is to facilitate application 
design by providing abstractions for the specification of context-aware applications, 
in particular those related to the detection of situations based on context information. 
In order to detect situations attentively, a rule-based approach to situation detection is 
proposed. This solution is based on the use of a general-purpose rule-based platform, 
which guarantees the efficiency of situation detection.  



Situations are specified using standard UML 2.0 [18] class diagrams which are 
enriched with OCL 2.0 [17] constraints to define the conditions under which situa-
tions of a certain type exist. We support a wide range of situations, which can be 
composed of more elementary kinds of context. To transform the specification into a 
set of rules to be executed directly on the rule-based platform, we identify a number 
of patterns for rule detection realization. The rule set which is derived systematically 
from the specification can be deployed directly in the Jess rule engine. We employ 
the DJess distributed rule-based platform [2] to support the derivation of situations in 
a distributed fashion. This paper extends our work presented in [7], which has not 
discussed situation realization, detection and distribution. 

The paper is further organised as follows. Section 2 discusses how context is mod-
elled in our approach drawing on our previous work [7, 8]. Section 3 discusses the 
specification of situation types. Section 4 elaborates on the realization of situation 
detection with the help of rule engines. Section 5 discusses how situation detection 
can be done in a distributed fashion according to different scenarios. This is done to 
exploit distribution beneficially for context manipulation and situation detection, not 
only for scalability purposes but also to address information privacy concerns. Sec-
tion 6 discusses related work, and, finally, Section 7 summarises our results and 
indicates future research. 

2   Context Models 

A context-aware application is a distributed application that adapts its behaviour 
according to its users’ context. Figure 1 depicts a user interacting with a context-
aware application. The application obtains context information from the user’s 
environment (e.g., by means of sensor technology) in order to reason about context 
and detect situations of interest. 
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Figure 1. Users, their context and a context-aware application 

Context can be defined as “the interrelated conditions in which something exists” 
[15]. This definition reveals that context is only meaningful with respect to a thing 
(that “exists”), which we call here an entity. The concept of entity is fundamentally 
different from the concept of context: context is what can be said about an entity, i.e., 
context does not exist by itself. Examples of entities are persons, computing devices 
and buildings. The context of an entity can have many constituents (“interrelated 
conditions”). Examples of some constituents of the context of a person are the per-
son’s location, mental state, and activity. In the remainder of this paper, we use the 
term context to refer to constituents of the context of an entity. Together, these 
constituents form the entity’s context.  



The process of identifying relevant context consists of determining the “condi-
tions” of entities in the application’s universe of discourse (e.g., a user or its envi-
ronment) that are relevant for a context-aware application or a family of such applica-
tions. The representation of these relevant conditions or circumstances is called here a 
context model. We define a context model as a conceptual model (in the sense of 
[16]) of context. In previous work [7, 8], we have defined conceptual foundations that 
can be used beneficially in context modeling. These conceptual foundations include 
the separation of entity and context types, which are represented here as UML 
classes. We briefly discuss these foundations in the sequel. The work presented in [7, 
8] provides a more detailed discussion.    

Intrinsic Context 
We characterize context as either Intrinsic or Relational. Intrinsic context defines a 
type of context that belongs to the essential nature of a single entity and does not 
depend on the relationship with other entities. Figure 2 depicts examples of intrinsic 
context types. Geographic location (GeoLocation) is context that inheres in all spatial 
entities. Similarly, battery power (BatteryPower) inheres in a computing device 
(Device). Analogous reasoning can be applied to other context types depicted here. 

 
Figure 2. Intrinsic context types 

Intrinsic context types are associated with a data type such that an instance of an 
intrinsic context type is assigned to a value of this data type. The geographical loca-
tion of an entity is an example of intrinsic context type, whose data type consists of 
all possible values in a geographical coordinate system, represented by the GeoCoor-
dinate datatype. 

Relational Context 
While intrinsic context inheres in a single entity, relational context inheres in a 
plurality of entities. Figure 3 shows examples of relational context types. Relational 
context may be used to relate an entity to the collection of entities that play a role in 
the entity’s context. Examples of relational context are DeviceAvailability, Net-
workAvailability, SocialNetwork and ChannelAvailability. The DeviceAvail-



ability relational context relates a person to a collection of devices that are available 
to that person. NetworkAvailability relates a device to a collection of networks that 
are available through that device, SocialNetwork relates a person to the collection of 
persons interacting with that person by any communication channels, and Channe-
lAvailability relates a device to a collection of communication channels supported 
by that device (e.g., e-mail, voice and SMS). 

 
Figure 3. Relational context types 

3   Situation Models 

The context models we have discussed in the previous section, allow application 
designers to represent a context-aware application’s universe of discourse. In this 
section, we introduce situation models, which explicitly represent particular situations 
of interest, given a certain context model. 

Situations define particular states of affairs which are of interest to applications. 
They are composite concepts whose constituents are the elements of our context 
models, i.e., entities, and intrinsic and relational contexts. In this sense, situation 
models should extend and comply with the context models. For example, a situation 
model can represent the situation in which “John is near Alice and their mobile 
phones are available” or “John has a fever and influenza”. The underlying context 
model for this example should define that a person may be near another person and 
that a person may own a mobile phone. 

In our approach we define situation types, which aim at characterizing situations 
with similar properties. For example, the situation type “John is within 50 meters 
from Alice” consists of all situation instances in which the distance between John’s 
and Alice’s location values is less than 50 meters. Similarly, the situation type “Per-
son is within 50 meters from another person” consists of all situation instances in 
which the distance between any two persons’ location values is less than 50 meters. 
Although unanticipated situation instances are supported at application runtime, 
situation types are defined at application design-time.  

The examples used throughout the paper illustrate a range of situation patterns that 
are relevant for context-aware applications. These patterns involve the different kinds 
of context (intrinsic and relational) and entities, which are the building blocks used to 
compose situations. We use a combination of UML class diagrams and OCL con-
straints to specify situations.  



3.1 Situations involving intrinsic context 

Situations involving intrinsic context are composed by a unique entity and part of its 
intrinsic context. The following example represents a situation type (Situa-
tionAvailable) that captures the availability and willingness to communicate of 
MSN and Skype users.  

Figure 4 depicts a fragment of the structural context model that represents the 
MsnStatus and SkypeStatus intrinsic context types, which model the user’s 
communication status while using MSN and Skype, respectively. A person, while 
playing the role of MsnUser is associated with MsnStatus context type, and while 
playing the role of SkypeUser is associated with SkypeStatus context type. The 
enumeration data types SkypeStatusEnum and MsnStatusEnum define all possible 
values for SkypeStatus and MsnStatus, respectively. 

 
Figure 4. Fragment of context model 

Figure 5 depicts a situation model which builds on the context model presented in 
Figure 4, defining the situation type SituationAvailable. The OCL invariant in this 
diagram is a predicate that must hold for all instances of SituationAvailable. It 
defines that instances of SituationAvailable must be either associated with a user 
available in Skype (with SkypeStatus set to Online or SkypeMe) or a user available 
in MSN (with MsnStatus set to Online or BeRightBack). The OCL operation oclIs-
Undefined() is part of the OCL standard library and tests whether the value of an 
expression is undefined. 

 
Figure 5. SituationAvailable specification 



Figure 6 shows an example of situation involving two entities and their intrinsic 
context. Their locations are compared such that instances of SituationWithinRange 
hold if two persons are located within a certain range (defined as an attribute of the 
SituationWithinRange class). This model builds on the context model defined in 
Figure 2. 

 
Figure 6. SituationWithinRange specification 

3.2 Situations involving relational context 

Situations involving relational context are constituted by at least two entities and part 
of their relational contexts. The following example discusses a situation in which a 
device has established a connection (relational context type) to each of the two 
network types, WLAN, and Bluetooth (entities). By explicitly modeling the connec-
tions as relational context, we are able to assign properties to these connections, such 
as access rights and negotiated QoS. 

Figure 7 depicts the structural context models representing the types and relation-
ships that are relevant for this example. According to this diagram, a Device may be 
connected to a Network through the relational context Connection. 

 
Figure 7. Fragment of context model 

Figure 8 depicts the situation type SituationConnected. The OCL invariant defines 
that instances of this situation must be associated with at least one connection object.  



 
Figure 8. SituationConnected specification 

3.3 Situation of situations 

Situation themselves may be composed of other situations. Suppose we would like to 
know when a device switches from a WLAN connection to a Bluetooth connection in 
order to set new quality of service parameters. Since SituationConnected has been 
already defined in Figure 8, in order to detect SituationSwitch, we would have to 
verify whether SituationConnected held in the past for network WLAN, and currently 
holds for network Bluetooth. We may add the additional constraint that the handover 
time should not be greater than one second. This example is depicted in Figure 9, 
showing that SituationSwitch can be modeled by composing multiple occurrences 
of SituationConnection, one called wlan, and the other called bluetooth. 

 
Figure 9. SituationSwitch specification 

This situation requires using temporal aspects, which are represented in our approach 
by means of initial and final times. Each situation type extends the SituationType 
class inheriting these temporal attributes. The initialtime attribute captures the 
moment a situation begins to hold, and the finaltime attribute, the moment a situa-
tions seizes to hold. Since we capture the finaltime, our model represents past 
occurrences of situations1. We also include temporal operations for relating situations 

                                                           
1 The invariants as presented in the figures are violated for past occurrences of situations. In order to avoid 

that, we should include, for each invariant, a disjunction with a predicate that verifies whether this situa-



in their occurrence intervals, such as precedence, overlapping, and post-occurrence. 
These operations are defined in OCL in terms of initial and final times, and can be 
used in the definition of situations. 

4   Rule-Based Implementation 

In a rule-based implementation, the designer defines rules which are applied to facts 
in a working memory. The mechanism used for rule application (and in our case 
situation detection) is based on the Rete algorithm [11], which efficiently matches the 
patterns for situations by remembering past pattern matching tests. Only new or 
modified facts are tested against the rules.  

Figure 10 depicts the elements of our approach with the correspondence between 
the UML specification, the Java code and the Jess code at the template level (design-
time). At the instance level (run-time) the figure depicts the relations between the 
user’s context and the rule-based implementation. Context sources provide context 
information, which is input as facts in the engine’s working memory.  

 

 
application 
designers 

situation models 
(UML + OCL) 

 

context models 
(UML + OCL) 

 

context models
(UML class 
diagram) 

situation models 
(UML class 
diagram)

condition 1 

condition 3 

… 

 
context 

condition 2 

service users 

rule 
engine 

  
 

working 
memory 

rule 
set 

 
 

app. 
entity 

context models 
(UML + OCL) 

context models 
(Java classes) 

 

context models 
(UML + OCL) 

context fact 
templates (Jess) 

context models
(UML + OCL) 
situation  models 

(Java classes) 
 

context models 
(UML + OCL) 

situation fact 
templates (Jess) 

Template level 
(design-time) 

Instance level 
(run-time) 

context models 
(UML + OCL) 

situation detection 
rules (Jess) 

“shadow” 
mechanism 

“shadow” 
mechanism 

situation models
(UML + OCL) 
situation models 
(OCL invariants) 

context sources 

context sources 

specification  realization 

Universe of discourse 

 
Figure 10. Correspondences between UML specifications, and Java and Jess code 

We have used shadow facts to implement our structural context models. This is a 
mechanism offered by Jess to serve as a connection between the working memory 
and a Java application. Objects created in Java are reflected in the working memory. 
Therefore, any alterations in Java objects are automatically perceived by the Jess 

                                                                                                                                           
tion is a past occurrence (not finaltime.oclIsUndefined()). We omit this predicate for the sake of readabil-
ity. 



working memory. The Java classes in our implementation directly reflect the UML 
models defined at the context model, such that their generation can be automated. We 
have used Octopus (http://www.klasse.nl/octopus) for generating java code from 
UML2.0 class diagrams.  

Once we have defined the structural context models, we can carry out the situation 
detection realization. Similarly to the structural context model, each situation type, as 
specified in the UML class diagram, corresponds to a Java class, as well as a shadow 
fact template. Situation instances are represented as shadow facts that are created and 
deactivated by rules for situation detection. Each situation type leads to the definition 
of two rules, namely a rule for situation fact creation, and a rule for situation fact 
deactivation. Conditions for enabling these rules are derived from the invariants of 
situation classes. The rule for situation creation detects when an invariant becomes 
true, and the rule for situation deactivation detects when the invariant becomes false.  
We have identified patterns of situation types that are systematically mapped to Jess 
code. Automatic code generation from OCL to Jess is work in progress. 

A situation fact life cycle consists of creation, activation, deactivation and destruc-
tion. The activation of a situation fact occurs simultaneously to its creation, and the 
deactivation occurs when the situation invariant no longer holds. Figure 11 uses a 
UML 2.0 activity diagram to show when situations should be created or deactivated. 
When the invariant holds and the situation fact does not exist yet, the situation fact is 
created; when the invariant no longer holds, the situation fact is deactivated.  

 
Figure 11. Activity diagram for situation creation and deactivation 

Deactivated situation facts consist of historical records of situation occurrence, which 
may be used to detect situations that refer to past occurrences. Currently, we imple-
ment a simple rule-based time-to-live mechanism for historical records, which con-
siders the final time of deactivated situation facts. We have identified that situation 
realization in Jess follows certain patterns of implementation. Table 1 depicts how 
creation and deactivation rules should be formulated. 

Table 1. Creation and deactivation rules 

Creation Rule Deactivation Rule 
(situation type invariant) 

(not (situation exists)) 

=> 

create (situation) 

[RaiseEvent()] 

(not (situation type invariant)) 

(situation exists) 

=> 

deactivate (situation) 

[RaiseEvent()] 



 
These rules are written in the Jess language. Conditions and actions are separated by 
the symbol “=>”. The condition part (or left hand side) consists of patterns that match 
facts in the working memory. A pattern is represented in between parentheses, such 
as (situation type invariant). The action part of a rule (or right hand side) 
contains function calls, such as the functions to create and to deactivate situations. 

The condition part of a creation rule checks whether the OCL invariant holds, and 
whether there is already an instance of that particular situation currently active (final 
time not nil). If these conditions are met, a situation fact is created, and optionally, an 
event can be raised. Analogously, the condition part of a deactivation rule checks 
whether the OCL invariant no longer holds, and there is a current situation fact active. 
When these conditions are met, this situation instance is deactivated, and optionally, 
an event can be raised. Figure 12 depicts how SituationConnected and Situation-
Switch (see section 3) are implemented in Jess. 

 ;Creation rule (SituationConnected) 
(defrule create_situation_connected 
   (Device (OBJECT ?dv) (hasContext ?contexts) (sizeContexts ?s)) 
   (test (?dv hasContextType "context_control.Connection")) 
   (not (SituationConnected (OBJECT ?st) (device ?dv) (finaltime nil))) 
  => 
   (bind ?SituationConnected (new situation_control.SituationConnected ?dv)) 
   (definstance SituationConnected ?SituationConnected)) 

;Deactivation rule (SituationConnected) 
(defrule deactivate_situation_connected 
   (Device (OBJECT ?dv) (identity ?id) (hasContext ?ctxs) (sizeContexts ?size)) 
   (test (not (?dv hasContextType "context_control.Connection"))) 
   (SituationConnected (OBJECT ?st) (device ?dv) (finaltime nil)) 
   => 
   (call ?st deactivate)) 

;Creation rule (SituationSwitch) 
(defrule create_situation_switch 
   (Device (OBJECT ?dv) (identity ?dvid)) 
   (SituationConnected (OBJECT ?SWlan)  
                       (device ?device&:(eq (call ?device getIdentity) ?dvid)) 
                       (network ?net&:(instanceof ?net context_control.WLAN)) 
                       (finaltime ?finaltime&:(neq ?finaltime nil))) 
   (SituationConnected (OBJECT ?SBlue) (device ?dv)  
                       (network ?net2&:(instanceof ?net2 context_control.Bluetooth)) 
                       (starttime ?start) (finaltime nil)) 
   (test (<= (- (call ?start getTime)(call ?finaltime getTime)) 60000))   
   (not (SituationSwitch (OBJECT ?st) (wlan ?SWLAN) (bluetooth ?SBlue)  
                         (finaltime nil))) 
   => 
   (bind ?SituationSwitch (new situation_control.SituationSwitch ?SWlan ?SBlue)) 
   (definstance SituationSwitch ?SituationSwitch)) 

 
Figure 12. Situation realization in Jess 

The condition part of the create_situation_connected rule checks whether there is 
a Connection relational context in the list of contexts of that device. This part of the 
condition corresponds to the OCL invariant defined in Figure 8.  In addition, it checks 
whether a SituationConnected instance does not already exist for that device. When 
these conditions are met, the action part is triggered, i.e., an instance of Situation-
Connected is created for that device. 

The condition part of the deactivate_situation_connected rule, on the con-
trary, checks whether the device is no longer connected to a network, and if there is 



an existing SituationConnected for that device. If these conditions are met, that 
particular instance of SituationConnected is deactivated, and can be used in the 
future as a historical record. 

The condition part of the create_situation_switch rule checks whether there 
was an instance of SituationConnected with network WLAN in the past (finaltime 
not nil), and currently there is an instance of SituationConnected with network 
Bluetooth. In addition, the handover time should not be greater than 60 seconds. 
These parts of the condition correspond to the OCL invariant depicted in Figure 9. As 
in all creation rules, the condition also checks whether there is no instance of Situa-
tionSwitch for that particular handover currently active. When these conditions are 
met, an instance of SituationSwitch is created. We did not include here the deacti-
vate_situation_switch  rule for the lack of space.  

To allow maintenance of past situations, we use a mechanism based on object seri-
alization to preserve the situation state at the time the situation was deactivated. When 
a situation is deactivated, a serialized copy of the situation is created and stored for 
future use. Serialized objects are given unique identifiers, so that they can be re-
trieved unambiguously. For this reason, when checking the existence of a past in-
stance of SituationConnected, we have used an unique identifier of the device 
(call ?device getIdentity), instead of the object identifier (device ?dv) as in 
the currently active instance.  

5   Distribution Issues  

So far, we have focussed on the various rule patterns for the detection of the various 
kinds of situation. We have presented the realization solutions without regard for 
distribution, as if situation detection were based on a single rule engine, working with 
a single set of rules and a single working memory. In this section, we consider alter-
native distribution scenarios, and discuss their trade-offs. 

Firstly, we consider the fully centralized scenario, in which no distribution is em-
ployed. In this scenario, context sources feed context information into the central rule 
engine’s working memory, as depicted in Figure 13. This is the simplest scenario, and 
has limited scalability with respect to the number of situations detected, even when 
situations are entirely independent of each other, i.e., when situations are detected 
using context conditions that are sensed independently, and are not composed of 
other situations. The centralized approach introduces a single point of access to 
context information, which can be considered a potential (privacy) hazard, due to the 
sensitive nature of particular kinds of context information.  
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Figure 13. Centralized scenario 

Secondly, we consider a scenario with multiple hub-and-spokes for situation detec-
tion. In this scenario, multiple engines detect independent situations. The level of 
distribution is constrained by the nature of the situation model, each hub-and-spoke 
pattern consisting of a centralized solution. In this approach, each rule engine may be 
associated to a different administrative domain, which enables more fine-grained 
control of the (privacy) policies which apply to the context information for that 
domain. The solution is highly constrained by the nature of the situation model, since 
all related situations must be detected in the scope of the same rule engine. Figure 14 
depicts this solution with two rule engines detecting independent situations 1 and 2. 
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Figure 14. Multiple hub-and-spokes scenario 

Finally, we consider a distribution scenario with a higher level of distribution that not 
only exploits possible independent situations, but that is able to decompose situation 
detection further, and distribute parts of the rule detection functionality to different 
rule engines. Different distribution strategies and rule engine configurations can be 
accommodated using this approach. Figure 15 depicts a possible configuration with 
two independent situations 1 and 2 detected independently in rule engines A and B 
(as in the hub-and-spokes scenario). The facts corresponding to those situations are 
shared with a rule engine C, which detects a situation 3 which is derived from situa-



tions 1 and 2. We employ a shared working memory mechanism that is part of the 
DJess infrastructure [2] to realize this approach. With this mechanism, rule engines 
running in different nodes can apply rules on shared sets of facts. A rule engine may 
participate in multiple shared memory partnerships (which are called Web of Infer-
ence Systems in DJess), each of which defining a shared set of facts, thus allowing 
arbitrary configurations. 
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Figure 15. Distributed scenario 

The distributed scenario enables fine-grained control of the policies that apply to 
context information, since different rule engines and parts of situation detection can 
be associated with different administrative domains. The policies for context informa-
tion may justify in this scenario different distribution strategies. For example, con-
sider an application that uses the distance between two users to determine whether 
users can view each other’s contact information. Suppose further that GPS location is 
used to compute the distance between users. Due to the sensitive nature of the “raw” 
GPS location, different policies apply to this information, and to the aggregate and 
usually less sensitive distance information. In this case, GPS location should be only 
available to the engines that derive proximity information. Only the aggregated 
proximity information should be shared with other engines that define contact infor-
mation visibility. 

6   Related Work 

Several approaches presented in the literature [12, 13, 19] support the concept of 
situation as a means of defining particular application’s states of affairs. These 
approaches usually apply centralized mechanisms, and instead of detecting situations 
attentively, they offer reactive query interfaces, which do not take the initiative of 
generating events upon situation detection.  

The work presented in [13] discusses a situation-based theory for context-
awareness that allows situations to be defined in terms of basic fact types. Fact types 
are defined in an ORM (Object-Role Modeling) context model, and situation types 
are defined using a variant of predicate logic. The realization supported by means of a 
mapping to relational databases, and a set of programming models based on the Java 



language. Although CML is based on a graphical notation, to the best of our knowl-
edge, there is no modeling tool available for graphical situation specification.  In 
addition, the implementation, as reported in [13], does not consider situation detec-
tion distribution.  

None of the approaches we have studied use UML 2.0 in combination with OCL 
invariants for defining situation types. UML is unfairly underestimated in the context-
awareness community. As we have seen in this paper, UML can be an appropriate 
and effective tool for modeling context and situations types. Furthermore, UML is 
currently widely adopted as a general modeling language, with extensive documenta-
tion and tool support. 

7   Conclusions 

We have proposed a novel approach for the specification and realization of situation 
detection for attentive context-aware applications. The specification approach is 
based on our earlier work on conceptual modeling for context information, and uses 
standard UML class diagrams for graphical representation of context models and 
situation models. Situations can be composed of more elementary kinds of context, 
and in addition can be composed of existing situations themselves. We have ad-
dressed the temporal aspects of applications, and included primitives to relate situa-
tions based on their temporal aspects.  

The realization is rule-based, and executes on mature and efficient rule engine 
technology available off-the-shelf. The rule set is derived systematically from the 
specification and has been deployed directly in the Jess rule engine. We have argued 
that a distributed solution to situation detection has benefits, which apply to context-
aware applications in particular. We have realized communication between rule 
engines by using the DJess shared memory mechanism, which allows different 
engines to execute their rule base in a shared set of facts. 

This work is part of a larger effort towards a generic infrastructure to support con-
text-aware applications. The use of a rule-based approach enables us to perform 
situation detection efficiently, and to generate events for situation detection with little 
effort. In addition, we also apply rule-based approaches to implement Event-
Condition-Action (ECA) rules in our infrastructure [9]. 

As part of future work, we intend to study more complex mechanisms for discard-
ing historical situation records that will no longer be used. Our current solution uses 
time-to-live for discarding historical records. Other solutions include separating 
situation types that require historical data, by analyzing the constraints and detecting 
the use of finaltime attribute. In this last case, we may have situations that use 
finaltime, but not necessarily need to be maintained indefinitely. 

Acknowledgements  

This work is part of the Freeband AWARENESS and A-MUSE projects 
(http://awareness.freeband.nl and http://amuse.freedband.nl). Freeband is sponsored 
by the Dutch government under contract BSIK 03025. 



References 

1. Almeida, J.P.A., Iacob, M.E., Jonkers, H., and Quartel, D.: Model-Driven Development of 
Context-Aware Services. In: Distributed Applications and Interoperable Systems (DAIS 
2006), 6th IFIP International Conference, LNCS, vol. 4025, Springer (2006) 213−227 

2. Cabitza, F., Sarini, M., Dal Seno, B.: DJess - a context-sharing middleware to deploy 
distributed inference systems in pervasive computing domains. In: Proceeding of Interna-
tional Conference on Pervasive Services (ICPS '05), IEEE CS Press (2005) 229−238 

3. Dey, A. K., Salber, D., and Abowd, G. D.: A Conceptual Framework and a Toolkit for 
Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer Inter-
action, 16(2-4) (2001) 97−166 

4. Chen, H. Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environ-
ments, Knowledge Engineering Review, Special Issue on Ontologies for Distributed Sys-
tems, Vol. 18, No. 3.  Cambridge University Press (2003) 197–207 

5. Dockhorn Costa, P. Ferreira Pires, L., van Sinderen, M.: Architectural Support for Mobile 
Context-Aware Applications. In Handbook of Research on Mobile Multimedia, Idea Group 
Inc. (2005) 

6. Dockhorn Costa, P. Ferreira Pires, L., van Sinderen, M.: Designing a Configurable Services 
Platform for Mobile Context-Aware Applications, International Journal of Pervasive Com-
puting and Communications (JPCC), Vol. 1, No. 1. Troubador Publishing (2005) 

7. Dockhorn Costa, P., Guizzardi, G., Almeida, J.P.A., Ferreira Pires, L., van Sinderen, M.: 
Situations in Conceptual Modeling of Context. In Workshop on Vocabularies, Ontologies, 
and Rules for the Enterprise (VORTE 2006) at IEEE EDOC 2006, IEEE CS Press (2006) 

8. Dockhorn Costa, P., Almeida, J.P.A., Ferreira Pires, L., Guizzardi, G., van Sinderen, M.: 
Towards Conceptual Foundations for Context-Aware Applications. In: Proc. of the Third 
Int’l Workshop on Modeling and Retrieval of Context (MRC'06), Boston, USA (2006) 

9. Etter, R., Dockhorn Costa, P., Broens, T.: A Rule-Based Approach Towards Context-Aware 
User Notification Services. Proc. of the IEEE International Conference on Pervasive Ser-
vices 2006, Lyon, France (2006) 

10. Freeband A-MUSE Project, http://www.freeband.nl/project.cfm?id=489  
11. Friedman-Hill, E.: JESS in Action: Rule-Based Systems in Java. Manning Publications Co., 

(2003) 
12. Hang Wang, X., Qing Zhang, D., Gu, T., Keng Pung, H.: Ontology-Based Context Model-

ing and Reasoning Using OWL. Proc. of the 2nd IEEE Annual Conf. on Pervasive Comput-
ing and Communications Workshops (PERCOMW04), USA (2004) 18−22 

13. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: 
Models and approach. Journal of Pervasive and Mobile Computing, volume 2(1), pages 37-
64. Elsevier (2006) 

14. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a Disciplined Approach 
to the Development of a Context-Aware Communication Application. In: 3rd IEEE Conf. on 
Pervasive Computing and Communications (Percom 2005), IEEE CS Press (2005) 

15.  Merriam-Webster, Inc.: Merriam-Webster Online; http://m-w.com. 
16.  Mylopoulos, J.: Conceptual modeling and Telos. In: P. Loucopoulos and R. Zicari, eds, 

Conceptual modeling, databases, and CASE, John Wiley and Sons Inc., New York (1992) 
17. Object Management Group: Unified Modelling Language: Object Constraint Language 

version 2.0, ptc/03-10-04 (2003) 
18. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003) 
19. Strang, T., Linnhoff-Popien, C., and Frank, K.: CoOL: A Context Ontology Language to 

enable Contextual Interoperability. In: Proc. of the 4th IFIP International Conference on 
Distributed Applications and Interoperable Systems (DAIS2003), Paris (2003) 236−247 

http://www.freeband.nl/project.cfm?id=489
http://m-w.com/

