
Investigating the boosting
framework for face recognition

Bas Boom Robin van Rootseler Raymond Veldhuis
University of Twente

Fac. EEMCS, Signals and Systems Group
7522 NB Enschede, The Netherlands

Abstract

The boosting framework has shown good performance in face recognition. By
combining a set of features with Adaboost, a similarity function is developed
which determines if a pair of face images belongs to the same person or not. Re-
cently, many features have been used in combination with Adaboost, achieving
good results on the FERET database. In this paper we compare the results of
several features on the same database and discuss our solutions on some of the
open issues in this method. We compare the boosting framework with some stan-
dard algorithms and test the boosting algorithm under difficult circumstances,
like illumination and registration noise.

1 Introduction

Face recognition can be used in applications such as identity authentication for credit
card or passport, access control and video surveillance. However, most automatic face
recognition systems still only work under constrained conditions. Recently, several pa-
pers propose a new framework for face recognition, which combines a set of features
into a classifier using a boosting algorithm. In this paper we investigate this new
framework to determine if it can deal with the challenges in face recognition, like noisy
registration, illumination and expressions.
In several papers [1, 2, 3, 4, 5] the boosting framework is used for face recognition.
These papers use simple features like rectangle features, Gabor features or Local Bi-
nary Patterns (LBP) to make a function which can evaluate the similarity between
two face images. This function learns the differences between face image pairs of the
same person (intrapersonal) and image pairs of different persons (extrapersonal). The
Adaboost algorithm constructs this similarity function by selecting a combination of
features. This function is able to separate intrapersonal and extrapersonal image pairs.
To the outcome of this similarity function we can apply a threshold for face verifica-
tion. This outcome can also be used for face identification to find the most similar face
image in a gallery.
The boosting framework is built up out of several parts, which allow different settings.
For instance, this framework allows us to use different features, but also a combination
of those features. Further more, different versions of the Adaboost algorithm [6, 7] can
be used. Because we use image pairs we have to deal with large amounts of training
data, given a database of N images per class with K individuals, the total number of
pairs is

(
KN
2

)
, where only a small part is of the same individual. Several resampling

methods are already proposed to solve this problem. In this paper we discuss these
settings of the framework. We use the results on the FERET database as comparison
to the other paper and we also experiment with more challenging datasets, trying to
find the limits of this face recognition approach.
This paper is organized in the following way: In section 2 we explain in detail our
method, which includes the features, the Adaboost algorithm and the resampling

Figure 1: Rectangle Features use by Adaboost

method we use. Section 3 describes the experiments and results on the the differ-
ent datasets. In the final section, we present the conclusions and some future work.

2 Method

The boosting framework can roughly be divided into three parts: the features, the
Adaboost algorithm and the resampling method. In this section, we describe the
different parts of the framework we used in our implementation.

2.1 Features

One of the main issues in face recognition is what features to use to represent a face.
In the boosting framework we can use different features and also combinations of these
features. In [1] Jones and Viola use the rectangle features also used in face detection [8].
In [3, 4] Gabor features are used in combination with Adaboost and [5] uses the local
binary pattern (LBP) as features. We first decided to try a combination of the rectangle
features and LBP. This because the rectangle features are very fast in computation,
while the LBP features are less sensitive to illumination and achieved the best result
in combination with Adaboost [5].

2.1.1 Rectangle Features

Rectangle features are computed by summing the pixelvalues in black areas and sub-
stract these with the sum of the pixelvalues in the white area. Although, there are
already all kind of different rectangle features, especially in the area of face detection
[9], we only use the features given in Figure 1. By adding more features the time to
train Adaboost increases, so there is always a trade off between training time and a
richer feature set. One of the main advantages of the rectangle features is that the
computation can be sped up by using the integral images [8], making it one of the
fastest features to compute.

2.1.2 Local Binary Pattern

The Local Binary Patterns (LBP) are introduced in [10] and have shown to be a robust
feature in face recognition [11]. They can also be used as preprocessing step in face
recognition to remove illumination [12]. The standard LBP, shown in Figure 2 gives
the 3 × 3-neighbors the value 0 if they are smaller than the center pixel value and 1

7

5 9 1
644

2 3

Threshold

1

1 1 0
1

0 0
1

11010011
Figure 2: Local Binary Features

otherwise. This gives us a 8-bit string, which can be used to represent the texture
at that point. It is also possible to select neighborhoods of bigger sizes, this allows
to capture larger scale structures. Because we work on relative small face images of
a resolution of 45 × 45 we only calculate LBPs in neighborhoods of 1 pixel. In this
method, we compare in a certain region the histograms of different the LBP values.

2.2 Adaboost

Adaboost is the machine learning algorithm which is used to combine the features
given in section 2.1. In the boosting framework we train a face similarity function
which determines if the two faces belong to the same person or to a different person.
The face similarity function is given in below:

F (I1, I2) =
T∑

t=1

ft(I1, I2) (1)

In this equation, I1 and I2 are the face images which are compared to see if they
belong to the same person. The function ft represents a weak classifier used by Ad-
aboost. The final classifier is a weighted sum over all the selected weak classifiers. A
weak classifier fj is given below, where α and β are given by Adaboost.

fj(I1, I2) =

{
α if |φj(I1, I2)| < tj
β otherwise

(2)

In this Formula φj is the feature output for the given image pair and tj is the
feature threshold. This means that for every feature φj, we first determine the optimal
threshold tj, by minimizing the weighted training error, Equation 5. Determining the
optimal threshold for each feature consumes most of the training time. To speed up
this process we sometimes also estimate the threshold by taking the weighted means
of the outputs of all positive and negative examples, and take the value in the middle
as threshold.

There are multiple versions of the Adaboost algorithm, we use Real Adaboost,
described by Schapire and Singer in [6], which almost always outperforms the older
Discrete Adaboost. The main difference between these versions is the calculation of α
and β. α and β are given in Equations 3 and 4, for a further explanation see [6] or [1].

α =
1

2
log(

∑
i:yi=+1∧φj(xi)<tj

wi∑
i:yi=−1∧φj(xi)<tj

wi
) (3)

β =
1

2
log(

∑
i:yi=+1∧φj(xi)≥tj

wi∑
i:yi=−1∧φj(xi)≥tj

wi
) (4)

There are some other boosting algorithm which can be used, like GentleBoost and
LogitBoost [7], but it depends on the dataset which boosting algorithm works best. To
be able to make a comparison with [1] we choose to use the Real Adaboost algorithm.
To each example xi = (I i

1, I
i
2), a label yi ∈ {+1,−1} and a weight wi are assigned. On

each round Adaboost selects the classifier with the smallest error εj with respect to
weights:

εj =
∑

i:yi=+1∧φj(xi)≥tj

wi +
∑

i:yi=−1∧φj(xi)<tj

wi (5)

Note that we do not minimize the tj on each round of the Adaboost algorithm,
this would lead to much more computation without significant improvement in the
performance. The Real Adaboost algorithm is given in Figure 3.

• Given examples (x1, y1), ..., (xN , yN) where N = A + B. A is the number of
examples with yi = +1 and B is the number of examples with yi = −1

• w1,i = 1
2A for those examples with yi = +1 and w1,i = 1

2B for those examples
with yi = −1

• Let R be the number of rounds to boost before resampling

• For t = 1, ..., T

- Normalize the weights, wt,i = wt,i∑N
k=1 wt,i

- For each φj find the φj which minimizes the error, εj, in Equation 5

- Choose α and β according to Equations 3 and 4

- Update the weights:

wt+1,i = wt,ie
−ft(xi)yi (6)

- If t is a multiple of R then resample.

• The final strong classifier is:

F (x) =
T∑

t=1

ft(x) (7)

Figure 3: Adaboost algorithm

2.3 Resampling

The number of positive examples is small in comparison to the number of negative
examples. The resampling method corrects this imbalance by giving Adaboost a small
negative subset of M examples to train on. To make use of the entire training set of N
examples, the resampling method selects after a number of boosting rounds (R = 40)
a new subset of M examples to train the next boosting rounds. In our paper, we use a
similar resampling approach as described in [1]. We initialize the weight wj for all the
negative examples xj in the training set to 1

2B . After a number of boosting rounds the
weights of negative examples used in Adaboost have changed. We take all the weights
and define a vector with the cumulative weights:

ck =
k∑

i=1

wi for k = {1, 2, ...,N} (8)

The total weight of all negative examples is given by cN . We generate a random
number rs (uniformly distributed) on the interval [0, cN]. The random number rs is
associated with example xj for which cj < rs < cj+1 holds. We repeat this procedure
until we have M unique examples. If an example is selected it gets a weight 1, if the
same example is selected once more we increase the weight with 1 without adding the
example twice, finally we normalize the total weight to 0.5.

This resampling method will choose more examples with larger weights while trying
to preserve the overall distribution. This method also causes that mutual information
is included in the first boosting iterations after the resampling step. This can be solved
by calculating weights for all the examples by applying the strong classifier (Equation
9), before selecting the different examples.

wi = e−F (xi)yi (9)

3 Experiments and Results

We performed several experiments with this boosting framework, where we varied
different settings. We experimented on two face databases, namely the FERET and
FRGCv1 dataset.

3.1 FERET

We first tested the boosting framework on the FERET database, which makes it com-
parable to the results in other papers on the boosting framework. We use the FA and
FB images, where we have 1196 FA images and 1195 FB images. All subjects have ex-
actly one image as gallery image and one image as probe image, except for one person.
We use one third of image pairs (396) of the FERET as training set and the rest is
used as gallery and probe set. The resolution of the images is 45× 45 pixels, running
Adaboost for 120 rounds giving us 120 features. We perform experiments with only
rectangle features and with a combination of LBP and rectangle features. These ex-
periments gave results which are comparable to the results reported in [1]. Our results
are shown in Figure 4. Figure 4(a) shows the results of different features, where we
tested with rectangle features and with a combination of LBP and rectangle features
(dashed and solid lines). We also experimented with a different region of interest ig-
noring the mouth region getting even better results with only the rectangle features

10−6 10−4 10−2 100

10−2

10−1

100

FAR

FR
R

Receiver operator curve

rectangle features
rectangle features without mouth
LBP + rectangle features

(a) ROC on the FERET

5 10 15 20 25 30 35 40 45 50
0.97

0.975

0.98

0.985

0.99

0.995

1

Rank

Pe
rc

en
ta

ge
 w

ih
tin

 to
p

N
m

at
ch

es

Rank−N recognition rates on FERET FA and FB images

LBP + rectangle features

(b) Rank-N recognition rates on the FERET

Figure 4: ROC and Rank-N recognition rates on the FERET FA and FB images of the
boosting framework

training ↓ test → no noise 3% noise 5% noise

no noise 1.9 4.2 7.8

3% noise 2.0 2.9 -

5% noise 2.3 - 5.5

Table 1: Robustness to registration errors (EER in %)

(dotted line). Our implementation achieves a rank-1 recognition rate of 97.5% and with
EERs of approximately 1%. This is similar to what other papers report which use the
boosting framework. Using LBP in combination with rectangle features improves the
results, where the first features selected by Adaboost are LBP features. We found out
that other small improvements in the boosting framework are not measurable on the
FERET database. For this reason we experimented with this algorithm under more
difficult circumstances.

One assumption of this algorithm is that the registration of the face images has to be
correct. In practise it is very hard to realize good registration. To simulate mistakes
in registration we added gaussian noise to the landmarks of the FERET database.
Results of these experiments are given in Table 1 showing that registration noise has of
course a negative effect but is not disastrous. These results are reached after 40 rounds
of Adaboost, without resampling.

3.2 FRGC

Because of the excellent results on the FERET database, we tested our method on
a more challenging dataset. We used two subsets of the FRGC version 1 database,
one subset with images taken under controlled conditions and another subset contains
images taken under uncontrolled conditions, most cause by illumination. We divided
both these datasets randomly into 3 subsets, giving the training set at least 2 images

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

FR
R

FAR

Receiver operator curve

PCA LDA Likelihood ratio
PCA Mahalanobis
PCA Euclidean
Boosting Framework

(a) Controlled dataset (b) Uncontrolled dataset

Figure 5: ROC on the subsets of the FRGCv1 database

for each person. The FRGC dataset taken under controlled conditions has a training
set containing 1363 face image, a gallery set containing 1237 images and a probe set
containing 1161 face images. The FRGC dataset taken under uncontrolled conditions
has a training set containing 775 face image, a gallery set containing 550 images and
a probe set containing 486 face images. The FRGC database contains 275 individu-
als. We compared our results with the PCA Euclidean distance, PCA Mahalanobis
distance and our log-likelihood ratio based approach described in [13]. For PCA we
use 100 components and for LDA we use 50 components.

The FRGC database is a more challenging database, which can be seen in Figure 5.
Our method outperforms the normal PCA approaches and gives slightly better results
in EER than the log-likelihood ratio classifier on the controlled set of faces 5(a). During
this experiment, we combined 280 weak classifiers with Adaboost using both rectangle
features and LBPs. For the uncontrolled set of images we combined 500 rectangle
features and LBPs, results are shown in Figure 5(b). On the uncontrolled set of faces
the difference between the log-likelihood ratio and the boosting framework is even
bigger, which indicates that the boosting framework is more robust to illumination.

4 Conclusions

The boosting framework is a strong method to recognize faces. Although we achieve
the excellent results using the boosting framework, improvement can be made on the
details of this method, like the features selection, resampling approach, version of
Adaboost. We have shown that combinations of features improve the results, although
it takes more time to train the algorithm. In this paper we show that this method is
also promising under more difficult circumstances. This has been demonstrated by the
performance of the boosting framework under bad registration. The experiments on the
FRGC version 1 database also show that the algorithm performs well on more difficult
conditions. In the future we hope to focus more on the illumination problems, in
which this algorithm can play an important role. Also the use of cascading structures in
combination with the boosting framework can speed up recognition on large databases.

References

[1] Micheal J. Jones and Paul Viola, “Face recognition using boosted local features,”
in International Conference on Computer Vision, 2003.

[2] Guo-Dong Guo, Hong-Jiang Zhang, and Stan Z. Li, “Pairwise face recognition,”
iccv, vol. 02, pp. 282, 2001.

[3] Peng Yang, Shiguang Shan, Wen Gao, Stan Z. Li, and Dong Zhang, “Face recog-
nition using ada-boosted gabor features,” fgr, p. 356, 2004.

[4] Lei Zhang, Stan Z. Li, Zhi Yi Qu, and Xiangsheng Huang, “Boosting local feature
based classifiers for face recognition,” in CVPRW ’04: Proceedings of the 2004
Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’04)
Volume 5, Washington, DC, USA, 2004, p. 87, IEEE Computer Society.

[5] Guangcheng Zhang, Xiangsheng Huang, Stan Z. Li, Yangsheng Wang, and Xihong
Wu, “Boosting local binary pattern (lbp)-based face recognition,” in Chinese
Conference on Biometric Recognition, 2004, vol. SINOBIOMETRICS 2004, pp.
179–186.

[6] R. E. Shapire and Y. Singer, “Improving boosting algorithms using confidence-
rated predictions,” Machine Learning, vol. 37:3, pp. 297–336, 1999.

[7] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a sta-
tistical view of boosting,” Tech. Rep., Dept. of Statistics, Stanford University,
1998.

[8] Paul A. Viola and Michael J. Jones, “Rapid object detection using a boosted
cascade of simple features.,” in CVPR (1), 2001, pp. 511–518.

[9] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky, “Empirical analysis
of detection cascades of boosted classifiers for rapid object detection,” DAGM’03,
25th Pattern Recognition Symposium, pp. 297–304, 2003.

[10] Timo Ojala, Matti Pietikainen, and David Harwood, “Comparative study of tex-
ture measures with classification based on feature distributions,” Pattern Recog-
nition, vol. 29, pp. 51–59, 1996.

[11] T Ahonen, A Hadid, and M Pietikinen, “Face recognition with local binary pat-
terns,” in Computer Vision - ECCV 2004, 2004, pp. 469–481.

[12] Guillaume Heusch, Yann Rodriguez, and Sebastien Marcel, “Local binary patterns
as an image preprocessing for face authentication,” fgr, pp. 9–14, 2006.

[13] R.N.J. Veldhuis, A.M. Bazen, W. Booij, and A.J. Hendrikse, “Hand-geometry
recognition based on contour parameters,” in Proceedings of SPIE Biometric
Technology for Human Identification II, Orlando, FL, USA, March 2005, pp. 344–
353.

