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Abstract. In this paper, we describe an approach for solving the integration 
problem in the Purchase Order Mediation scenario of the Semantic Web 
Service Challenge2. The key feature of our approach is that service models are 
employed at different abstraction levels to develop end-to-end integration 
solutions from business requirements to software implementation.  
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1   Introduction 

The goal of the SWS Challenge is to explore the trade-offs of various existing 
technologies that aim at automation of mediation, choreography and discovery of 
Web Services. For that reason, the SWS Challenge defines a number of scenarios 
providing a standard set of problems, based on industrial specifications and 
requirements.  

In this paper, we present a model-driven approach for solving the integration 
problem described in the Purchase Order Mediation scenario of the SWS Challenge. 
Model-driven techniques are used to abstract the integration problem and solution to a 
higher (platform-independent) level. This way, the problem and solution can be 
captured in a technology independent manner enabling more active participation of 
business domain experts.  

This paper is structured as follows: Section 2 briefly presents our integration 
framework. Section 3 shows how we use the framework to solve the integration 
problem from the Purchase Order Mediation scenario. Section 4 compares our work 
with the solutions provided by the other SWS Challenge participants. Finally, section 5 
presents our conclusions and future work. 

                                                           
1 The presented work has been done in the Freeband Communication project A-Muse (http://a-

muse.freeband.nl). Freeband Communication (www.freeband.nl) is sponsored by the Dutch government 
under contract BSIK 03025   

2  http://sws-challenge.org 



2   Integration Framework  

We approach the design of a mediator as a composition problem: each service that is 
requested by some system has to be composed from one or more services that are 
provided by one or more other systems. Fig. 1 illustrates this for the case of two 
systems A and B. Mediator M offers a mediation service that matches requested service 
S1 of A by composing services S3 and S4 that are offered by B. The mediator should 
provide such a mediation service for each service that is requested by A (and B). 

System A Mediator M System B

requested service provided service

S1

S2

S3

S4

S5

 
Fig. 1. Service mediation as service composition. 

To support the design, implementation and verification of mediators we have 
developed an integration method. Our method uses the COSMO framework [11] to 
model and reason about services. The method defines a number of steps to build end-
to-end integration solutions and to verify their correctness. In the following sections, 
we briefly describe the COSMO framework and the steps of our method. 

2.1 The COSMO framework 

We define a service as “the establishment of some effect (or value) through the 
interaction between two or more systems”. Based on this definition, the COnceptual 
Service MOdeling (COSMO) framework defines concepts to support the modeling, 
reasoning and analysis of services. 

We distinguish four service aspects, i.e., information, behavior, structure and 
quality, representing categories of service properties that need to be modeled. The 
structure aspect is concerned with modeling the systems that provide or use services, 
and their interconnection structure. The interconnection structure comprises (amongst 
others) the interfaces at which services are offered. The behavioral aspect is 
concerned with the activities that are performed by systems as well as the relations 
among these activities. The information aspect is concerned with modeling the 
information that is managed by and exchanged among systems. The quality aspect is 
concerned with modeling the non-functional characteristics of services. These 
qualities often play an important role in the selection of services. Examples of quality 
aspects are the “cost” associated with a service or the “response time” of a service.  

Besides service aspects, we distinguish three generic abstraction levels at which a 
service can be modeled, namely, goal, choreography and orchestration level. A 
model at goal level describes a service as a single interaction, where the interaction 
result represents the effect of the service as a whole. A model at choreography level 
refines the model at goal level by describing the service as a set of multiple related, 
more concrete interactions. A model at orchestration level describes the 



implementation of the service using a central coordinator that invokes and adds value 
to one or more other services. 

Finally, we distinguish different roles of the systems involved in a service: the 
user, provider and integrated role. The integrated role abstracts from the distinction 
between a user and provider by considering interactions as joint actions, thereby 
focusing on what the user and provider have in common.  

This paper mainly considers choreographies and orchestrations from the behavior 
and information aspect, and by distinguishing between a user and provider role. 
Furthermore, services are modeled close to the level at which they are described using 
WSDL, while abstracting from technology details. Therefore, and for brevity, we only 
explain COSMO’s operation concept below and its notation using ISDL [10]. For an 
overview and explanation of the COSMO concepts, we refer to [11]. 

Fig. 2 (i) and (ii) depict the operation concept and its interpretation in terms of a 
flow chart-like notation, respectively. An operation represents a composition of three 
instances of message passing: the sending (invoke) and receipt (accept) of an 
invocation, followed by either the sending (reply) and receipt (return) of the 
invocation result, or the sending (fault) and receipt (catch) of a fault message. The use 
of the reply-return and the fail-catch message passing instances are optional, i.e., 
either one or both parts may be omitted; e.g., to model one-way operations. 

 

 
Fig. 2. The operation concept. 

2.2 Integration method  

The steps of our integration method are depicted in Fig 3. For the sake of readability, 
we consider two systems, but the same steps apply to the case of multiple systems.  

 
Fig. 3. The steps of the integration method 

In Step 1 of our method, we derive the platform-independent models (PIMs) of the 
services to be integrated by abstracting from all technical details in the platform 
specific models (PSMs). Next, in Step 2 we increase the coverage and precision of the 
PIMs by adding semantic information that cannot be derived from the original service 



descriptions (PSMs). In Step 3, we solve the integration problem at PIM level, which 
enables the more active participation of domain experts. In addition, the abstract 
nature of the integration solution allows one to reuse it for different implementation 
technologies. Besides, the semantically enriched service models allow some 
integration tasks to be fully or partially automated. Next, in Step 4 we verify the 
correctness of the integration solution using various analysis techniques. Finally, in 
Step 5 the service PIM is transformed to a PSM solution by mapping the integration 
solution to a specific service computing platform.  

3  Application of the integration framework 

This section presents the application of our framework to the Purchase Order 
Mediation scenario of the SWS Challenge. For this purpose, the integration method is 
made concrete by deciding on, amongst others, the type of PSMs that are considered, 
the languages to be used at PIM level, and related to these choices the transformations 
and analysis techniques that are needed, c.q. have to be developed. 

Step 1: Abstract service PSMs to Service PIMs. In the first step, we derive the 
platform independent information and behavior models of the services of Blue and 
Moon, which are specified in WSDL. ISDL [10] is used to represent the service 
behavior, and UML class diagrams are used to represent the information models.  

This step is automated using the WSDL import function of the Grizzle tool [4]. 
Grizzle is an integrated editor and simulator for ISDL, and uses Java to represent and 
execute operation parameter constraints. Once a WSDL document is imported, a 
behavior model is generated that represents the user or provider role of the web 
service, in terms of operation calls or operation executions, respectively. In addition, 
an information model is generated consisting of Java classes that represent the 
information types that are refered to by the operations in the behavior model. The 
transformation from WSDL to ISDL and Java is implemented using JAXB and JAX-
WS [5]. We use an EclipseUML tool [3] to represent (and manipulate) the 
information model using UML class diagrams. 

Step 2: Semantic enrichment of PIMs. The WSDL descriptions of the example 
scenario define the services that are provided by Blue, Moon and the Mediator, in 
terms of their operations and the types of the input and output messages of these 
operations. However, WSDL does not define the interaction protocols of the involved 
systems, i.e., the possible orderings of the operations. Therefore, to derive the 
complete PIMs of Moon and Blue, we have to use and interpret the provided textual 
descriptions. This is a manual process. 

Firstly, the behavior models that were generated in Step 1 are completed by 
defining relations between operations. These relations can be derived from the 
scenario description. This includes the explicit modeling of the repetitive process of 
adding and confirming line items. Fig. 4 depicts the enriched model of the service 
requested by Blue and the service provided by Moon OM.  

Secondly, the information model may be enriched by interpreting the scenario 
description. A WSDL description defines the syntax of the messages that are 
exchanged, but does not provide information about their semantics. This semantics 
can be made explicit by defining new classes, properties and relations among classes. 



Furthermore, the meaning of classes and their properties may be defined by a 
mapping onto some domain-specific ontology, e.g., the Universal Data Element 
Framework [15]. The benefits of these types of semantic enrichment can however, 
only be fully exploited when using an ontology language (such as OWL [16]) that 
allows one to explicitly model and reason about the semantics of classes and their 
properties. The semantic analysis of information models is considered in the next 
version of our integration method. 

 
Fig. 4. Enriched behavior models of Blue and Moon OM 

Step 3: Design of the mediator PIM. In this step, we design the behavior and 
information model of the Mediator. The information model of the Mediator is 
constructed from the union of the information models of Blue and Moon. For the 
same reason as explained at the end of the previous section, this information model is 
not enriched to define the relationships between the classes and properties from the 
information models of Blue and Moon, except for informal annotations that may 
explain these relationships using natural language. The information model is 
extended, however, with classes to represent status information of the Mediator, such 
as the set of order line items that have been confirmed so far. 

The construction of the behavior model of the Mediator requires the definition of 
(i) the services provided and requested by the Mediator, (ii) the composition of these 
services by relating the operations of the services, and (iii) the data transformations 
among the parameters of the operations. 

In the example scenario, the Mediator provides one service that must match the 
service requested by Blue. The service provided by the Mediator can initially be 
defined as the ‘complement’ of the service requested by Blue. The complement of a 
service is obtained by changing each operation call into an operation execution, and 
vice versa, while keeping the same parameters. In addition, the relations among the 
operations and the parameter constraints may (initially) be retained. Likewise, the 
services that are requested by the Mediator can be obtained by taking the complement 
of the services that are provided by Moon. These retained relations and parameter 
constraints may be refined in the next design steps, respectively. For example, the 



relation between operations receiveRequest and receiveConfirmation has to be 
implemented by the orchestration of the services of Moon. As another example, the 
disabling relation (represented by the black diamond on top of a horizontal bar in Fig. 
4) between addLineItem and closeOrder will be replaced by an enabling relation, since 
the order should be closed only after all line items have been added. 

The design of the Mediator behavior can now be approached as the search for a 
composition of the requested services that conforms to the provided service. The 
structure of this composition is defined by the (causal) relations among the operations. 
Most of these relations can be found by matching the input that is required by each 
operation to the output that is produced by other operations. For example, operation 
search of Moon’s CRM service requires as input a search string that can be matched to 
some element of the customer information that is part of the purchase order 
information received by operation receiveRequest. This implies that a relation should 
be defined between receiveRequest and search. Fig. 5 depicts the design. 

 

Fig. 5. Design of the mediator 

Matching inputs and outputs is however insufficient to find all relations. For example, 
although operation receiveRequest and operation search provide information that 
matches the input required by operation createNewOrder, the information that is 
provided by receiveRequest should be used instead. This hidden assumption has to be 



made explicit in the behavior model. Furthermore, specific processing logic may have 
to be designed manually. For example, the process of receiving confirmations from 
Moon’s OM system depends on information from operations receiveRequest (the items 
to be confirmed), createNewOrder (the order id) and addLineItem (the item id used by 
Moon), and depends on internal status information of the Mediator, i.e., the 
knowledge that operation closeOrder has occurred and the set of confirmations that has 
been received so far. Even when these information requirements are given, the 
relations involved in the repetitive processing of confirmations can not be derived 
easily, and have to be designed explicitly. 

The definition of the data transformations among operation parameters can be 
approached as a refinement of the relations among operations defined in the preceding 
step. These relations define for each operation on which other operations it depends, 
and therefore which output parameters can be used in the generation of its input 
parameters. The data transformations then define how the value of each input 
parameter is generated from the values of the output parameters and, in some cases, 
some internal state information of the Mediator. This involves the definition of 
translations between the information models of Blue and Moon. However, these 
translations only need to address those parts of the information models of Blue and 
Moon that are related via the relations defined in Step 2.  

To express data transformation functions we have defined a Domain-Specific 
Language (DSL) using the Eclipse TCS [14]. In our DSL, a data transformation is 
specified as a set of relations among two or more objects. In a from clause a number 
of variables are bound by evaluating queries on a source object. In a create clause a 
new (target) object is created and its properties are set to the values of the variables 
bound in the from clauses. Likewise, an update clause takes an existing object and 
only sets its properties. Optionally, a conditions clause defines when a relation can be 
executed. An example of a data transformation definition is shown below. 

transformation Blue2Moon {
relation POR2LineItemType (lineItem: LineItem, por:Pip3A4PurchaseOrderRequest, index:int) {

from por {
orderId = orderId;
articleId = purchaseOrder/productLineItem[index]/productIdentification/globalProductIdentifier;
quantity = purchaseOrder/productLineItem[index]/orderQuantity/requestedQuantity/productQuantity;

}
create lineItem {

orderId = orderId;
articleId = item/articleId;
quantity = item/quantity;

}
}

}  
Once all relations are defined, we automatically generate a Java class Mapping that 
implements the actual data transformations. For that purpose, we use 
OpenArchitectureWare [8]. For example, the relation between operations 
receiveRequest and search has been implemented by the method por2search() as 
described in the text box associated with operation search. This method gets as 
argument the value of behavior item (variable) Pip3A4PurchaseOrderRequest por. This 
value is assigned after operation receiveRequest has received the purchase order 
request from Blue. 



Step 4: Validation of the mediator PIM. In this step, the design of the Mediator is 
validated by means of (i) assessment of the interoperability between the services of 
Blue, the Mediator and Moon, and (ii) simulation of the interacting behavior of these 
services. The interoperability assessment method has been presented in [9]. In short, 
the method checks whether each individual interaction can establish a result and 
whether the service composition as a whole can establish a result. 

The simulation of behaviors is supported by the Grizzle tool [4]. Simulation allows 
a designer to analyze the possible orderings of operations occurrences, as well as the 
information results that are established in these operations. In addition, the simulator 
provides hooks in the simulation process to execute application code upon execution 
of an operation. This enables us to perform real web service invocations and 
incorporate the results that are returned by web services during the simulation. For 
this purpose, stub-code is linked to a modeled web-service operation call. This code is 
generated automatically based on stereotype information that has been retained during 
the WSDL import, such as the web service’s end-point address and port type name. 
Furthermore, the simulator allows external web-clients to invoke a modeled web-
service operation execution. A web service proxy is automatically generated and 
deployed in an application server, using aforementioned stereotype information. This 
proxy is responsible for handling the reception of the invocation request and the 
return of its result. In between, the proxy delegates the calculation of the invocation 
result to the simulator, which indicates to the user that the operation is enabled and 
waits till the user requests the simulation of this operation.  

The support for real, also called ‘live’, web service invocations, allows one to use 
the simulator as an orchestration engine in which an orchestration can be executed by 
simulating its ISDL model. This means that that the simulator provides, in principle, 
an implementation for the Mediator. However, this simulator does not support 
important properties of an execution environment, such as performance, monitoring, 
etc. Therefore, in the next step we transform the Mediator design to a BPEL process.  

Step 5: Derivation of the mediator PSM. In this final step the service PIM of the 
mediator is transformed into a PSM. In our approach, we do not assume a particular 
execution platform. For example, the service PIM can be transformed to a WS-BPEL 
specification, EJB, or .Net application. In this section, we present an abstract 
architecture of possible execution platforms. Fig. 6 depicts this architecture. 
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Manager
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Fig. 6. The architecture of the abstract execution platform 



The abstract architecture of the Mediator consists of two main components: a Control 
Flow Manager and a Data Flow Manager. The Control Flow Manager is responsible 
for sending and receiving messages in a particular order as well as for querying and 
updating the state of the Mediator. The Data Flow Manager in turn, is responsible for 
managing the state of the Mediator and for performing the necessary data 
transformations and constraint checking.  

The Control Flow Manager consists of three subcomponents: a Message receiver, 
a Message sender and a Coordinator. The Message receiver is responsible for 
receiving all inbound messages and the Message sender for sending all outbound 
messages. The Coordinator executes the behavior specified in the behavioral model 
of the Mediator, i.e., based on the current state it activates and deactivates the 
Message receiver and Message sender. When a message is received, the Coordinator 
interacts with the Data Flow Manager to update the state of the Mediator. When a 
message is to be sent, the Coordinator interacts with the Data Flow Manager to 
obtain the data required to construct the outbound message. 

To derive the Control Flow Manager we adopt and extend the approach described 
in [2]. Our transformation is divided into three successive steps: pattern recognition, 
activity replacement and model realization. Fig. 7 depicts these steps. 

 
Fig. 7. Transforming the service PIM of the mediator to a service PSM 

The first step recognizes the control flows in a service PIM and then transforms the 
service PIM to a pattern-oriented service model in the Common Behavioral Patterns 
Language (CBPL). Each CBPL pattern represents a control flow that is common to 
most execution languages, i.e., sequence, concurrence, selection and iteration. A 
sequence contains one or more activities to be executed in succession. A concurrence 
contains two or more activities that can be executed independently. A selection 
contains one or more cases to be selected, where a case contains an activity to be 
executed when its condition holds. An iteration contains an activity to be executed 
repeatedly as long as its condition holds.  

The second step replaces data transformations and constraint checking in the 
pattern-oriented service model with operations for interacting with the Data Flow 
Manager. This steps results in a control-flow service model that represents the 
Control Flow Manager in CBPL. 

The last step maps the control-flow service model onto a service PSM. A service 
PSM contains information that is not present in the service PIM. Examples of such 
information are the XML namespaces of the exchanged messages or the WSDL port 
types and operations of the services to be integrated. To provide the required 
platform-specific information we annotate the elements of the service PIM. This 
information is maintained during the first and second steps and is used in the last step. 

The Data Flow Manager consists of two components: a State manager and an 
optional Reasoner. The State manager is responsible for updating the state of the 
Mediator (after receiving a message) and for querying that state (before sending a 



message or when checking a constraint). In some cases, data in the received message 
may have to be transformed before updating the state. For that purpose, the State 
manager uses the Data transformer component. Likewise, in some cases the State 
manager uses the Data transformer to construct new messages. The Data transformer 
is in fact the component that implements the mapping relations specified in the 
information model of the Mediator. The Constraint checker queries the state of the 
mediator and determines whether a constraint holds or not. 

To take full advantage of the formal specification of the information model of the 
Mediator, the Data Flow Manager may contain a Reasoner component. The Reasoner 
uses the formal knowledge specified in the information model of the Mediator in 
conjunction with the facts about the current state of the Mediator to infer new state 
information, i.e., it makes all implicit knowledge about the state more explicit. In 
addition, the Reasoner can be used by the Data transformer and the Constraint 
checker as an intelligent query engine and constraint solver. 

In our solution, we use the ActiveBPEL engine to realize the Control Flow 
Manager and an external web service to realize the Data Flow Manager. The 
ActiveBPEL engine executes the WS-BPEL specification generated from the PIM 
model of the Mediator. The web service stores and retrieves data, exchanged in the 
messages between Blue, Moon and the Mediator, and performs the data 
transformations defined in Step 3.  

4  Related approaches 

Several approaches and solutions have been proposed within the SWS Challenge. 
Here we briefly discuss the approaches reported at the past edition of the workshop 
held in Tenerife, Spain. The proposed approaches were based on the WSMO, jABC 
and FOKUS frameworks. For a more detailed comparison please refer to [6]. 

The DERI approach [12] follows the Web Services Modelling Ontology (WSMO) 
framework. It consists of four main components – ontologies, goals, web services and 
mediators. Data mediation is achieved through the design and implementation of 
adapters specifying mapping rules between ontologies. During runtime, the approach 
considers specific mediator services which perform data transformations at entity 
instance level. The mediator interaction behavior is described by means of Abstract 
State Machines, consisting of states and guarded transitions. A state is described 
within an ontology and the guarded transitions are used to express changes of states 
by means of transition rules. However, this implicit behavior specification may be 
neither intuitive nor trivial to make sure that the expectations implied by the designed 
transition rules match the expected operation message exchange patterns. 

The jABC solution [13] uses SLGs (Service Logic Graphs) as choreography 
models, allowing the designer to model the mediator in a graphical high level 
modeling language by combining reusable building blocks into (flow-)graph 
structures. These basic building blocks are called SIBs (Service Independent Building 
Blocks) and have one or more edges (branches), which depend on the different 
outcomes of the execution of the functionality represented by the SIB. The provided 
model driven design tools allow the modeling of the mediator in a graphical high 
level modeling language and support the derivation of an executable mediator from 



these models. More recently [7], the approach has focused on how to apply a tableau-
based software composition technique to automatically generate the mediator’s 
interaction behavior. This uses a LTL (Linear Time Logic) planning algorithm 
originally embedded in the jABC platform.  However, the applicability of automated 
synthesis of the mediator’s business logic is still limited considering the kind of 
assumptions being made. In comparison with the jABC approach, the approach 
presented in this paper does not cover automated synthesis of the mediator logic as it 
intentionally leaves the planning task to the business domain expert. 

The core concept of the FOKUS [1] approach is the integration of ontology 
mappings into BPEL processes. The approach addresses the data mediation by 
applying semantic bridges to mediate between different information models and 
representations. Semantic bridges are described as a set of description logic-based 
axioms relating entities in business information models that are defined in different 
ontologies but have a similar meaning. The description logic-based data model 
provided by ontologies in conjunction with semantic bridges allows for applying 
automatic semantic matching and reasoning mechanisms based on polymorph 
representations of service parameters. The interaction behavior of the mediator has 
been manually designed and addressed by using a BPEL engine as the coordinating 
entity. Some BPEL enhancements were developed to integrate semantic bridges and 
to support data flow specifications in terms of rules. These enhancements were 
implemented as external functions that can be plugged into BPEL engines. Thus, in 
contrast to our approach, the presented approach designs the mediation solution at 
technology level. It relies strongly on the existing Web standard BPEL and cannot 
easily be used with alternative technologies. 

5  Conclusions and future work 

In this paper, we presented a model-driven method for the semantic integration of 
service-oriented applications. The key feature of the proposed method is that 
semantically enriched service models are employed at different levels of abstraction 
to develop end-to-end integration solutions from business requirements to software 
realization. Therefore, the integration problem is solved at a higher level of 
abstraction by business domain experts and then (semi-)automatically transformed to 
a software solution by adding technical details by the IT experts. This way, the same 
business integration solution can be reused to implement different IT integration 
solutions using different implementation technologies. In addition, our framework 
provides a means to define domain-specific languages (DSLs). This way, business 
domain experts can solve integration problems using concepts that are closer to their 
domain, thereby, abstracting from complex service representation techniques and the 
syntax of data transformation definitions. 

Currently, we focus on techniques to automate parts of the composition process of 
the Mediator. In particular, we consider backward-chaining techniques to discover 
causal relations among the activities performed by the mediator. In our approach, we 
start with the activities that send messages and recursively search for activities that 
provide the information required to construct these messages. The search is performed 
using the mappings defined in the information model of the mediator. In order to 



support semantic matching in this search, we use OWL to express the information 
model and facilitate reasoning about the mappings.  
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