
Model-driven Service Integration
using the COSMO framework1

Dick A.C. Quartel1, Stanislav Pokraev1, Teduh Dirgahayu2, Rodrigo Mantovaneli
Pessoa2 and Marten van Sinderen2f

1 Telematica Instituut, P. O. Box 589, 7500 AN, Enschede, The Netherlands,
{Dick.Quartel, Stanislav.Pokraev}@telin.nl

2 Center for Telematics and Information Technology (CTIT), University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

{T.Dirgahayu, MantovaneliR, M.J.vanSinderen}@ewi.utwente.nl

Abstract. In this paper, we describe an approach for solving the integration
problem in the Purchase Order Mediation scenario of the Semantic Web
Service Challenge2. The key feature of our approach is that service models are
employed at different abstraction levels to develop end-to-end integration
solutions from business requirements to software implementation.

Keywords: Service mediation, MDA, model transformations.

1 Introduction

The goal of the SWS Challenge is to explore the trade-offs of various existing
technologies that aim at automation of mediation, choreography and discovery of
Web Services. For that reason, the SWS Challenge defines a number of scenarios
providing a standard set of problems, based on industrial specifications and
requirements.

In this paper, we present a model-driven approach for solving the integration
problem described in the Purchase Order Mediation scenario of the SWS Challenge.
Model-driven techniques are used to abstract the integration problem and solution to a
higher (platform-independent) level. This way, the problem and solution can be
captured in a technology independent manner enabling more active participation of
business domain experts.

This paper is structured as follows: Section 2 briefly presents our integration
framework. Section 3 shows how we use the framework to solve the integration
problem from the Purchase Order Mediation scenario. Section 4 compares our work
with the solutions provided by the other SWS Challenge participants. Finally, section 5
presents our conclusions and future work.

1 The presented work has been done in the Freeband Communication project A-Muse (http://a-

muse.freeband.nl). Freeband Communication (www.freeband.nl) is sponsored by the Dutch government
under contract BSIK 03025

2 http://sws-challenge.org

2 Integration Framework

We approach the design of a mediator as a composition problem: each service that is
requested by some system has to be composed from one or more services that are
provided by one or more other systems. Fig. 1 illustrates this for the case of two
systems A and B. Mediator M offers a mediation service that matches requested service
S1 of A by composing services S3 and S4 that are offered by B. The mediator should
provide such a mediation service for each service that is requested by A (and B).

System A Mediator M System B

requested service provided service

S1

S2

S3

S4

S5

Fig. 1. Service mediation as service composition.

To support the design, implementation and verification of mediators we have
developed an integration method. Our method uses the COSMO framework [11] to
model and reason about services. The method defines a number of steps to build end-
to-end integration solutions and to verify their correctness. In the following sections,
we briefly describe the COSMO framework and the steps of our method.

2.1 The COSMO framework

We define a service as “the establishment of some effect (or value) through the
interaction between two or more systems”. Based on this definition, the COnceptual
Service MOdeling (COSMO) framework defines concepts to support the modeling,
reasoning and analysis of services.

We distinguish four service aspects, i.e., information, behavior, structure and
quality, representing categories of service properties that need to be modeled. The
structure aspect is concerned with modeling the systems that provide or use services,
and their interconnection structure. The interconnection structure comprises (amongst
others) the interfaces at which services are offered. The behavioral aspect is
concerned with the activities that are performed by systems as well as the relations
among these activities. The information aspect is concerned with modeling the
information that is managed by and exchanged among systems. The quality aspect is
concerned with modeling the non-functional characteristics of services. These
qualities often play an important role in the selection of services. Examples of quality
aspects are the “cost” associated with a service or the “response time” of a service.

Besides service aspects, we distinguish three generic abstraction levels at which a
service can be modeled, namely, goal, choreography and orchestration level. A
model at goal level describes a service as a single interaction, where the interaction
result represents the effect of the service as a whole. A model at choreography level
refines the model at goal level by describing the service as a set of multiple related,
more concrete interactions. A model at orchestration level describes the

implementation of the service using a central coordinator that invokes and adds value
to one or more other services.

Finally, we distinguish different roles of the systems involved in a service: the
user, provider and integrated role. The integrated role abstracts from the distinction
between a user and provider by considering interactions as joint actions, thereby
focusing on what the user and provider have in common.

This paper mainly considers choreographies and orchestrations from the behavior
and information aspect, and by distinguishing between a user and provider role.
Furthermore, services are modeled close to the level at which they are described using
WSDL, while abstracting from technology details. Therefore, and for brevity, we only
explain COSMO’s operation concept below and its notation using ISDL [10]. For an
overview and explanation of the COSMO concepts, we refer to [11].

Fig. 2 (i) and (ii) depict the operation concept and its interpretation in terms of a
flow chart-like notation, respectively. An operation represents a composition of three
instances of message passing: the sending (invoke) and receipt (accept) of an
invocation, followed by either the sending (reply) and receipt (return) of the
invocation result, or the sending (fault) and receipt (catch) of a fault message. The use
of the reply-return and the fail-catch message passing instances are optional, i.e.,
either one or both parts may be omitted; e.g., to model one-way operations.

Fig. 2. The operation concept.

2.2 Integration method

The steps of our integration method are depicted in Fig 3. For the sake of readability,
we consider two systems, but the same steps apply to the case of multiple systems.

Fig. 3. The steps of the integration method

In Step 1 of our method, we derive the platform-independent models (PIMs) of the
services to be integrated by abstracting from all technical details in the platform
specific models (PSMs). Next, in Step 2 we increase the coverage and precision of the
PIMs by adding semantic information that cannot be derived from the original service

descriptions (PSMs). In Step 3, we solve the integration problem at PIM level, which
enables the more active participation of domain experts. In addition, the abstract
nature of the integration solution allows one to reuse it for different implementation
technologies. Besides, the semantically enriched service models allow some
integration tasks to be fully or partially automated. Next, in Step 4 we verify the
correctness of the integration solution using various analysis techniques. Finally, in
Step 5 the service PIM is transformed to a PSM solution by mapping the integration
solution to a specific service computing platform.

3 Application of the integration framework

This section presents the application of our framework to the Purchase Order
Mediation scenario of the SWS Challenge. For this purpose, the integration method is
made concrete by deciding on, amongst others, the type of PSMs that are considered,
the languages to be used at PIM level, and related to these choices the transformations
and analysis techniques that are needed, c.q. have to be developed.

Step 1: Abstract service PSMs to Service PIMs. In the first step, we derive the
platform independent information and behavior models of the services of Blue and
Moon, which are specified in WSDL. ISDL [10] is used to represent the service
behavior, and UML class diagrams are used to represent the information models.

This step is automated using the WSDL import function of the Grizzle tool [4].
Grizzle is an integrated editor and simulator for ISDL, and uses Java to represent and
execute operation parameter constraints. Once a WSDL document is imported, a
behavior model is generated that represents the user or provider role of the web
service, in terms of operation calls or operation executions, respectively. In addition,
an information model is generated consisting of Java classes that represent the
information types that are refered to by the operations in the behavior model. The
transformation from WSDL to ISDL and Java is implemented using JAXB and JAX-
WS [5]. We use an EclipseUML tool [3] to represent (and manipulate) the
information model using UML class diagrams.

Step 2: Semantic enrichment of PIMs. The WSDL descriptions of the example
scenario define the services that are provided by Blue, Moon and the Mediator, in
terms of their operations and the types of the input and output messages of these
operations. However, WSDL does not define the interaction protocols of the involved
systems, i.e., the possible orderings of the operations. Therefore, to derive the
complete PIMs of Moon and Blue, we have to use and interpret the provided textual
descriptions. This is a manual process.

Firstly, the behavior models that were generated in Step 1 are completed by
defining relations between operations. These relations can be derived from the
scenario description. This includes the explicit modeling of the repetitive process of
adding and confirming line items. Fig. 4 depicts the enriched model of the service
requested by Blue and the service provided by Moon OM.

Secondly, the information model may be enriched by interpreting the scenario
description. A WSDL description defines the syntax of the messages that are
exchanged, but does not provide information about their semantics. This semantics
can be made explicit by defining new classes, properties and relations among classes.

Furthermore, the meaning of classes and their properties may be defined by a
mapping onto some domain-specific ontology, e.g., the Universal Data Element
Framework [15]. The benefits of these types of semantic enrichment can however,
only be fully exploited when using an ontology language (such as OWL [16]) that
allows one to explicitly model and reason about the semantics of classes and their
properties. The semantic analysis of information models is considered in the next
version of our integration method.

Fig. 4. Enriched behavior models of Blue and Moon OM

Step 3: Design of the mediator PIM. In this step, we design the behavior and
information model of the Mediator. The information model of the Mediator is
constructed from the union of the information models of Blue and Moon. For the
same reason as explained at the end of the previous section, this information model is
not enriched to define the relationships between the classes and properties from the
information models of Blue and Moon, except for informal annotations that may
explain these relationships using natural language. The information model is
extended, however, with classes to represent status information of the Mediator, such
as the set of order line items that have been confirmed so far.

The construction of the behavior model of the Mediator requires the definition of
(i) the services provided and requested by the Mediator, (ii) the composition of these
services by relating the operations of the services, and (iii) the data transformations
among the parameters of the operations.

In the example scenario, the Mediator provides one service that must match the
service requested by Blue. The service provided by the Mediator can initially be
defined as the ‘complement’ of the service requested by Blue. The complement of a
service is obtained by changing each operation call into an operation execution, and
vice versa, while keeping the same parameters. In addition, the relations among the
operations and the parameter constraints may (initially) be retained. Likewise, the
services that are requested by the Mediator can be obtained by taking the complement
of the services that are provided by Moon. These retained relations and parameter
constraints may be refined in the next design steps, respectively. For example, the

relation between operations receiveRequest and receiveConfirmation has to be
implemented by the orchestration of the services of Moon. As another example, the
disabling relation (represented by the black diamond on top of a horizontal bar in Fig.
4) between addLineItem and closeOrder will be replaced by an enabling relation, since
the order should be closed only after all line items have been added.

The design of the Mediator behavior can now be approached as the search for a
composition of the requested services that conforms to the provided service. The
structure of this composition is defined by the (causal) relations among the operations.
Most of these relations can be found by matching the input that is required by each
operation to the output that is produced by other operations. For example, operation
search of Moon’s CRM service requires as input a search string that can be matched to
some element of the customer information that is part of the purchase order
information received by operation receiveRequest. This implies that a relation should
be defined between receiveRequest and search. Fig. 5 depicts the design.

Fig. 5. Design of the mediator

Matching inputs and outputs is however insufficient to find all relations. For example,
although operation receiveRequest and operation search provide information that
matches the input required by operation createNewOrder, the information that is
provided by receiveRequest should be used instead. This hidden assumption has to be

made explicit in the behavior model. Furthermore, specific processing logic may have
to be designed manually. For example, the process of receiving confirmations from
Moon’s OM system depends on information from operations receiveRequest (the items
to be confirmed), createNewOrder (the order id) and addLineItem (the item id used by
Moon), and depends on internal status information of the Mediator, i.e., the
knowledge that operation closeOrder has occurred and the set of confirmations that has
been received so far. Even when these information requirements are given, the
relations involved in the repetitive processing of confirmations can not be derived
easily, and have to be designed explicitly.

The definition of the data transformations among operation parameters can be
approached as a refinement of the relations among operations defined in the preceding
step. These relations define for each operation on which other operations it depends,
and therefore which output parameters can be used in the generation of its input
parameters. The data transformations then define how the value of each input
parameter is generated from the values of the output parameters and, in some cases,
some internal state information of the Mediator. This involves the definition of
translations between the information models of Blue and Moon. However, these
translations only need to address those parts of the information models of Blue and
Moon that are related via the relations defined in Step 2.

To express data transformation functions we have defined a Domain-Specific
Language (DSL) using the Eclipse TCS [14]. In our DSL, a data transformation is
specified as a set of relations among two or more objects. In a from clause a number
of variables are bound by evaluating queries on a source object. In a create clause a
new (target) object is created and its properties are set to the values of the variables
bound in the from clauses. Likewise, an update clause takes an existing object and
only sets its properties. Optionally, a conditions clause defines when a relation can be
executed. An example of a data transformation definition is shown below.

transformation Blue2Moon {
relation POR2LineItemType (lineItem: LineItem, por:Pip3A4PurchaseOrderRequest, index:int) {

from por {
orderId = orderId;
articleId = purchaseOrder/productLineItem[index]/productIdentification/globalProductIdentifier;
quantity = purchaseOrder/productLineItem[index]/orderQuantity/requestedQuantity/productQuantity;

}
create lineItem {

orderId = orderId;
articleId = item/articleId;
quantity = item/quantity;

}
}

}
Once all relations are defined, we automatically generate a Java class Mapping that
implements the actual data transformations. For that purpose, we use
OpenArchitectureWare [8]. For example, the relation between operations
receiveRequest and search has been implemented by the method por2search() as
described in the text box associated with operation search. This method gets as
argument the value of behavior item (variable) Pip3A4PurchaseOrderRequest por. This
value is assigned after operation receiveRequest has received the purchase order
request from Blue.

Step 4: Validation of the mediator PIM. In this step, the design of the Mediator is
validated by means of (i) assessment of the interoperability between the services of
Blue, the Mediator and Moon, and (ii) simulation of the interacting behavior of these
services. The interoperability assessment method has been presented in [9]. In short,
the method checks whether each individual interaction can establish a result and
whether the service composition as a whole can establish a result.

The simulation of behaviors is supported by the Grizzle tool [4]. Simulation allows
a designer to analyze the possible orderings of operations occurrences, as well as the
information results that are established in these operations. In addition, the simulator
provides hooks in the simulation process to execute application code upon execution
of an operation. This enables us to perform real web service invocations and
incorporate the results that are returned by web services during the simulation. For
this purpose, stub-code is linked to a modeled web-service operation call. This code is
generated automatically based on stereotype information that has been retained during
the WSDL import, such as the web service’s end-point address and port type name.
Furthermore, the simulator allows external web-clients to invoke a modeled web-
service operation execution. A web service proxy is automatically generated and
deployed in an application server, using aforementioned stereotype information. This
proxy is responsible for handling the reception of the invocation request and the
return of its result. In between, the proxy delegates the calculation of the invocation
result to the simulator, which indicates to the user that the operation is enabled and
waits till the user requests the simulation of this operation.

The support for real, also called ‘live’, web service invocations, allows one to use
the simulator as an orchestration engine in which an orchestration can be executed by
simulating its ISDL model. This means that that the simulator provides, in principle,
an implementation for the Mediator. However, this simulator does not support
important properties of an execution environment, such as performance, monitoring,
etc. Therefore, in the next step we transform the Mediator design to a BPEL process.

Step 5: Derivation of the mediator PSM. In this final step the service PIM of the
mediator is transformed into a PSM. In our approach, we do not assume a particular
execution platform. For example, the service PIM can be transformed to a WS-BPEL
specification, EJB, or .Net application. In this section, we present an abstract
architecture of possible execution platforms. Fig. 6 depicts this architecture.

Mediator

Data Flow Manager

Inbound
message

Outbound
message

Control Flow
Manager

Message
receiver

Message
sender

State manager

Coordinator

Reasoner

Data

Model

Data
transformer

Constraint
checker

Fig. 6. The architecture of the abstract execution platform

The abstract architecture of the Mediator consists of two main components: a Control
Flow Manager and a Data Flow Manager. The Control Flow Manager is responsible
for sending and receiving messages in a particular order as well as for querying and
updating the state of the Mediator. The Data Flow Manager in turn, is responsible for
managing the state of the Mediator and for performing the necessary data
transformations and constraint checking.

The Control Flow Manager consists of three subcomponents: a Message receiver,
a Message sender and a Coordinator. The Message receiver is responsible for
receiving all inbound messages and the Message sender for sending all outbound
messages. The Coordinator executes the behavior specified in the behavioral model
of the Mediator, i.e., based on the current state it activates and deactivates the
Message receiver and Message sender. When a message is received, the Coordinator
interacts with the Data Flow Manager to update the state of the Mediator. When a
message is to be sent, the Coordinator interacts with the Data Flow Manager to
obtain the data required to construct the outbound message.

To derive the Control Flow Manager we adopt and extend the approach described
in [2]. Our transformation is divided into three successive steps: pattern recognition,
activity replacement and model realization. Fig. 7 depicts these steps.

Fig. 7. Transforming the service PIM of the mediator to a service PSM

The first step recognizes the control flows in a service PIM and then transforms the
service PIM to a pattern-oriented service model in the Common Behavioral Patterns
Language (CBPL). Each CBPL pattern represents a control flow that is common to
most execution languages, i.e., sequence, concurrence, selection and iteration. A
sequence contains one or more activities to be executed in succession. A concurrence
contains two or more activities that can be executed independently. A selection
contains one or more cases to be selected, where a case contains an activity to be
executed when its condition holds. An iteration contains an activity to be executed
repeatedly as long as its condition holds.

The second step replaces data transformations and constraint checking in the
pattern-oriented service model with operations for interacting with the Data Flow
Manager. This steps results in a control-flow service model that represents the
Control Flow Manager in CBPL.

The last step maps the control-flow service model onto a service PSM. A service
PSM contains information that is not present in the service PIM. Examples of such
information are the XML namespaces of the exchanged messages or the WSDL port
types and operations of the services to be integrated. To provide the required
platform-specific information we annotate the elements of the service PIM. This
information is maintained during the first and second steps and is used in the last step.

The Data Flow Manager consists of two components: a State manager and an
optional Reasoner. The State manager is responsible for updating the state of the
Mediator (after receiving a message) and for querying that state (before sending a

message or when checking a constraint). In some cases, data in the received message
may have to be transformed before updating the state. For that purpose, the State
manager uses the Data transformer component. Likewise, in some cases the State
manager uses the Data transformer to construct new messages. The Data transformer
is in fact the component that implements the mapping relations specified in the
information model of the Mediator. The Constraint checker queries the state of the
mediator and determines whether a constraint holds or not.

To take full advantage of the formal specification of the information model of the
Mediator, the Data Flow Manager may contain a Reasoner component. The Reasoner
uses the formal knowledge specified in the information model of the Mediator in
conjunction with the facts about the current state of the Mediator to infer new state
information, i.e., it makes all implicit knowledge about the state more explicit. In
addition, the Reasoner can be used by the Data transformer and the Constraint
checker as an intelligent query engine and constraint solver.

In our solution, we use the ActiveBPEL engine to realize the Control Flow
Manager and an external web service to realize the Data Flow Manager. The
ActiveBPEL engine executes the WS-BPEL specification generated from the PIM
model of the Mediator. The web service stores and retrieves data, exchanged in the
messages between Blue, Moon and the Mediator, and performs the data
transformations defined in Step 3.

4 Related approaches

Several approaches and solutions have been proposed within the SWS Challenge.
Here we briefly discuss the approaches reported at the past edition of the workshop
held in Tenerife, Spain. The proposed approaches were based on the WSMO, jABC
and FOKUS frameworks. For a more detailed comparison please refer to [6].

The DERI approach [12] follows the Web Services Modelling Ontology (WSMO)
framework. It consists of four main components – ontologies, goals, web services and
mediators. Data mediation is achieved through the design and implementation of
adapters specifying mapping rules between ontologies. During runtime, the approach
considers specific mediator services which perform data transformations at entity
instance level. The mediator interaction behavior is described by means of Abstract
State Machines, consisting of states and guarded transitions. A state is described
within an ontology and the guarded transitions are used to express changes of states
by means of transition rules. However, this implicit behavior specification may be
neither intuitive nor trivial to make sure that the expectations implied by the designed
transition rules match the expected operation message exchange patterns.

The jABC solution [13] uses SLGs (Service Logic Graphs) as choreography
models, allowing the designer to model the mediator in a graphical high level
modeling language by combining reusable building blocks into (flow-)graph
structures. These basic building blocks are called SIBs (Service Independent Building
Blocks) and have one or more edges (branches), which depend on the different
outcomes of the execution of the functionality represented by the SIB. The provided
model driven design tools allow the modeling of the mediator in a graphical high
level modeling language and support the derivation of an executable mediator from

these models. More recently [7], the approach has focused on how to apply a tableau-
based software composition technique to automatically generate the mediator’s
interaction behavior. This uses a LTL (Linear Time Logic) planning algorithm
originally embedded in the jABC platform. However, the applicability of automated
synthesis of the mediator’s business logic is still limited considering the kind of
assumptions being made. In comparison with the jABC approach, the approach
presented in this paper does not cover automated synthesis of the mediator logic as it
intentionally leaves the planning task to the business domain expert.

The core concept of the FOKUS [1] approach is the integration of ontology
mappings into BPEL processes. The approach addresses the data mediation by
applying semantic bridges to mediate between different information models and
representations. Semantic bridges are described as a set of description logic-based
axioms relating entities in business information models that are defined in different
ontologies but have a similar meaning. The description logic-based data model
provided by ontologies in conjunction with semantic bridges allows for applying
automatic semantic matching and reasoning mechanisms based on polymorph
representations of service parameters. The interaction behavior of the mediator has
been manually designed and addressed by using a BPEL engine as the coordinating
entity. Some BPEL enhancements were developed to integrate semantic bridges and
to support data flow specifications in terms of rules. These enhancements were
implemented as external functions that can be plugged into BPEL engines. Thus, in
contrast to our approach, the presented approach designs the mediation solution at
technology level. It relies strongly on the existing Web standard BPEL and cannot
easily be used with alternative technologies.

5 Conclusions and future work

In this paper, we presented a model-driven method for the semantic integration of
service-oriented applications. The key feature of the proposed method is that
semantically enriched service models are employed at different levels of abstraction
to develop end-to-end integration solutions from business requirements to software
realization. Therefore, the integration problem is solved at a higher level of
abstraction by business domain experts and then (semi-)automatically transformed to
a software solution by adding technical details by the IT experts. This way, the same
business integration solution can be reused to implement different IT integration
solutions using different implementation technologies. In addition, our framework
provides a means to define domain-specific languages (DSLs). This way, business
domain experts can solve integration problems using concepts that are closer to their
domain, thereby, abstracting from complex service representation techniques and the
syntax of data transformation definitions.

Currently, we focus on techniques to automate parts of the composition process of
the Mediator. In particular, we consider backward-chaining techniques to discover
causal relations among the activities performed by the mediator. In our approach, we
start with the activities that send messages and recursively search for activities that
provide the information required to construct these messages. The search is performed
using the mappings defined in the information model of the mediator. In order to

support semantic matching in this search, we use OWL to express the information
model and facilitate reasoning about the mappings.

References

1. Barnickel N, Weinand R, Flügge M. Semantic System Integration - Incorporating Rule
based Semantic Bridges into BPEL Processes, In: Proceedings of the 6th International
Workshop on Evaluation of Ontology-based Tools and the Semantic Web Service
Challenge (EON-SWSC-2008), Tenerife, Spain, June 2008.

2. Dirgahayu T, Quartel D and van Sinderen M. Development of Transformations from
Business Process Models to Implementations by Reuse, In: 3th International Workshop on
Model-Driven Enterprise Information Systems, 2007, pp. 41-50.

3. ElipseUML. http://www.eclipsedownload.com/.
4. ISDL. http://ctit.isdl.utwente.nl.
5. JAX-WS and JAXB. http://java.sun.com/webservices/technologies/index.jsp.
6. Mantovaneli Pessoa R, Quartel D and van Sinderen M. A Comparison of Data and Process

Mediation Approaches, In: Proceedings of the 2nd International Workshop on Enterprise
Systems and Technology (I-WEST 2008). INSTICC Press, May 2008, pp. 48-63,
Enschede, The Netherlands.

7. Margaria T, Bakera M, Raffelt H, and Steffen B. Synthesizing the mediator with jabc/abc,
In: Proceedings of the 6th International Workshop on Evaluation of Ontology-based Tools
and the Semantic Web Service Challenge (EON-SWSC-2008), Tenerife, Spain, June 2008.

8. openArchitectureWare, http://www.openarchitectureware.org/.
9. Quartel D and van Sinderen M. On interoperability and conformance assessment in service

composition. In: Proceedings of the Eleventh IEEE International EDOC Enterprise
Computing Conference (EDOC 2007), 2007, pp. 229-240.

10. Quartel D, Dijkman R, van Sinderen M. Methodological support for service-oriented
design with ISDL. In: Proceedings of the 2nd International Conference on Service Oriented
Computing, 2004, pp. 1-10.

11. Quartel D, Steen M, Pokraev S and van Sinderen M. COSMO: a conceptual framework for
service modelling and refinement. In: Information Systems Frontiers, 9 (2-3), 2007, pp.
225-244.

12. Roman D, Keller U, Lausen L, de Bruijn J, Lara R, Stollberg M, Polleres A, Feier C,
Bussler C, and Fensel D. Web Service Modeling Ontology, In: Applied Ontologies, 2005,
vol. 1, pp. 77-106.

13. Steffen B, Margaria T, Nagel R, Jörges S, and Kubczak C. Model-Driven Development
with the jABC. In: Proceedings of Haifa Verification Conference, LNCS N.4383. Springer
Verlag, 2006.

14. Textual Concrete Syntax, http://wiki.eclipse.org/TCS.
15. UDEF. http://www.opengroup.org/udefinfo/.
16. World Wide Web Consortium(W3C), OWL Web Ontology Language Reference, W3C

Recommendation 10 February 2004, http://www.w3.org/TR/owl-ref/.

