
Runtime Verification of
Component-Based Embedded Software ?

Hasan Sözer1, Christian Hofmann2, Bedir Tekinerdoğan3, Mehmet Akşit2

1 Özyeğin University, İstanbul, Turkey
2 University of Twente, Enschede, The Netherlands

3 Bilkent University, Ankara, Turkey

Abstract. To deal with increasing size and complexity, component-
based software development has been employed in embedded systems.
Due to several faults, components can make wrong assumptions about
the working mode of the system and the working modes of the other
components. To detect mode inconsistencies at runtime, we propose a
”lightweight” error detection mechanism, which can be integrated with
component-based embedded systems. We define links among three levels
of abstractions: the runtime behavior of components, the working mode
specifications of components and the specification of the working modes
of the system. This allows us to detect the user observable runtime er-
rors. The effectiveness of the approach is demonstrated by implementing
a software monitor integrated into a TV system.

1 Introduction

An evident problem in the embedded systems (ES) domain is the increasing
software size and complexity. As a solution, component-based development has
been recognized as a feasible approach to improve reuse and to ease the creation
of variants of products [1]. Hereby, usually each component has to deliver a set of
well defined services in a set of working modes. Components can correctly work
together in the integrated system only if their working modes are consistent with
each other; however, several faults can lead to mode inconsistencies at runtime.

We observed that mode inconsistencies between components can cause severe
errors that lead to user-perceived failures. To detect and recover such errors,
dedicated fault tolerance mechanisms are required. Instead of tolerating faults,
one may try to avoid them by adopting theorem proving and model checking
techniques at design time. Although these techniques have showed their value for
many practical applications, the existing tools do not scale-up easily. Moreover,
some faults may simply remain undetected during design and/or new faults may
be introduced during the implementation.

? This work has been carried out as part of the TRADER project under the respon-
sibility of the Embedded Systems Institute. This project is partially supported by
the Netherlands Ministry of Economic Affairs under the Bsik program.

In our approach, we define 3 levels of abstractions: the runtime behavior of
the components, the working mode specifications of components and the speci-
fication of the working modes of the system. We establish explicit links among
these levels. This allows us to detect runtime errors caused by inconsistent work-
ing modes of components. The effectiveness of the approach is demonstrated with
a software monitor integrated into a TV system.

The remainder of this paper is organized as follows. Section 2 introduces the
problem using an industrial case. Our solution approach is described in section 3.
Section 4 proposes diagnosis and recovery techniques. Section 5 discusses the
effectiveness and the limitations of the solution approach. In Section 6, related
previous studies are summarized. Finally, the paper is concluded in Section 7.

2 Industrial Case

In this section, we illustrate the problem using digital TV (DTV) as an in-
dustrial case. The DTV software is composed of many components working in
coordination [1]. Each component has a set of working modes. These modes
should be mutually consistent to provide the functionality that is required by
a working mode of the system. If the synchronization between the component’s
working modes is lost (by loosing a notification message, data corruption etc.)
inconsistent behavior occurs and component interactions no longer work in the
anticipated way.

Consider for example the Teletext Page Handler component, which is respon-
sible for requesting and acquiring a teletext page. Another component, Display
Manager renders teletext pages on the screen. If Display Manager correctly as-
sumes that the TV is in Teletext mode whereas Teletext Page Handler assumes
that the TV should display the video stream, the combined behavior leads to a
failure: no Teletext page is rendered leaving the user with a blank screen.

Due to the large number of components and the cost sensitivity of the ES do-
main, it is not feasible to check mode consistencies at the system level. Therefore,
we propose to detect mode inconsistencies at component level as follows.

3 Error Detection

Our approach is based on models of the working modes of the system and its
components. We map the models describing the component working modes to
the implementation of the corresponding component in order to observe the
component modes at runtime. We also map all component modes to the system
modes. This makes the inter-dependencies between component modes explicit.
The mappings between modes specify the mutual consistency condition, which
is checked by monitoring the system at runtime. An error is detected whenever
an inconsistency has been observed. In the following, we will discuss a prototype
implementation of this approach in more detail. Then, we generalize this imple-
mentation and provide a formal definition of the mode consistency condition.

3.1 Implementation: A Prototype

The number of errors that can be detected by our approach depends on the
number of working modes of the system that is considered and the number of
component modes that are monitored. We developed a prototype and integrated
it into a real TV system, where 4 system working modes are considered and 3
components are monitored. System working modes are tv, txt, dual screen, and
transparent teletext. The monitored components are Teletext Page Handler, Dis-
play Manager, and Application Manager. The Application Manager component
controls the execution of applications in the system. Each component mode is
represented by a bit vector, <b0b1b2b3>, where each bit corresponds to a system
working mode, e.g., b2 corresponds to dual screen. The mapping between the
system working modes and the component modes is shown in Table 1.

Table 1. Mapping between the component modes and the 4 system working modes

Application Manager Txt. Page Handler Display Manager

mode map mode map mode map

on screen display 1000 on 0111 on screen display 1000

txt 0111 off 1000 txt full screen 0100

off 0000 subtitle 0111 txt left-half screen 0010

tv 1000 default screen 1000

Application Manager, Teletext Page Handler and Display Manager compo-
nents can be in one of 4, 3 and 4 different modes, respectively. In total, there are
3 × 4 × 4 = 48 different mode combinations. ANDing the bit vector representa-
tions of the component modes leads to the value 0 in 40 of the cases. In 8 cases
the result is non-zero, i.e., there is at least one bit where all of the component
modes have the value 1. Therefore, our prototype can detect 40 error cases. The
error detection mechanism polls the system periodically, where the current state
values of the components are ANDed and an error is issued if the result is 0.

We injected 4 different faults in the TV system. These lead to mode inconsis-
tencies between the Teletext Page Handler and Display Manager components,
which eventually end up in lock-up failures in the Teletext functionality. We sys-
tematically activated the faults with a key combination from the remote control.
In all cases the detection mechanism was able to detect the errors (notified by
blinking the TV status LED) even before we observed the associated failure.
This allows to (possibly) recover from an error before a failure is perceived by
the user.

3.2 Generalization of the Prototype

In this section, we generalize and formalize our approach. We define a finite set
of components C, where for each component Ci ∈ C, there exists a set of working
modes Mi. Furthermore, there exists a set of working modes of the system MS .

For each mode couple (m, s) s.t. m ∈ Mi and s ∈ MS , we define a mapping
function,

map(m, s) =

{
0, s⇒ A(¬mW¬s)
1, otherwise

where s⇒ A(¬mW¬s) is a Computational Tree Logic [2] formula denoting that
when s occurs, m should never occur until the mode of the system changes. For
every mode m ∈ Mi of a component Ci, we define a bit-vector vi,m of length
|MS |. Each bit in vi,m refers to a mode s in MS and its value is assigned according
to the mapping function. The consistency condition is defined as

∧
0≤i<|C| vi,m,

where vi,m corresponds to the current mode of component Ci. There exists an
error if this condition is evaluated to 0, meaning that there is no consistent
assumption of each component about the current mode of the system.

3.3 Performance Overhead

To measure the performance overhead introduced by the error detection mecha-
nism, we used an existing feature of the system that measures the load in terms
of CPU cycles. We have made load measurements during two scenarios; watching
TV (TV) and reading a Teletext page (TXT). For each scenario, we calculated
the maximum, minimum and average CPU load of the system with and without
the error detection mechanism. The results are presented in Table 2.

Table 2. CPU Load of the system with and without error detection

without error with error
Scenario detection detection

min. avg. max. min. avg. max.

TV 34 % 36.9 % 51 % 34 % 36.9 % 51 %

TXT 39 % 42,9 % 46 % 41 % 43.4 % 47 %

In Table 2, we see that the CPU load during the TV scenario did not differ
at all. For the TXT scenairo, the average CPU loads was increased by 1, 2%
on average. This shows that the overhead introduced by the error detection
mechanism can vary depending on the usage scenario. In the case of the TV and
TXT scenarios, the overhead is at acceptable levels. In general, our approach
provides several advantages in terms of simplicity and efficiency. Error checking
is performed with a single AND operation over bit-vectors and a space of size
(|C| × |SG|) bits must be allocated only. Also note that the modeling effort is
limited to assigning binary values that indicate the mode compatibility.

4 Diagnosis and Recovery

Error detection is the main focus in this paper. Another essential step of fault
tolerance is recovering from the detected errors. We have recently developed

a local recovery framework [3] for this purpose. Local recovery is an effective
approach, in which the recovery procedure takes actions concerning only the
erroneous components. To make local recovery possible, an additional diagnosis
step should be introduced, which identifies the components that do not have a
consensus on the current system mode. We can apply a voting mechanism to
pinpoint such components in O(|SG| × |C|) time as shown in Algorithm 1.

Algorithm 1 Diagnosis Procedure

1: systemmode← �
2: maximumvotesum← 0
3: for j = 0→ |SG| do
4: votesum← 0
5: for i = 0→ |C| do
6: votesum← votesum + vi,mcurrent [j]
7: end for
8: if maximumvotesum < votesum then
9: systemmode← j

10: maximumvotesum← votesum
11: end if
12: end for
13: for i = 0→ |C| do
14: if vi,mcurrent [systemmode] 6= 1 then
15: mark the component Ci

16: end if
17: end for

5 Discussion

We assigned the monitor to the lowest priority task, which can proceed after all
the other tasks become idle. This provides a safe point in time to perform the er-
ror checking: i) The monitor does not intervene with other tasks and functions,
ii) The system reaches to a stable state before the mode information is col-
lected, and iii) The introduced performance degradation is negligible. The only
drawback of this approach is that error detection might be late. Error checking
may never have a chance to execute in case the system is continuously busy or
deadlocked. Such errors can be detected by other mechanisms like watchdog [4].

6 Related Work

There have been several proposals regarding formal specification of behavior [5–
7]. Behavior protocols [8] and contracts [9] have been mainly used to formalize
component interaction and utilized for design-time verification.

The scheme proposed by Thai et al. in [10] detects errors by checking consis-
tency of states. The decision about whether there exists an error or not is made
statistically. The outcome is according to the ratio between checks that passed
and the total number of checks executed. Our approach is deterministic in the
sense that an error is issued whenever a check does not pass.

Classification schemes have been provided for on-line monitoring [11] and
real-time system monitoring [12]. We can classify our work as a monitoring
approach for fault tolerance. It is based on time-driven sampling of component
modes and built-in event interpretation that triggers recovery actions.

7 Conclusion

We pointed out a problem associated with component-based software that con-
stitutes a challenge for reliability of ES. Either because of implicit assumptions
at the design level or faults introduced during the implementation, mode incon-
sistencies can occur between components, which end up with the failure of the
system. Such errors can be detected and recovered, (possibly) before a failure
is observed. In this paper, we proposed an error detection mechanism that can
detect mode inconsistencies at runtime. It can be adopted independent of the
utilized component technology. We implemented a prototype of our solution and
integrated it into a TV system. We obtained promising results.

References

1. Rob C. van Ommering et al.: The Koala component model for consumer electronics
software. IEEE Computer 33(3) (2000) 78–85

2. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2(3) (1982) 241–266

3. Sozer, H., Tekinerdogan, B., Aksit, M.: FLORA: A framework for decomposing
software architecture to introduce local recovery. Software: Practice and Experience
39(10) (2009) 869–889

4. Huang, Y., Kintala, C.: Software fault tolerance in the application layer. In Lyu,
M.R., ed.: Software Fault Tolerance. (1995) 231–248

5. Peters, D.K., Parnas, D.L.: Requirements-based monitors for real-time systems.
IEEE Trans. Software Eng. 28(2) (2002) 146–158

6. Zulkernine, M., Seviora, R.: Towards automatic monitoring of component-based
software systems. JSS ACBSE Special Issue 74(1) (2005) 15–24

7. Diaz, M., Juanole, G., Courtiat, J.: Observer - a concept for formal on-line vali-
dation of distributed systems. IEEE Trans. Software Eng. 20(12) (1994) 900–913

8. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.
Software Eng. 28(11) (2002)

9. Y. Berbers et al.: CoConES: An approach for components and contracts in em-
bedded systems. LNCS 3778 (2005) 209–231

10. J. Thai et al.: Detection of errors using aspect-oriented state consistency checks.
In: ISSRE. (2001) 29–30

11. Schroeder, B.: On-line monitoring: A tutorial. IEEE Computer (1995) 72–78
12. Schmid, U.: Monitoring distributed real-time systems. Real-Time Systems 7(1)

(1994) 33–56

