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Abstract— Embedded targets normally do not have much

resources to aid developing and debugging the software. So

model-driven development (MDD) is used for designing em-

bedded software with a ‘first time right’ approach. For such

an approach, a good way of working (WoW) is required for

embedded software development using MDD techniques.

This paper discusses the preferred way of working for the

development of embedded control software. Control software

requires hard real-time support for the loop controllers. These

controllers directly control the motor output. Soft and non real-

time levels can be used for non loop control related software

tasks.

The paper also discusses model structure optimisation tech-

niques, which prevent the complexity of resource scheduling

for large robotic setups, These techniques allow the designer to

keep his own preferred point of view, as the techniques try to

optimise the model into efficient software from a execution point

of view. This saves a huge amount of design effort, especially

for distributed targets.

I. INTRODUCTION

When developing control software for robotic and mecha-
tronic setups, it is convenient to use Model-Driven Devel-
opment (MDD) [1]. Especially when the target platform is
an embedded system which does not have much resources
available for all kinds of development aids.

MDD methods result in a reusable model. After the model
is used for the required simulations to get the model right
and to verify that the controller is able to correctly control
the setup, it can be used to derive the actual control software
running on the target platform.

Having a model which is validated and working correctly
in simulations often results in a ‘first time right’ implementa-
tion of the control software, especially when using the model
to generate the actual control software.

It is important to have a complete tool chain from model
to execution application when using MDD techniques. A
manual step might compromise the validity or correct ex-
ecution of the control software. This paper shows some new
and completed steps in the tool chain presented earlier by
Broenink et al. [2].

Section II of this paper gives information about the layered
design method used in this paper. Next, the mentioned new
steps are discussed in Section III. Starting with the way of
working for embedded control software using MDD tech-
niques, followed by a tool chain coverage for the described
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way of working. After that, the layered design approach
is combined with the tool chain and the section ends with
model structure optimisation techniques helping the designer
with the mapping of the model on the available resources of
the target platform. Section IV shows an example usage of
the described tool chain. The paper ends with discussions
and conclusions.

II. BACKGROUND

Figure 1 shows a typical architecture used for embedded
targets which control robotic or mechatronic setups. It is split
into three parts: Embedded software, I/O hardware and the
Plant. In this paper the embedded software is discussed.
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Fig. 1. Software architecture for embedded systems

The embedded software part is split into three layers, each
layers defines a real-time property:

• Hard real-time; specifies that deadlines must be met,
otherwise catastrophic events might occur.

• Soft real-time; specifies that deadlines should be met,
but if a deadline is not met, the result of this calculation
step still holds value.

• Non real-time; specifies that software blocks on this
layer do not have deadlines to meet.

The software which executes on the non real-time layer gets
to use the left-over resources when the software on the other
two layers reached their deadlines. This separation of real-
time properties is only relevant for control software which
needs to run periodically.

The loop control block in the figure contain the controllers
which control the actuators. These need to be hard real-time
in order to make sure that the actuators are fed with new
control data each sample period.

The sequence control block is an overall controller con-
taining information about the required task. It uses this
information to influence the loop controllers in order to have
them working together to control the setup and perform the
required task.
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The supervisory control block can be used for long term
calculations, which are used by the sequence control to de-
termine what the next task is. Path planning or environment
mapping are typical supervisory control tasks.

Using MDD techniques helps to separate the different real-
time layers. A generic modeling tool can be used to construct
the overall design and connect the different building blocks
with each other. Specific tools can be used to design the
specific controllers, for example a loop controller can be
designed using 20-sim [3]. This is a graphical modeling
tool being able to simulate the developed controller using
analytical solvers to obtain accurate results.

Model driven development is a good solution when de-
veloping embedded software. Usually, embedded targets are
low on resources and debugging capabilities, so modeling
the software has the advantage of off-target debugging and
simulation. When the model is validated, a ‘first time right’
implementation of the embedded software can be generated
from the model. In an ideal situation it really works at
the first time, otherwise the amount of on-target debugging
efforts to get it working is much lower at least.

III. METHOD

The first part of this section describes a way of working
(WoW) when using MDD tools. The required steps of this
WoW, starting at a model and ending with the software appli-
cation that can be executed on the target, are explained. First
from a generic point of view, and then a concrete coverage
with tools. Next part discusses the layered approach that is
used to obtain the real-time levels. The section ends with
a description of model structure optimisation techniques,
which should enlighten the workload for the designer for
complex or distributed robotic setups.

A. MDD Way of Working

Figure 2 shows the design procedure which is used to
develop embedded control software using MDD tools. An
earlier version was presented by Broenink et al. [2]. This
section elaborates in more detail on a way of working when
developing control software for embedded targets, ie the left
part of Fig. 1 namely the embedded control software and the
peripherals.

The figure consists of 4 steps (numbered 1 to 4) where the
tool chain needs to perform some action. Each step is more
or less Y-shaped, indicating that two inputs are merged into
an updated output. This is repeated for every step until the
desired output is obtained.

The top of the figure contains the MDD tools used for
developing the controller models and the overall software
model. MDD1 is the tool which is used to design the
controller models. The tool typically is able to simulate the
developed controllers, so it is easy to debug the model before
it is executed on the target which does not have elaborate
debugging methods.

The MDD2 tool could be used for design of the overall
architecture of the software. The model from the previous
MDD tool can be included in this tool and the required

 













































 

Fig. 2. Way of working when using the MDD tool chain for embedded
control software development

controller I/O can be attached in this overall architecture. It
should also be able to model the data flows, from the input
through the controllers to the outputs, but also internal data
flows between different controllers or to the user interface.

In this case there are 2 MDD tools; depending on the
actual situation and the different types of controllers even
more MDD tools could incorporated in the way of working.
Only requirement is, that the tool responsible for the overall
architecture is able to make use of the models from the other
tools: direct understanding of the model or through code
generation.

The first step of the way of working (indicated with a 1 in
Fig. 2) incorporates model refactoring and code generation.
Model refactoring is optional, but can be used to optimise
the models for an execution point of view, more on this in
Section III-D. As mentioned, all the MDD tools should be
able to generate code from their models. This is achieved
using code templates, which contain the code that is required
for each model block. By using token replacement such a
code block can be adjusted to exactly match the defined
properties of the model block. Independent of the used
framework(s) the code generation can be kept constant and
the templates can be replaced by others when required.

Step 2 involves the extension of the generated model code
with target information. External model inputs and outputs
are connected to the targets I/O devices. Furthermore, target-
specific code required for the execution of the model code
on a particular real-time operating system (RTOS) is added.

The result of step 2 is a set of source files that contains
all layers from Fig. 1 and target specific information: the
embedded control software. Step 3 involves the compila-
tion of these sources with a compiler that produces target-
compatible code. Examples of these targets are: (embedded)
PC’s running an RTOS like QNX or RTAI-Linux, ARM
boards and PowerPC cores in FPGAs. This broad range of
targets requires the usage of the appropriate cross-compiler
to get a compatible executable for each target.



The last step (4) is to deploy the executable to one or more
targets. Doing this with a tool in an automated way, might
add additional features like logging or debugging depending
on the used tool.

B. A tool chain coverage for the way of working

This section shows a tool chain coverage for the described
WoW. It is not the one and only coverage, but it acts as an
example to shows a possible implementation of the WoW.

At the top of the Fig. 2 two MDD tools are shown: 20-
sim will be used for MDD1 and gCSP for MDD2. gCSP is
used to develop the overall software architecture and 20-sim
is used to design the control software.

As mentioned 20-sim is used to design and simulate the
controller models. The 20-sim generated code has the same
functionality as the model itself, so it pays off to carefully
design and simulate the modelled controller. Using 20-sim
results in a ‘first time right’ most of the times and thus saving
valuable debugging time.

gCSP [4] is a graphical CSP-based modeling tool. Com-
municating Sequential Processes (CSP) [5] is a formalism
representing the concurrency between processes. By using
this formalism one does not need to think about relations
between processes or the execution order of processes. gCSP
provides a graphical way of defining these relations and
data flows, since using the CSP formalisms directly is too
complex for larger target applications. The code generation,
in combination with a CSP supporting framework, takes care
of converting the model using the CSP formalisms.

LUNA [6] is an example of a newly developed CSP
supporting framework, which is used for step 3 of Fig. 2
(and of course the code generation templates are aware of
this choice as well). LUNA stands for ‘LUNA is an Universal
Networking Architecture’. It is a multi-platform CSP-based
execution framework, with support for features like threading
and (hard) real-time. The required support for CSP and real-
time is explained already. Having threading support enables
to fully use multi-core targets and it is also convenient for
the model structure optimisation technique described later in
this paper. Currently, gCSP is not able to generate code for
LUNA yet, so code generation for the CTC++[4] library is
used and manually converted to make use of LUNA. The
rest of the paper assumes that the code generation is able to
generate LUNA code to keep the story apprehendable.

In this example tool chain coverage, steps 2 till 4 are
almost completely handled by a tool called 20-sim 4C [2],
[7]. It uses a template-based approach to handle specific
information for each of the supported targets and software
frameworks. A new target or framework can be included by
simply adding a new template to 20-sim 4C containing all
required target-specific information like driver code.

The code generation step (1) is handled by both modeling
tools, only 20-sim supports templated code generation at
the moment, but plans are made to update gCSP as well.
The generated code uses the LUNA application programming
interface (API) to hook into the framework. LUNA provides

the CSP based execution engine to execute the (modeled)
processes in the right order using its multi-threading support.

Step 2 is completely handled by 20-sim 4C, which uses
the target template and the token replacement technique to
perform this step.

Step 3 involves the compilation of the embedded con-
trol software with a cross-compiler. This cross-compiler
is generated by our Embryo build system. Embryo is a
fully automated modular build system that can build an
RTAI or Xenomai real-time Linux operating system from
scratch, including the required cross-compilers for 20-sim
4C. Depending on the requirements of logging, debugging
and the availability of target templates for this step, 20-sim
4C or manual cross-compilation is used.

When 20-sim 4C was used for compiling, it automatically
sends the executable to the target. Otherwise, this is also a
manual step.

C. Layered approach

As discussed earlier and shown in Fig. 1, a layered
design approach is required for real-time applications to
separate the levels of real-time. These real-time levels can
be implemented using a framework that has priority support.
The hard real-time code should be executed first to make sure
the deadlines are met and thus have the highest priority. After
that, the soft real-time code should be executed and when
there is left-over time within the period the non real-time
code can be (partially) executed. Most operating systems
provide thread priority levels, which are used by LUNA
to provide the layered approach for the different real-time
layers.















  













Fig. 3. Example of a layered design

In order to support the discussed layered approach, the
MDD tool (gCSP in this case) should be able to support
them. The code generation needs to know which process
should placed on which layer, especially when there is one
big model of the complete application, which is probably
desired from a developer point of view. An example of a
graphical model using layers, as it could be presented in
a MDD tool, is shown in Fig. 3. A legend explaining the
used symbols is shown to Fig. 7. All the real-time layers
from Fig. 1 are present and contain parts of the software
architecture. The controllers are interacting with each other,
telling about their status or giving new tasks. Depending on



the application, a control could also have direct I/O with the
outside world.

The tool could use properties for each process property
to select the layer a process belongs to, or by grouping
the processes the layers could be defined. This is shown
in Fig. 3, where the layers are shown graphically by using
dashed rectangles.

When having this information present, it is fairly easy for
the code generation to map the processes of Fig. 3 onto the
correct layer and to make sure the real-time properties are
effective. This mapping process gets much more complex
when the target system has multiple cores or maybe it is
even a distributed target. Distributed targets are not too hard
to imagine nowadays: a humanoid robotic setup has many
joints and it would make sense when each joint has its
own embedded controller target. Each of these controllers
is supervised by a centralised supervision controller target.

Having a MDD tool which makes it possible to create
one model containing all decentralised joint controllers and
a supervisory controller, would be very convenient for the
developer. The model would contain all elements of the
system in one overview, each element is specified by a sub-
model. The joint controller could even be made reusable for
each joint when it is cleverly designed.

An example of a decentralised setup is shown is Fig. 4. It is
a simplified humanoid-like robotic setup with a decentralised
controller for each joint. The central controller, in the head,
synchronizes all joint controllers and makes sure that each
joint controller performs its own piece of the overall task.
Comparing it with Fig. 1 shows that the joint controllers are
the loop controller, as they need hard real-time guarantees.
The centralised controller could be mapped onto the soft or
non real-time layers, depending on the functionality of the
centralised controller.




























Fig. 4. Example of a decentralised control setup

It would be possible to also have communication between
the joint controllers themselves, shown with the dashed lines,
in order to perform more complex tasks or obtain an higher
accuracy, as indicated with the horizontal lines in Fig. 3.

The code generation now has the complex task to generate
code for each decentralised embedded target and to have
some form of transparent communication with the centralised

supervisory target. The next section discusses model struc-
ture optimisation techniques helping with this complex task.

D. Model structure optimisation techniques

By adding a model structure optimisation tool to the tool
chain, it is possible to support complex control applications
as discussed in the previous section without unnecessary
burdening the developer with this complex task. It allows
the developer to build models according to his point of view
without losing too much efficiency, as the model structure
optimisation technique, implemented by the additional tool,
converts the model to an efficient software execution point
of view, while keeping the available resources in mind so
they can be used optimally.

The optimisation technique could determine which pro-
cesses should be placed on which core, or in the distributed
example on which embedded target. An important step in
this process is to build a dependency graph of the processes
in the model. Processes are dependent when there are data
communication flows between them or there is some con-
currency relation, like a group of processes should run in
parallel. The graph keeps track of these relations and helps
grouping the processes into convenient groups which do not
have much relations to other groups. Basically, the groups
are a kind of separated islands without too much ‘external
relations’ to other islands, as they are expensive compared
to ‘internal relations’.

To be able to determine efficient groups of processes,
model structure optimisation techniques obviously requires
extra data, besides the processes dependencies. For example,
the amount of data communicated between two processes
or the resource usage of each process. Also, the location of
certain I/O determines the location of the processes, as some
processes need to be able to access the particular hardware
providing this I/O. The analysis also needs information about
the system, like the available resources of each (distributed)
core or the communication costs and available communica-
tion bandwidth between each of the cores.

Bezemer et al. [8] presented an automatic model analysis
tool, which uses the dependency graph and the information
described above to group the processes onto so called
‘heaps’. These ‘heaps’ are groups of closely related pro-
cesses. Next, these heaps are mapped onto the available cores
in the setup, depending on the amount of available cores
multiple heaps might get mapped onto the same core.

IV. EXAMPLE

This section shows a simple example using the discussed
approach. It is a 2 degrees-of-freedom (DOF) setup, which
is basically a platform with panning and tilting capabilities.
Using 2 encoders the orientation can be fed to the controllers.
The setup can be controlled using a joystick, where one axis
influences the pan motion and the other the tilt motion.

A complete model is created using 20-sim, see Fig. 5. The
model not only contains the two controllers (implementation
shown in Fig. 6), but also simulated inputs, a modeled the
software to hardware interface (IO) and a modeled plant































Fig. 5. Top level overview for 2 DOF model

 














 

 








Fig. 6. Pan and tilt controller models

of the 2 DOF robot. Therefore it is possible to completely
test and simulate the controllers. After simulations show the
model is working correctly, the code generation feature can
be used to generate code for the the controller part only.

Next, an overview model is required to connect the two
20-sim controllers to the actual I/O using gCSP, as shown
in Fig 7. Each of the top level processes have a sub-model
containing the actual implementation. The green box around
(groups of) processes show that they are grouped by their
concurrent relation. Linkdrivers are used as glue software to
connect the gCSP model to actual hardware, in this example
they can be seen as I/O drivers. So the in pan, pos pan and
PanProcess are a group of parallel processes.

The PanProcess sub-model, shown in Fig. 8, contains the
20-sim PanController model, same goes for the TiltProcess
sub-model. The SanityCheck process checks whether the pan
and tilt input values are within a specified range, otherwise
they are clipped. This will prevent damage to the actual
setup due to high motor velocities. All processes are put
on the hard real-time layer as no sequential or supervisory
controllers are required.

Using these models, the code generation of 20-sim and
gCSP results in a complete application without the need of
adding code manually. Before code generation, the model
architecture optimisation techniques could have determined
an efficient way of mapping the processes.

For example, if a dual core target is used it could decide
to put the pan and tilt processes on separated cores and the
SanityCheck on the core with the most leftover resources.
Another mapping possibility is to map the pan and tilt
processes on the same core and let the second core run
the sanity check and the output handling, so it would be
possible to start the sanity check directly after the PanProcess
is finished and running parallel with the TiltProcess.



















 











Fig. 7. Top level overview of the 2 DOF setup model






















Fig. 8. PanProcess sub-model containing the 20-sim controller

The best solution for an efficient execution implementation
of the model depends on the extra information mentioned
earlier, consisting of the available target resources, the used
resources of each process and communication costs.

V. DISCUSSION AND CONCLUSION

The paper discussed the preferable way of working when
developing embedded control software using MDD tools. It
can be quite effortless when a good integrated tool chain
is available. Flexibility of the WoW is maintained using
templates along the route, as new templates can be added
to support new target or frameworks.

The example shows that this way of working results in a
fairly efficient result. The modeling tools help the developer
keeping the overview of the complete application and still be
able to simulate the loop controllers, without being forced
to think about efficient execution implementation issues.

For example, if one would like to use OROCOS [9] or
ROS [10] instead of LUNA as a framework, assuming that
those frameworks support al required features, the C-code
template need to be updated. All LUNA specific ‘hooks’
should be replaced with their OROCOS or ROS equivalents.
If those frameworks do not support a required feature, it
could be added by a custom made library which acts as glue
software, or the modeling software should be modified to
restrict the supported features. Changing the MDD tool, com-
pared to updating a template, is a hassle and not effortless,
so this approach would not be preferable.

The presented way of working supports the layered struc-
ture by adding properties to the MDD tools for these layers.



The real-time levels are just an usage example of these layers,
other properties could be added to layers as well, as long as
these properties are supported by the used framework which
is added during compilation.

Model architecture optimisation techniques are really re-
quired to support MDD tooling where the designer is able to
create a model according to his personal point of view. The
optimisation techniques convert the model from the designers
point of view to a software execution point of view, without
modifying the intended behaviour. We will look into these
techniques and are planning to include them into future
versions of our MDD tool chain.
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