Verifying Functional Behaviour of Concurrent Programs

. Marina .
Zaharieva-Stojanovski
University of Twente
the Netherlands

ABSTRACT

Specifying the functional behaviour of a concurrent program
can often be quite troublesome: it is hard to provide a sta-
ble method contract that can not be invalidated by other
threads. In this paper we propose a novel modular tech-
nique for specifying and verifying behavioural properties
in concurrent programs. Our approach uses history-based
specifications. A history is a process algebra term built of
actions, where each action represents an update over a heap
location. Instead of describing the precise object’s state, a
method contract may describe the method’s behaviour in
terms of actions recorded in the history. The client class
can later use the history to reason about the concrete state
of the object.

Our approach allows providing simple and intuitive specifi-
cations, while the logic is a simple extension of permission-
based separation logic.

1. INTRODUCTION

Verifying program correctness means proving that the pro-
gram behaves as described by its formal specification. In a
concurrent program, an inconsistent behaviour may occur
due to thread interleavings and potential data-race condi-
tions. Existing techniques for verifying concurrent software
often focus on proving data-race freedom in a program [4, 11,
3]. Although this is an essential property for a concurrent
program, it does not guarantee that the program behaves as
the programmer expects. In practice, specifying the expected
behaviour of a concurrent program is often quite challenging
using the existing verification techniques.

We illustrate this by an example: Lst. 1 shows a class
Counter, representing a simple shared data structure. The
increase method is implemented correctly and is data-race
free, as the shared location data is protected by a lock. How-
ever, because synchronisation happens inside the method
(internal synchronisation), it is difficult to describe the be-
haviour via the method contract. While the postcondition

Marieke Huisman
University of Twente
the Netherlands

Stefan Blom
University of Twente
the Netherlands

expression data = \old(data) + 1 would perfectly express
the intended behaviour of the method in a sequential pro-
gram, the same specification is not acceptable in a concur-
rent setting where, because of the unknown number of active
parallel threads, the value of data is unstable after the lock
release. As a result, method contracts in scenarios like this
often do not fully express the method behaviour, which also
limits proving properties for the client class that uses the
data structure. If the Client in Lst. 1 creates a Counter
object ¢ with initial value c.data = 0 (line 14), and then
forks two parallel threads, each of them increasing c.data by
1 (line 15), we can not prove in a modular way that after
joining both threads, the value of c.data is equal to 2.

class Counter {
2 int data; Lock lock;
//... constructors

//postcondition = ... 7;
6 void increase(){
lock.lock();
8 data ++;
lock.unlock();
w0}
12 class Client{
//

14 Counter ¢ = new Counter(0);
tl.fork(); t2.fork(); //both threads t1 and t2 call c.increase()
16 tl.join(); t2.join();

Lst. 1: A shared Counter data structure

In this paper we develop a new method for reasoning about
partial correctness of behavioral properties in concurrent
programs. Our logic is an extension of permission-based sep-
aration logic [3], while the specification language is based on
JML (Java Modeling Language) [12]. We target programs
with internal synchronisation, as the example in Lst. 1.

The general idea of the approach is the following. We intro-
duce actions as part of the specification language: an action
over a heap location z describes a (typically non-atomic)
change of the value at x. For example, the action for incre-
menting an integer value by 1 may be specified as:

action afint x] = \old(x)+1

When specifying the precise value of a location x in the
method post-state is difficult (as in Lst.1), the programmer

may specify the behaviour of the method in terms of actions communication merge (|) expresses a parallel composition

over x executed within the method. Every action over z is of two processes where the first step is a communication
recorded in a history of changes H associated to z. In par- between the first actions of each process: a-p1 | b-p2 =a |
ticular, every heap location x is associated with a predicate b-(p1 || p2). For atomic actions, the communication function
Hist(x, 7, H), where H is a history (modelled as a process () is defined through the function v : A x A+ A: a | b=
algebra term [7]) in which all actions over x are recorded. ~(a,b). In Sec. 4.2 we show how we use the communication

function to provide synchronisation between processes.

The history predicate Hist(x, 7, H) is a splittable token and

thus, may be shared among several parallel threads. Each

thread is responsible to record its local changes in the owned 3. PERMISSIONS, FR AMING, STABILITY
part of the token. When all threads have finished their up-
dates, the client class may collect all token parts and merge
all changes recorded by all threads. We can then reason
about the new value (or the set of possible values) for .

Separation Logic and Permissions. Permission-based sep-
aration logic [14, 13] is a program logic (an extension of
Hoare Logic [9]) used to reason about multithreaded pro-
grams. Every access to a heap location is associated with a
fractional permission 7, i.e., a value in the domain (0, 1] [3].
At any point in time, a thread might hold a permission to
access a location. To change a location z, a thread must
hold a write permission for x, i.e., m = 1; while for reading

The Counter.increase() method may be specified as:

//@ requires Hist(data, 7, H);
//@ ensures Hist(data, 7, H - a),

where a is the action specified above. The method contract a location, any read permission is required, i.e., 7 > 0. The
describes only the local changes in the history: the actual soundness of this logic ensures that the sum of all threads’
thread has increased the value of data by 1. permissions for a certain location never exceeds 1, which

guarantees that a verified program is data-race free.
The main contribution of the paper is a novel methodology

that helps in specifying and verifying behavioural properties The basis of this logic is the binary separating conjunction
in concurrent programs. The problem addressed in the pa- operation (*): P*Q holds when P and Q describe disjoint
per is very common in numerous concurrent programs. Im- resources and thus, may be used by two parallel threads.
portantly, the approach that we introduce is rather straight- Permission for a location z is expressed via the predicate
forward: it allows providing simple and intuitive specifica- PointsTo(x, 7, v), which indicates that = points to a location
tions; the logic that we propose is a simple extension of for which the thread has a permission m, and the value of
permission-based separation logic. We are working on inte- x is v. Proof rules for writing and reading are described by
grating this technique in the VerCors tool set [2, 1]. the following Hoare triples (where “ ?u ” means any value

and we name this value “u”):
Outline We give a short overview of the process algebra the-

ory in Sec. 2 and permission-based separation logic in Sec. [Write] {PointsTo(z,1,?7u)} = =wv; {PointsTo(z,1,v)}
3. Further, in Sec. 4 we present our approach for reasoning

about concurrent programs. In Sec. 5 we compare our work [Read)

with other existing approaches and we discuss future plans. {PointsTo(z,m, 1)} l=a; {PointsTo(z,m, v)*l==0}

2. ALGEBRA OF COMMUNICATING PRO-))
CESSES The PointsTo predicate may be used as a token, i.e., it can be

split and merged, and parts of the token may be distributed
among parallel threads. This is shown by the [Split Perm]
rule, where the operator *-* means ”splitting” (read from
left to right) or "merging” (read from right to left):

The algebra of communicating processes (ACP) [7] is a math-
ematical approach for reasoning about system behaviour in
terms of algebraic process expressions. The basic primitives
in ACP are actions from the set A = {a,b,c,...}, each of
them representing an indivisible process behaviour. To de-
scribe various processes {pi,p2,...}, actions are combined
using algebraic operators, the most fundamental of which
are the sequencing composition (-) and the alternative com-
position (+). For example, the expression a+ (b-c) expresses
a process composed of an action a or a sequence of actions
b and c. Further, two special actions are used: the dead-

[Split Perm)
PointsTo (x, w, v) *=*PointsTo (x, 71, v) *PointsTo (z, 72, v),
T = + T2

lock action § and the silent action T (an action without Framing and Stability. Permission-based separation logic
behaviour). We have: § -p=6,+p=pand 7-p=p. is based on the concept of framing: every shared location x

in a formula must be framed, i.e., the formula must express a
Parallel composition of two processes is described by the positive permission 7 to . Holding a permission guarantees
binary merge operator (]|), i.e., an alternative composition that the value of z is stable and can not be changed by
of all possible interleavings between both processes: pi || any other thread. Framing is implicitly maintained with
p2 = (p1 || p2) + (p2 || p1) + (p1 | p2). The operator || is the the PointsTo predicate: in general, we can reason about the
left merge operator, which describes a parallel composition of value of z only via the PointsTo(z,m,v) predicate. This
two processes where the initial step is always the first action predicate in a way binds together the knowledge of the value

of the left-hand operator: (a-p1) || p2 = a- (p1 || p2). The v at a location x with an access permission to x.

class Counter {

//@ pred res_inv = PointsTo(data, 1, ?v);
4 lock = new Lock/+@<res_inv>@x/;

6 //@ requires
//@ ensures
s void increase(){
lock.lock();
10 /*{PointsTo(data, 1, ?v)}x/
data ++;
/*{PointsTo(data, 1, v+1);}x/
lock.unlock();
/x{true}x/
b}

//lock_not_held;
//lock_not_held;

-
N

-
IS

Lst. 2: The Counter class - specification with locks

Using Locks. Haack et al. [8] show how to use permission-
based separation logic to reason about programs with re-
entrant locks. For each lock, a special predicate is defined,
called a resource invariant, describing which permissions the
lock protects. For example, the resource invariant res_inv in
the class Counter is associated to the lock object, express-
ing that a write permission to data is protected by the lock,
see Lst. 2, lines 3, 4. When a thread acquires the lock, it
gets the associated resource invariant (except for reentrant
acquiring) (line 10). Upon final lock release, the thread re-
turns the resource invariant back to the lock (line 14).

4. APPROACH

The specification of the Counter class (see Lst. 2) is strong
enough to verify data-race freedom: however, it does not
state anything about the behaviour of the increase method.
Although we can not reason about the value of data in the
method poststate, we would like the postcondition to express
that the method functions correctly, i.e., at a certain point
in the past, the value of data respected a specific property.
This rises the question: How can we reason about the value
of x in the past, without holding any permission to r now?

4.1 Separation of Value and Permission

The proof outline of the increase method (see Lst. 2) shows
that one can reason about the value of data only while the
permission to data is held. Once the lock is released and the
PointsTo predicate is lost (line 13), we lose also the informa-
tion about the value of data. Our intention is to provide a
technique that allows a resource invariant to store only per-
missions to certain locations, while the information about
the values for these locations can be handled independently.

The key of our concept is to separate i) the knowledge of
the value for a given location and ii) the access permission
for this location. As these two properties are tied together
by the PointsTo predicate, we extend the semantics of this
predicate, by adding the [Separate] rule:

[Separate]
PointsTo(x,1,7v) xv € V *-x%
Perm (z, 1) *Init (z, V) *Hist (z, 1, 0)

The [Separate] rule splits the PointsTo predicate in two sep-
arate parts: i) Perm(z,) predicate, which keeps the access
permission 7 for the location z and ii) Init and Hist predi-
cates, which store information about the value of x.

The Init(z, V) predicate states that at a given moment 7" in
the past (or possibly now), = had a value from the set V.
Normally, splitting is done on the predicate PointsTo(z, 1,v);
then the Init predicate stores the current unique value of x:

PointsTo(x, 1,v) *—* Perm(x,1) * Init(z, {v})*Hist(z,1,0)

When z is changed, the Init(x, V) predicate is not directly
updated; instead, the change is recorded in the Hist(x, 7, H)
predicate. In particular, the Hist(z, 1, H) predicate contains
a history H of all changes of x after the moment 7. The
history H is modelled as an ACP process algebra term [7],
where every action is a change of x (we discuss actions more
precisely later in Sec. 4.2). At the moment of splitting,
there are still no changes registered in the history, and thus
the Hist predicate contains an empty history, H = (.

The second parameter 7 in the Hist predicate is used to make
it a splittable token. Thus, the following rule holds:

[SplitHist]
Hist (x, m, H) *—*Hist (z, 5, H1) *Hist(z, 5, H2),

H = H, || H»
where || is the standard ACP parallel composition operator.
Later, in Sec. 4.2 we explain how H; and H2 can be chosen
when splitting the Hist token (when forking a new thread).
When the Hist token is distributed among several parallel
threads, every thread is responsible to record its own changes
to x in its own part of the token. At the end, when all
threads are joined and the full token is again obtained, all
thread local histories are merged together (H = H; || Hz).

To reason about the current value at location x, both Init
and Hist predicates are required. Moreover, Hist must be a
full token, i.e., Hist(x, 1, H). The Init(z, V) predicate stores
the initial value(s) of = at a given moment 7', while H (as
a non-deterministic process) contains all changes done after
T. Based on this information, the value V' may be updated
to a set of new possible values of and the history H will be
reinitialised to H = () (we discuss this further in Sec. 4.5).

4.2 A History as a Communication Process

Actions. As discussed above, the history H in the pred-
icate Hist(z, 7, H) is modelled as an ACP process, where
the primitives in the process H represent actions over x,
i.e., a change of the value of . An action is defined as part
of the program specification with the following syntax:

action act_label [Type x| (Type 1) = (I, \old(x))

The syntax shows that every action is labeled with a name
(action label), and is parameterised by a special single pa-
rameter = that represents the location that is changed. We
call this the location parameter. The action may further con-
tain an additional list of parameters I; it is important that
in this list we do not allow any heap location.

The right hand-side of the action definition is the interpre-
tation of the action, we denote rs(a[z] (1)) = f(I, \old(z)).
Every action over z is interpreted as a function over the list
of parameters [and the value \old(x), i.e., the value of x at
the moment before the action starts. The function returns
the value of x after the action is finished. An action is not

necessarily atomic, it is typically a sequence of operations
wrapped in an abstract change.

For every action, the history H carries the action label to-
gether with the concrete values of the action parameters [.
The location parameter is not mentioned because it is al-
ready stored in the Hist predicate associated to H.

Below, we show examples of three actions. The action a rep-
resents a change of an int value, where the value is increased
by k; action b describes adding an element to a list; while
action c represents an assignment to a specific value w.

action a[int x] (int k) = \old(x) +k
action b [list I] (int elem) = cons(elem,\old(l))
action cint x] (int w) = w

History Merging. As the [Split Hist] rule shows, when the
Hist (x, 7, H) token is split (when forking a new thread), two
histories H1 and Hs should be provided for which H = H; ||
H>. Each thread then records its own changes in a separate
history Hy or Ha. When threads are joined and H; and Hs
are merged, only the new actions from both histories, i.e.,
those actions recorded after splitting, should be interleaved.

To this end, we extend the set of actions A with an addi-
tional set As of synchronisation action labels. For each label
s € As, the set A also contains its complement § € A,
(§ = s). We define that two complementary synchronisation
actions communicate in a silent action, while communica-
tion between any other two actions, as well as a sequence of
a synchronisation action and any process returns a deadlock.

v(s,8) =71
Y(a,b) =0 ifa¢ AsV(a € A; ANb#a)
s-x=260, s€ As

The synchronisation actions and the communication func-
tion (]) can impose some constraints when evaluating the
parallel composition between two processes. For example
the expression p1 - s-p2 || ¢1 -5 - g2 results in a process
(p1]| 1) - (p2 || g2), i-e., actions from process p1 and g2 (or
p2 and ¢1) are not interleaved. In practice, the synchronisa-
tion actions are used as follows: when a thread ¢:, holding
a token Hist(z, 7, H) forks a thread t2, the token is split as:

Hist (x, 7w, H) -*Hist (x, /2, H - s) *Hist(z,7/2,3),s € L.

Threads t; and t2 then start to run in parallel, each of them
recording its changes to = into its local history, H - s and
§ respectively. When threads are joined, the new histories
H -s- H; and 5- H2 are merged such that only the actions
happened after forking the thread are interleaved: H-s-H; ||
5. Hs is trace equivalent to H - (Hy || Hz).

The current approach does not support scenarios where one
thread is joined by several threads. We consider that these
scenarios are not very common; however, we plan to lift
this limitation, generally by storing the same complementary
synchronisation action in the histories of all joining threads.

4.3 Program Specifications
Lst. 3 shows the full specification of the Counter class con-
taining two methods: increase() and set(int). The lock

class Counter{
2 int data;
Lock lock; /x res_inv = Perm(data, 1); */

//@ action afint x](int k) = \old(x) + k;
6 //@ action b[int x|(int k) = k;

s //@ requires Hist(data, m, H);
//@ ensures Hist(data, 7, H.a(1));
10 void increase(){
lock.lock();
12 //@ start a[data](1);
int | = this.data;
14 int k = 1+1;
this.data = k;
16 //@ commit a[data](1);
lock.unlock();
18 }
//@ requires Hist(data, m, H);
20 //@ ensures Hist(data, 7, H.b(k));
void set(int k){

22 lock.lock();

//@ start b[data](k);
24 this.data = k;

//@ commit b[data](k);
26 lock.unlock();

}

Lst. 3: The Counter class - complete specification

object which protects the field data now stores only the per-
mission to data (line 3). An action labeled a is defined to
represent incrementing an integer value by a value k (line 5).
Similarly, an action b describes overriding an integer value
with a new value (line 6).

Having the Hist predicate that expresses changes in the past,
we can easily specify the behaviour of both methods. In their
prestate it is required that the actual thread holds (part of)
the Hist token associated to data (lines 8, 19), while the
postconditions guarantee that the proper change over data is
recorded in the history H (lines 9, 20). Thus, no permission
is needed in the pre- or poststate of the methods. In fact, the
permission to data is obtained inside the method via the lock
object: however, the information about the value of data is
now detached from the lock, and can be used independently.

For soundness of the approach, it is required that the pro-
gram segment where a certain action occurs is explicitly
specified in the program. Therefore, we introduce two spec-

ification commands: i) start(a [x] (1)) indicates the beginning
of the action and ii) commit(a [x] (1)) indicates the end of the
action after which the action must be recorded in the history
(see Lst. 3, lines 12, 16 and 23, 25). Note that two program
segments that represent an action over a same location must
not overlap: this is important in order to avoid recording the

same update several times in the history.

4.4 Verification Methodology

To check whether the program meets the specification, the
verifier must: i) ensure that the start and commit specifica-
tion commands are properly added when required; ii) ensure
that the actions added to the history have indeed happened.

Ensuring start and commit existence. When updating
the value of a certain location x, we want to ensure that the
change is registered somewhere. When using the PointsTo
predicate, the newly assigned value is directly recorded into
the predicate itself, see Hoare triple [Write], Sec. 3. With
our approach, the PointsTo predicate is split into the pred-
icates Perm, Hist and Init. Thus, in addition to the triple
[Write], we need to introduce another rule for writing that
should be used when the PointsTo predicate is split. In par-
ticular, we have to ensure that the assignment to x happens
indeed as part of an action over x that later will be added
to the history of changes of x.

For this purpose, we define that when an action over x starts,
a token HistPerm associated to x is produced. This token is
in a way a permission obtained from the history that allows
writing at location x, with a guarantee that the changes
will be recorded later. The start command consumes the
Hist(z, 7, H) token and returns it back when the action is
finished. This is described by the following Hoare triple:

[Start]
{Hist(z, 7, H)} start a[x](); {HistPerm(xz,x, H)}

The new Hoare triple for assigning a location z (in addition
to the triple [Write]) is defined as:

[WriteHist| {Perm (z, 1) *HistPerm (z, w, H) }
T = w;

{Perm(z, 1) *HistPerm (z, 7, H) *x == w}

The [WriteHist] rule requires writing permission for the
location = (Perm(z, 1)) in the prestate, as well as permission
from the history (HistPerm(z)).

Ensuring actions correctness. Before the action ends, the
verifier checks whether the specified action is properly exe-
cuted. The Hoare triple for committing an action states:

[Commit] {HistPerm(z,w, H)*z == rs(alz] (1))}}
commit a [x] (I);

{Hist(z, 7, H - a(l))}

With the execution of the commit command, the action is
recorded in the history under the condition that the value of
x is properly changed as described by the action interpreta-
tion (z == rs(a[z] (1))). Lst. 4 shows the proof outline for
the increase method.

4.5 Reasoning using a History

As discussed above, to reason about the value at a loca-
tion = we need both the Init(x, V) predicate and the full
Hist(x, 1, H) token. A full Hist token ensures that x is in a
stable state and no thread can modify x’s value. The set of
possible values for x can be calculated after interpreting all
actions from the history. This is stated by the rule:

Hist(z, 1, H)*Init (z, V) *-*Hist (z, 1,) xInit (z, [[H*]]Y),

where [[H”]]Y returns a set of possible values for = after
the evaluation of the process H of actions over x, where the
initial value of x was any v € V.

We define the [[H.]]V operation inductively as follows (note

//@ requires Hist(data, 7, H);
2 //@ ensures Hist(data, m, H-a(1));
void increase(){
4 /x{Hist(data, =, H)}x/
lock.lock();
6 /x{Perm(data, 1) % Hist(data, w, H)}x/
//@ start a[data](1);
8 /+#{Perm(data, 1) * HistPerm(data, =, H)}x/
data++;
10 /x{Perm(data, 1) x HistPerm(data, =, H) *
data == \old(data) + 1}x/

12 //@ commit a[data](1);
/x{Perm(data, 1) x Hist(data, =, H-a(1)}x/
14 lock.unlock();

/*{Hist(data, =, H-a(1)}*/

Lst. 4: Proof outline of the increase method

class Client{
2 void main(){
Counter ¢ = new Counter(0);
4 /x{Init(c.data, {0})xHist(c.data, 1, 0)}x/
Thread t = new Thread(c);

6 t.start(); // t calls c.increase();

/*{Init(c.data, {0})xHist(c.data, 1/2, s)} (s is a sync. act.)x/
8 c.set(4);

/x{Init(c.data, {0})xHist(c.data, 1/2, s-b(4))}+/
10 t.join();

/x{Init(c.data, {0})xHist(c.data, 1, s-b(4) || s-a(1)}*/
12 /¥{Init(c.data,[[(b(4) || a(1))c-2eta]{O})«Hist(c.data, 1, 0)}*/

/x{Init(c.data,[[(b(4)-a(1) + a(1)-b(4))c-4ataJ]{0}) «
14 Hist(c.data, 1, 0)}x/
/+{Init(c.data, {4,5}) « Hist(c.data, 1, 0))}+/

}

Lst. 5: A Client class - reasoning using histories

that the || operator can be reduced to - and +):
i) ()" =v
i) [[Hf + H3))V = [[H{]]" U [[H3])"
i) o) B = U, ey [H7]]V Vv tme)
where vnew = 7s(a[z] (1))[\old(z)\vi]

Case iii) describes that after evaluation of the action a(l),
every possible value v; from the set V is replaced by a new
value Unew, which is obtained by the interpretation of the
action, rs(a[z] (1)), where any occurrence of \old(z) is re-
placed by the value of v;.

Lst. 5 shows an example of a client that uses a Counter
object ¢. During the initialisation phase of the object ¢
the PointsTo(c.data, 1,0) predicate is obtained from which
the permission part, Perm(c.data, 1), is transferred into the
lock. Thus, the client obtains both the Init and the Hist
predicates for the value data (line 4). The client starts a
new thread ¢ and then both threads running in parallel use
the same Counter object: thread ¢ increments the value
c.data by 1 (line 6), while the client thread assigns c.data
to 4 (line 8). The Hist token is divided into two parts (line
7), so both threads record the change in their own history.
At the end, both histories are merged (line 11). The client,
holding both Init and the full Hist token can reason that the
value of data at the end is either 4 or 5 (line 15).

5. CONCLUSIONS AND RELATED WORK

This paper introduced a new history-based technique for
modular reasoning about concurrent programs. The tech-
nique allows one to provide intuitive method specifications
that describe only the local effect of a thread, in terms of
abstract (user-specified) actions. This reduces the need to
reason about fine-grained thread interleavings. The tech-
nique is an extension of permission-based separation logic
and thus, guarantees data-race freedom.

Comparable to our approach, is the work on linearisabil-
ity [16, 17]. A method is linearisable if the system can ob-
serve it as if it is atomically executed. Linearisability is
proved by identifying linearisation points, i.e. points where
the method takes effect. This allows one to specify a con-
current method in the form of sequential code, which is in-
lined in the client’s code (replacing the call to the concurrent
method). In a similar spirit, Elmas et al. [6] abstract away
from reasoning about fine-grained thread interleavings, by
transforming a fine-grained program into a corresponding
course-grained program. The general idea behind the code
transformation is that consecutive actions are merged in a
proper way to increase atomicity up to the desired level.

Compared to these approaches, our technique provides more
flexibility, because the interpretation of the abstract actions
is user-specified. In particular, it may consist of several com-
plex operations. Additionally, we postpone how the action
is to be interpreted, and first build an abstract process alge-
bra term to model the history. This means that any process
algebra optimisation can be applied on the history as well.
Finally, in contrast to the work presented above, our tech-
nique is also suited to reason about object-oriented code
with dynamic thread creation.

Another approach to reason about the functional behaviour
of concurrent programs is by using Concurrent Abstract Pred-
icates [5], which extends separation logic with shared re-
gions. A specification of a shared region describes possi-
ble interference, in terms of actions and permissions to ac-
tions. These permissions are given to the client thread to
allow them to execute the predefined actions according to
a hardcoded usage protocol. A more advanced logic is the
extension of this work to iCAP (Impredicative Concurrent
Abstract Predicates) [15], where a concurrent abstract pred-
icate may be parameterised by a protocol defined by the
client. In a similar spirit, Jacobs et al’s [10] propose to rea-
son about a data structure with internal synchronisation,
by augmenting the client program with ghost code that is
passed as an argument to the module. This results in a kind
of a higher-order programming, in order to allow auxiliary
variable updates into the module.

Compared to this work, our technique allows more natu-
ral specifications where a method contract may describe the
thread’s local changes, and there is no need to specify a pro-
tocol or any auxiliary ghost code. The abstraction provided
by specifying actions helps to keep the specifications and
program code clean, and requires only a few annotations.

Future Work Our next goal is to reason about more com-
plex concurrent data structures. For this, we expect that our
technique can be applied, if the specifications are expressed

in terms of actions over a ghost field that represents the real
data structure. Next, we plan to extend the definition of
an action to allow more expressive specifications. Further-
more, we plan to analyse scenarios where the order of action
execution might depend on the program state (for example
scenarios using the wait/notify pattern). Our initial idea is
to allow specifying a partial order between actions.

Aknowledgements We would like to thank Bart Jacobs
and Dilian Gurov for their helpful comments. This work was
supported by ERC grant 258405 for the VerCors project.

6. REFERENCES

[1] A. Amighi, S. Blom, M. Huisman, and
M. Zaharieva-Stojanovski. The VerCors project:
setting up basecamp. In PLPV, pages 71-82, 2012.

[2] S. Blom and M. Huisman. The VerCors Tool for
verification of concurrent programs. In Formal
Methods (FM) 2014, volume 8442 of LNCS, pages
127-131. Springer, 2014.

[3] R. Bornat, C. Calcagno, P. O’Hearn, and
M. Parkinson. Permission accounting in separation
logic. In POPL, pages 259-270. ACM, 2005.

[4] C. Boyapati, R. Lee, and M. C. Rinard. Ownership
types for safe programming: preventing data races and
deadlocks. In OOPSLA, pages 211-230, 2002.

[5] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J.
Parkinson, and V. Vafeiadis. Concurrent abstract
predicates. In ECOOP, pages 504-528, 2010.

[6] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of
atomic actions. In POPL, pages 2—-15, 2009.

[7] W. Fokkink. Introduction to Process Algebra.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1st edition, 2000.

[8] C. Haack, M. Huisman, C. Hurlin, and A.Amighi.
Permission-based separation logic for Java, 201x.
Conditionally accepted for LMCS.

[9] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576-580, 1969.

[10] B. Jacobs and F. Piessens. Expressive modular
fine-grained concurrency specification. In POPL, pages
271-282, 2011.

[11] B. Jacobs, F. Piessens, J. Smans, K. R. M. Leino, and
W. Schulte. A programming model for concurrent
object-oriented programs. ACM Trans. Program.
Lang. Syst., 31(1), 2008.

[12] G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. R. Cok, P. Miiller, J. Kiniry, and P. Chalin. JML
Reference Manual, Feb. 2007.

[13] P. W. O’Hearn. Resources, concurrency, and local
reasoning. Theor. Comp. Sci., 375(1-3):271-307, 2007.

[14] J. Reynolds. Separation logic: A logic for shared
mutable data structures. In 17th IEEE Symposium on
LICS 2002, pages 55—74. IEEE Computer Society.

[15] K. Svendsen and L. Birkedal. Impredicative concurrent
abstract predicates. In ESOP, pages 149-168, 2014.

[16] V. Vafeiadis. Modular fine-grained concurrency
verification. PhD thesis, University of Cambridge,
2007.

[17] V. Vafeiadis. Automatically proving linearizability. In
CAV, pages 450-464, 2010.

