
A Reflection on Agile Requirements Engineering:
Solutions Brought and Challenges Posed

Irum Inayat
Faculty of Computer

Science & Information
Technology

University of Malaya
Kuala Lumpur, Malaysia

irum@siswa.um.edu.
my

Lauriane Moraes
Computer Science School

PUCRS
Porto Alegre, Brazil

lauriane.moraes@acad.p
ucrs.br

Maya Daneva
Information Science

Research Group,
University of Twente,

Enschede, The
Netherlands

m.daneva@utwente.
nl

Siti Salwah Salim
Faculty of Computer

Science & Information
Technology

University of Malaya
Kuala Lumpur, Malaysia

salwa@um.edu.my

ABSTRACT

The software development industry has rapidly accepted agile

methods. Empirical studies suggest that due to their flexible and

emergent nature, agile methods brought solutions to several

chronic problems of traditional software development methods.

One among the many is the acceptance of requirements changes at

later stages of development. However, knowledge about the

solutions that agile brought to requirements engineering (RE) is

fragmented. Also, little is known about whether the agile

philosophy, while introducing solutions to well-known RE

problems from the past, has unintentionally opened new

challenges. This paper offers a reflection on this matter. Based on

the results of our recently published systematic review on agile

RE, we reflect on the differences of ‘traditional’ and agile RE and

the practices adopted by the latter, on the solutions and challenges

of agile RE, and on some implications that agile RE might have

posed for research and practice.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –

elicitation methods (rapid prototyping, interviews, JAD, etc).

General Terms

Documentation, Design, Human Factors.

Keywords

Agile Software Development, Requirements Engineering, Agile

Requirements Engineering, Traditional Requirements

Engineering, Requirements Engineering Practices, Agile

Requirements Engineering Challenges.

1. INTRODUCTION
Software development is a social process relying on stakeholders’

collaboration. Agile methods belong to the class of software

development methods that incorporate frequent stakeholders’

collaboration, iterative development and acceptance of

requirements changes even at later stages of development [1].

Unlike in ‘traditional’ software development methods (e.g.

waterfall), goals are defined for each iteration and are revisited

once it is done in agile software development. Compared to

traditional software development approaches, agile methods offer

dynamicity by satisfying customer needs in less time and

flexibility by welcoming requirements changes at later stages of

the development cycle. Empirical evidence suggests that due to

the flexible nature of the agile methods, projects that deployed

them have outperformed those using traditional software

development methods, e.g. higher performance and better product

quality [2].

Though there are studies that describe requirements engineering

(RE) practices that are also feasible for agile methods (e.g. [3]–

[7]), the software development community still lacks

comprehensive knowledge about the solutions that agile RE

introduced to ‘traditional’ RE issues, nor if while introducing

those solutions new challenges were opened along the way.

Empirical evidence does exist (e.g. in [8]), but it often addresses a

particular RE aspect, e.g. inter-iteration re-prioritization of

requirements [8]–[10] or scaterred over several sources.

Experiences on agile RE are fragmented and, in turn, it is hard to

see what agile RE solutions are accompanied by new challenges

and what solutions are not. In our recently published systematic

literature review on agile RE [11], we identified (i) agile RE

practices, (ii) traditional RE challenges resolved by agile RE and

(iii) the challenges posed by agile RE to the software industry,

contributing to compiling all these topics in a single source aiming

to facilitate access to those interested in them. Our systematic

literature review included literature published between 2002 and

2013. In sum, we identified 17 practices of agile RE, 5 traditional

RE challenges that were overcome by agile RE, and 8 new

challenges posed by agile RE to the software industry. Details on

how we conducted the review and on the findings can be found in

[11].

In this paper we use the insights gained in our review as the basis

for our reflection on agile and ‘traditional’ RE. Our goal is to

create awareness that the topic needs more empirical evidence and

discussion if we want to help industry to ease their processes and

improve performance. Our reflection is based in our experience as

researchers and former practitioners who came to academia

looking to learn how to solve issues like the ones discussed in this

paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

XP 2015 Workshops, May 25 - 29, 2015, Helsinki, Finland
© 2015 ACM. ISBN 978-1-4503-3409-9/15/05…$15.00

DOI: http://dx.doi.org/10.1145/2764979.2764985

Table 1. Comparison of traditional and agile RE

Traditional Methods Agile Methods

RE processes [12]

Focused on gathering all the

requirements and preparing

the requirements specification

before the design phase

Iterative requirements

development throughout the

development cycle

Models [2][13]

Value fully specified

problems, rigorous planning,

pre-defined processes, and

documentation to support the

development of activities and

to record decisions made

Value individuals and

interactions over processes;

working software over

comprehensive

documentation; customer

collaboration over contract

negotiation; and responses to

change over following a plan

Planning [2][13]

Process activities are planned

in advance and progress is

measured against the plan

Planning is incremental and

is easier to change processes

to reflect new decisions based

on identified working needs

The remainder of the paper is organized as follows: Section 2

explains the key differences between traditional and agile RE.

Section 3 describes the adopted practices of agile RE. Section 4

explains the challenges of traditional RE resolved by agile RE.

Section 5 introduces the new challenges posed by agile RE to the

software industry. Section 6 concludes the paper and defines

implications for practitioners.

2. TRADITIONAL VS AGILE

REQUIREMENTS ENGINEERING
In this section, traditional and agile RE are discussed with respect

to their differences. Some of the main differences of traditional

and agile RE are summarized in Table 1.

2.1 Traditional Requirements Engineering
Requirements reflect the needs of customers for a system that

serves a certain purpose, e.g. controlling a device, placing an

order, or finding information. The process of finding out,

analyzing, documenting and checking these ‘services’ and their

related constraints is called RE [13]. The aim of RE is to help the

software team to know what to build before system development

starts in order to prevent costly rework. RE refers to all software

life-cycle activities concerning requirements [14] i.e. elicitation,

analysis and negotiation, documentation, validation, and

management [13][14]. RE when considered in such context and

while using ‘traditional’ software development methods such as

the waterfall model is termed ’traditional RE’ [4].

In traditional requirements elicitation, users are involved in

gathering requirements; plus, elicitation also includes

understanding the application domain, business needs, system

constraints, stakeholders and the problem the software system is

expected to solve as a whole. Then, the elicited requirements are

analysed for necessity, consistency (requirements should not be

contradictory), completeness (no service or constraint is missing),

and feasibility (requirements are feasible in the context of the

budget and schedule available for the system development)

through JAD sessions, prioritization, and modelling to resolve

conflicts. The selected requirements are then written down in a

requirements document to communicate what was defined to

stakeholders and developers. Requirements are next validated to

confirm the customers’ real needs in order to avoid errors in a

requirements document that can lead to extensive rework if

discovered during development or after the system is in service.

Last is the requirements management phase which deals with

changes in requirements originated by changes on the

stakeholders’ understanding of what the system is expected to do

that happen during the software development process. The system

requirements must then also evolve to reflect this changed

problem view and this is done through requirements management.

Such changes are not welcomed and are often source of rework,

delays and lack of satisfaction from the customer in the end.

However, in agile software development methods agile teams take

a set of certain requirements, called user stories [16] in each

iteration (called sprint) and develop a workable output to gather

customer’s feedback for rework if not satisfactory and start the

next iteration with the rest of user stories. The fixes of the

previous iteration with the development of the current one are

done simultaneously. Therefore, we can see that agile methods are

iterative, emergent and flexible to cater changes in requirements

differently as compared to the linear approaches of traditional

software development [17][18].

2.2 Agile Requirements Engineering
Agile methods are emergent and exploratory in which “knowing

and action” are simultaneous [19] and are driven by business

value and cost (return on investment) and not by the completeness

of the implemented requirements [20]. This inseparable relation

between eliciting user needs and developing them at the same

time makes agile methods different from linear sequence

following traditional methods [19] by offering more business

value [21]. This difference in the theme of agile methods and

traditional software development methods intrigues an interesting

question: How requirements are done in agile methods?

In the past decade, the merging of agile methods and RE has been

debated a lot. However, the question of which steps to follow to

deal with user requirements in agile methods from scratch still

needs attention. Though there are a handful of studies (e.g. JAD

based requirements gathering in agile methods [22]) that describe

how requirements are carried out in an agile way, still a

consolidated view of agile RE to facilitate practitioners’

understanding is needed. Therefore, we start by presenting a

consolidated view of on how to perform RE activities in agile

methods based on literature sources [12][23][24][25][26]. Agile

methods involve continuous planning [27], i.e. release planning,

iteration planning and task level planning. Iteration planning is

done for each iteration that spans from 1 to 3 weeks. It involves

user story estimation, acknowledgement of the accomplishments

of the previous iteration and determining overall progress and

goals for the next iteration. Release plan is done for each release

in which iteration length is decided, developers and customers

unanimously decide what will be in a particular iteration; velocity

points are determined per iteration. Task level planning involves

the breaking down of user stories into subsequent tasks, allocation

of tasks among team members and focus is put on implementation

issues. The overall agile RE process is explained below.

2.2.1. Role modeling
Role modeling of agile team comes first. It involves stakeholder

identification, defining stakeholder involvement level, and

building stakeholder trust [25]. It is foremost to identify

stakeholders to ensure: (i) who is going to define the project

scope, (ii) who is going to decide the budget and timing issues,

(iii) who will maintain the business and development team

relationship, (iv) who will provide support to the teams, and (v)

who will be the system users, among others. The stakeholders are

then classified into categories based on their interaction level with

the team and product. This creates user personas that eventually

help in role modeling. Roles are defined and their needs are

allocated with respect to potential system usage as user stories. It

also involves dealing with proxy roles or customer representatives

from the business stakeholders. Therefore, in this phase

stakeholder roles, responsibilities, and needs are decided upon.

2.2.2. User story creation
User story is defined as a unit of functionality in agile methods. It

specifies the customer requirements in a brief and concise way.

User stories are not detailed like the traditional requirements

specifications. They are short, direct and understandable by the

stakeholders. The large and complex user stories are split into

smaller ones based on ease of implementation. In this section, user

story gathering, writing and acceptance testing of user stories are

explained.

2.2.2.1. User story gathering
User story gathering goes on throughout the project in agile

methods because user requirements keep on evolving, coming and

going throughout the project. Therefore, user story evolving,

elicitation, and development keep on going in an iterative manner.

User stories are gathered through questionnaire, interviews,

observations and workshops, and written in story cards.

According to the proposed methods (e.g. [23]) non-functional

requirements (NFRs) are also elicited from the customers side-by-

side the functional requirements. So NFRs are also gathered

through questionnaires, workshops and observation methods.

2.2.2.2. User story writing
User story writing workshops are arranged in which development

team and customer jointly write the user stories. Such workshops

are arranged in the beginning of each planned release. Estimation

and priorities are not associated with the user stories at this stage.

Low fidelity prototypes are designed to properly translate user

demands into user stories for development.

2.2.2.3. Acceptance testing user stories
Tests are created and applied for each of the defined user stories.

These tests confirm the correctness of the user stories. In addition,

acceptance tests add to the usability and functionality of the user

story. The acceptance tests make all the possible stones unturned

where customer’s imagination might go. These acceptance tests

determine the completeness of a user story implementation. In

practice, acceptance tests are small notes written at the back of

story cards.

2.2.2.4. User story estimation
To measure the story points, agile teams allocate points to the

stories and use these arbitrary values to measure the effort

required to complete that user story. These points can be allocated

in many ways based on the team’s preferences. In most cases,

project managers define a story point complexity range as a

Fibonacci series (for example, 1, 2, 3, 5, 8). Another way is to

pick a small reference story and estimate the other ones with

reference to that using the Delphi estimation technique known as

“planning poker” [27]. The stories are rated and reviewed before

entering the next phase of prioritization.

2.2.2.5. User story prioritization
User stories are prioritized before iteration. The user stories are

prioritized in terms of ranking (i.e. ordered as first, second and

third) and also as group (i.e. ‘high priority’, ‘low’ and ‘medium’).

The high priority user stories are recorded in the product backlog

and used as a guide to carry out the development work. Customers

perform the prioritization task based on their understanding of the

business value the user stories will bring using various techniques

(e.g. dynamic reprortization of requirements [8], value-based

requirements priortization [9] client-driven requirements

prioritization [28], and risk-based requirements priortization [29])

but with due input from the development teams.

2.2.2.6. Disaggregating into tasks
The user stories are divided into smaller tasks for ease of

development. The stories that are fairly small are highly

interdependent are implemented as they are. Teams divide the

user stories based on their own personal instinct and criteria.

2.2.2.7. User story allocation
The user stories divided into tasks are allocated to the developers.

This is decided during planning meetings. Agile teams perform

these allocations based on their consensus and discussion.

Our reflection on evidence published in empirical studies helped

us create an overall picture of how agile RE happens across

projects and organizations. Each iteration repeats the same

process of user story creation, prioritization, estimation and

implementation and the final output is shared with the customer to

gather feedback and improve the product through retrospectives.

Unlike in the phase-driven linear traditional RE, clients’ changes

can be accommodated at any time during the development

lifecycle. Involving customer in user story prioritization also

reduces the chances of incoming change requests that often. It

also helps customers to make realistic expectations from the

output of each iteration. Therefore, significant differences can be

seen in the process of carrying out RE activities in agile methods

as compared to the traditional methods. The flow of activities

described in this paper defines the agile way of dealing with

requirements. It invites the researchers to provide empirical

results by conducting studies in agile based software development

environments. In addition, the empirical evidence and

experimental results will help shape up this process and flow of

activities in a better manner.

3. ADOPTED PRACTICES OF AGILE

REQUIREMENTS ENGINEERING
In our recent systematic review on agile RE [11] we identified 17

agile RE practices from literature. These practices are summarized

in Table 2. In particular, we found several traditional RE practices

particularly used for requirements gathering (i.e. observations,

interviews, workshops) used for user story elicitation and creation

in agile methods [3]. In addition, there are several other traditional

RE practices used in agile RE such as customer involvement [17],

face-to-face communication [7][8], requirements modeling [6]

using techniques like goal-sketching [6]. Agile methods strongly

advocate stakeholders’ collaboration so customer involvement and

face-to-face communication is an integral part of project

development.

In particular, agile RE practices include user stories based on

customer demands, user story prioritization [7][8] continuous

planning, pairing [7][8], change management [4], cross functional

teams, prototyping, testing before coding, review meeting,

acceptance tests [30], and shared conceptualization [31].

Moreover, agile method propose iterative development of

requirements to help making requirements less fragile [4].

Table 2. Summary of agile RE practices [11]

Practice References

Acceptance tests [4][5]
Change management [4][5]

Code refactoring [39]

Cross-functional teams [32]

Customer involvement [29][4][5]

Face-to-face communication [4][5][17][33]

Iterative requirements [4][5] [33]

Pairing for requirements analysis [40]

Prototyping [4][5][36]

Requirements management [4][5]

Requirements modelling [6][38]

Requirements prioritisation [4][5][29] [33][35]

Retrospectives [4][5] [33]

Review meetings acceptance tests [4][5]

Shared conceptualisations [31]

Testing before coding [4][5][33][37]

User stories [34][32]

Furthermore, agile methods proclaim iterative and gradual

detailing of requirements [32] with continuous planning and

retrospectives after each iteration. Prototyping helps the customer

to provide feedback on requirements and enhances quicker

feedback [5] . Therefore, we can say that these RE practices

including traditional RE practices and practices particularly used

in agile methods equally contribute to requirements development

in agile project development.

4. TRADITIONAL RE CHALLENGES

RESOLVED BY AGILE RE
Agile methods tend to solve several issues of traditional RE due to

flexibility and dynamic workflow. The summary of several

traditional RE challenges identified in our systematic literature

review [11] and solutions to resolve them provided by the use of

agile RE are shown in Table 3.

In traditional RE the major issue is the lapse of information

exchange between relevant people, called communication gap

[41]. Agile methods serve the purpose to resolve communication

lapses among teams [32][30] through frequent face-to-face

communication [42]. In traditional methods, customers usually get

to see the output product after the completion of development and

testing phase [30]. This minimal customer involvement in
traditional software development like the waterfall model creates

requirements changes at later stages. The frequent and face-to-

face communication in agile methods solves this problem.

Likewise, the gradual and iterative detailing of requirements in

agile methods provides solution to the issue of over-scoped

requirements in traditional RE [32]. The customer rectifies the

product while in making after each iteration that helps to keep the

customer’s requirements realistic.

Lengthy requirements documentation, which is also considered

unreliable at times, is another challenge of traditional RE

[32][33]. After gathering requirements from the customer a

detailed requirements specification document is prepared. This

specification document is not only lengthy and complex but also

incorporates technical details and language difficult to be

understood for non-technical customers. Agile teams believe in

exchanging information face-to-face, onsite customer presence

and follow very less documentation which ultimately resolves this

challenge.

Table 3. Summary of traditional RE challenges resolved by

agile RE

Traditional RE challenge Agile RE solution

Communication gap [32] Collocated teams [43] [42]

Face-to-face

communication [4][5]

On-site customer [7][25]

[26]

Less customer involvement

[30]

Requirements documentation

[32]

Over-scoping of requirements

[32]

Iterative detailing of

requirements [32]

Requirements validation [30] Requirements prioritization

by customer

Prototyping [4][5]

Requirements validation is another issue in traditional RE [30]

which is resolved through constant requirements prioritization

done by customer using various techniques (e.g. [28]) in agile

methods. In addition, prototyping also helps the customer to

visualize her demands and suggest changes if required at earlier

development stages [4][5]. Prototype presentation sessions at the

end of every iteration, also called “show and tell sessions” in agile

methods help the customer to visualize step-by-step development

of her idea and give feedback which serves as requirements

validation or brings in rework in case of suggested changes.

Therefore, we can summarize that several detrimental challenges

posed by traditional RE can be eradicated or minimized by using

agile RE though this argument needs stronger empirical evidence

and experience reports from industry to strength and generalize

such conclusion.

5. NEW CHALLENGES POSED BY AGILE

REQUIREMENTS ENGINEERING
In literature, traditional RE activities are mapped against agile

methods’ (i.e. Scrum) workflow to show that both are compatible

(e.g. [23][12]). However, merging agile and traditional RE

practices poses several challenges brought by agile (e.g. [5][11])

to the software industry. Our literature review [11] moved one

step further aiming to reveal the possible solutions reported so far.

Table 4 summarizes the list of identified solutions.

NFRs that determine the usability, security and performance of

the system are to a certain extent neglected in agile methods [4].

Nevertheless, several methods to model NFRs are proposed

recently to overcome this issue in agile methods (e.g. [46]–[50]).

Some of the authors of the referred proposals put forward using

modelling artefacts as part of agile RE in order to integrate NFR

activities into the agile cycle. Other authors focus on a particular

NFR, e.g. security [33][34] and suggest frameworks for assisting

in the elicitation and evaluation of security requirements.

Following the life of a requirement, known as requirements

traceability is another important issue to deal with in agile

methods. However, methods are proposed to properly gather and

store the requirements in agile methods to resolve incomplete

requirements elicitation [23] and enable traceability at later stages

(e.g. [32][33][53]).

Another important issue in agile RE is minimal or no

documentation [4][5]. The story gathering promotes the

accumulation of tacit knowledge across the team through

knowledge exchange between customer and developers [16]. User

requirements are documented as feature list, user stories or

product backlogs in agile methods. Lengthy requirements

documents are simply not the agile way of dealing with

requirements. The need to document requirements is resolved to

some extent by consistent and frequent face-to-face

communication among team members.

Table 4. Summary of agile RE challenges and their proposed

solutions

Agile RE challenges Proposed solutions

Neglecting NFRs [4] Methods to tackle NFRs in agile

methods [46][50]

Lack of requirements

traceability

Methods to enable adequate

requirements traceability

[32][33]

Incorrect requirements

prioritization [23]

Methods for value based

requirements prioritization

[35][37]

Minimal requirements

documentation [4][5]

Collocated teams [43][42]

Face-to-face communication

[4][5]

On-site customer [7][25][26]

Contractual issues [4] Legal measures

Fixed price contracts [29][54]

Customer availability [5] Proxy customers [5]

Customer agreement

[5][29]

Appointing appropriate

customer representative [5]

In agile RE, clients perform business-value-based user story

prioritization (e.g. [8][9][29]) depending upon their business

needs and priorities. User stories are prioritized and reviewed

before undergoing development [10]. However, incorrect

requirement prioritization [23] can cause serious time and money

loss in addition to rework.

The contractual terms of an agile based project are important

issues in agile RE [4][12] that do not allow requirements’ changes

at later stages of product development. Changes at later stages of

project involve cost that exceeds the pre-decided amount in

contract. However, several studies (e.g. [29][54]) that focus on

agile-based outsourced projects with fixed payment contracts state

the solution for this issue.

Agile methods assume customer’s availability [5][45] which itself

is an issue due to time and budget allocation from client’s side

often resolved by introducing proxy or surrogate customers.

However, customer’s lack of domain knowledge, inability of

decision-making, and lack of consensus on issues [5][29] can also

cause serious issues in carrying out the project. This requires

appropriate appointment of customer’s representative with

adequate domain knowledge from the client side.

In sum, it can be seen that agile RE also poses several serious

challenges to the software industry. To counter these challenges

some of the methods are proposed to carry out RE activities in

agile methods smoothly (e.g. [23]). However, empirical evidence

of the proposed solutions is required for implementation and

generalization of results. Therefore, we can say that software

industry lacks knowledge on how agile teams carry out RE

activities in projects [55].

6. FINAL CONSIDERATIONS
Our reflection on the ways in which agile and traditional RE differ

brought us to the following conclusions, which have some

implications for other researchers and practitioners.

First, while consolidating the published ideas on how agile RE

takes place in real life, we found a coherent small set of related

activities that seem to be present in each agile RE process. Of

course, we cannot generalize that this is the way of how all agile

companies around the world approach their requirements and

structure their working practices. More research on how exactly

companies go about managing their agile requirements is

therefore necessary.

Second, the community attempts to come up with approaches to

include NFRs into the agile paradigm. While proposals have been

published, no empirical evaluation took place in real-life settings.

This clearly indicates a gap in our knowledge on what approach

would work in what context. This in turn means the need for more

empirical evaluation research.

Third, we provide a set of steps that guide the way to carry out RE

activities in agile methods. Further research needs to be carried

out to back up the proposed hierarchy with empirical evidence for

generalization of results. Moreover, it can serve as a preliminary

guideline for software industry practitioners to carry out

requirements in an agile way. Also, it helps the tool

manufacturing industry to design agile-RE-specific tools for

requirements management and other alleged activities.

7. ACKNOWLEDGMENTS
We are highly grateful to Dr. Sabrina Marczak for her kind help

with the idea, content and motivation for this paper . We also

thank the PDTI Program, financed by Dell Computers of Brazil

Ltd. (Law 8.248/91), for sponsoring the scholarship of one of the

authors.

8. REFERENCES
[1]. Abdullah, N.N.B. et al., 2011. Communication Patterns of

Agile Requirements Engineering. In Proceedings of the 1st

Workshop on Agile Requirements Engineering. (Lancaster,

United Kingdom, July 25-29, 2011).ARE’11. ACM. New

York,NY,DOI=http://doi.acm.org/10.1145/2068783.2068784

[2]. Aurum, A. & Wohlin, C. 2005. Requirements Engineering:

Setting the Context. In Engineering and Managing Software

Requirements A. Aurum & C. Wohlin, Ed. Springer-Verlag,

Berlin Heidelberg, 1-15. DOI= 10.1007/978-3-642-19858-

8_18.

[3]. Bakalova, Z. et al., 2011. Agile requirements prioritization:

What happens in practice and what is described in literature.

Lecture Notes in Computer Science Ed. Springer-Verlag

Berlin Heidelberg, 181–195.DOI= 10.1007/3-540-28244-0_1

[4]. Bang, T.J., 2007. An Agile Approach to Requirement

Specification. In Agile Processes in Software Engineering

and Extreme Programming G. C. et al. Ed. Springer-Verlag

Berlin Heidelberg.193–197. DOI= 10.1007/978-3-540-

73101-6_35.

[5]. Beck, K. et al., 2001. Manifesto for Agile Software

Development. Available at: http://agilemanifesto.org/.

[6]. Berry, D.M., 2004. The Inevitable Pain of Software

Development, Why there is no silver bullet,. In Proceedings

of the International Workshop on Time Constrained

Requirements Engineering. pp. 50-74.

[7]. Bjarnason, E., Wnuk, K. & Regnell, B., 2011. A Case Study

on Benefits and Side-Effects of Agile Practices in Large-

Scale Requirements Engineering. In Proceedings of the 1st

Workshop on Agile Requirements Engineering. (Lancaster,

http://link.springer.com/book/10.1007/978-3-540-73101-6
http://link.springer.com/book/10.1007/978-3-540-73101-6

United Kingdom, July 25-29, 2011).ARE’11. ACM. New

York, NY. DOI= 10.1145/2068783.2068786.

[8]. Bjarnason, E., Wnuk, K. & Regnell, B., 2011. Requirements

are slipping through the gaps — A case study on causes &

effects of communication gaps in large-scale software

development. In Proceedings of the 19th International

Requirements Engineering Conference. Lancaster, United

Kingdom, July 25-29, 2011) ACM. New York, NY,USA.

DOI=http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?a

rnumber=6051639.

[9]. Boness, K. & Harrison, R., 2007. Goal Sketching : Towards

Agile Requirements Engineering. In Proceedings of the

International Conference on Software Engineering

Advances. (Cap Esterel, France, 25-31 Aug. 2007) IEEE

DOI= 10.1109/ICSEA.2007.36.

[10]. Cao, L. & Ramesh, B., 2008. Agile Requirements

Engineering Practices: An Empirical Study. IEEE Soft.

25,1,60–67.(Dec2010)

DOI=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=44

20071.

[11]. Carlson, D. & Matuzic, P., 2010. Practical Agile

Requirements Engineering. In Proceedings of the 13th

Annual Systems Engineering Conference. (San Diego, CA25-

28 Oct 2010).

[12]. Cohn, M., 2005a. Agile Estimation and Planning, Prentice

Hall , USA.

[13]. Cohn, M., 2009. User Stories Applied For Agile Software

Development, Addison Wesley. Indiana, USA:

[14]. Cohn, M., 2005b. Writing Effective User Stories for Agile

Requirements Mike Cohn — background Today ’ s agenda

Ron Jeffries ’ Three Cs. In Software development best

practices 2005. pp. 1–35.

[15]. Dagnino, A., Smiley, K., Srikanth , H., Antón , A., Williams,

L., 2004. Experiences in applying agile software

development practices in new product development. In

Proceedings of the 8th IASTED International Conference on

Software Engineering and Applications. (November 9 – 11,

2004 Cambridge, USA) MA, United States.

[16]. Daneva, M. et al., 2013. Agile requirements prioritization in

large-scale outsourced system projects: An empirical study.

J. Sys. Soft, 86, 5, (1333–1353). DOI=

http://linkinghub.elsevier.com/retrieve/pii/S01641212120035

36

[17]. Dybå, T. & Dingsøyr, T., 2009. What do we know about

Agile Software development? IEEE Soft.,26, 5,DOI=

10.1109/MS.2009.145.

[18]. Eberlein, A. & Julio Cesar, S. do P.L., 2002. Agile

Requirements Definition : A View from Requirements

Engineering. In Proceedings of the International Workshop

on Time Constrained Requirements Engineering. (Essen,

Germany, 6–9 September 2002).doi=10.1.1.194.5553

[19]. Erickson, J., Lyytinen, K. & Siau, K., 2005. Agile Modeling ,

Agile Software Develpment , and Extreme Programming:

The State of Research. J. Database Manag 16, 88–100.

[20]. Ernst, N. a. et al., 2014. Agile requirements engineering via

para-consistent reasoning. Info Syst, 43, 100–116

DOI:http://linkinghub.elsevier.com/retrieve/pii/S0306437913

00077X .

[21]. Farid, W.M. & Mitropoulos, F.J., 2012a. NORMATIC: A

visual tool for modeling Non-Functional Requirements in

agile processes. 2012 In the Proceedings of IEEE

Southeastcon, (Florida, US, 15-18 March 2012). DOI=:

10.1109/SECon.2012.6196989.

[22]. Farid, W.M. & Mitropoulos, F.J., 2013. NORPLAN: Non-

functional requirements planning for agile processes. In the

Proceedings of IEEE Southeastcon, (Florida, US, 4-7 April

2013). DOI= 10.1109/SECON.2013.6567463

[23]. Farid, W.M. & Mitropoulos, F.J., 2012b. Novel lightweight

engineering artifacts for modeling non-functional

requirements in agile processes. In the Proceedings of IEEE

Southeastcon, (Florida, US 15-18 March 2012) DOI=

10.1109/SECon.2012.6196988.

[24]. Haugset, B. & Stalhane, T., 2012. Automated Acceptance

Testing as an Agile Requirements Engineering Practice. In

the Proceedings of 45th Hawaii International Conference on

System Sciences. (Hawaii, US. 04 Jan - 07 Jan 2012) DOI=

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnum

ber=6149535.

[25]. Helmy, W., Kamel, A. & Hegazy, O., 2012. Requirements

engineering methodology in agile environment. International

Journal of Computer Science Issues,9,5,293–300.

[26]. Inayat, I. et al., 2014. A systematic literature review on agile

requirements engineering practices and challenges.

Computers in Human Behavior. (Dec 2014)

DOI=http://www.sciencedirect.com/science/article/pii/S0747

56321400569X .

[27]. Jun, L., Qiuzhen, W. & Lin, G., 2010. Application of Agile

Requirement Engineering in Modest-Sized Information

Systems Development. In the Proceedings of the Second

World Congress on Software Engineering. (Wuhan, China,

19-20 Dec 2012). IEEE,

DOI=http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?a

rnumber=5718379 [Accessed October 10, 2012].

[28]. Kotonya, G. & Sommerville, I., 1997. Requirements

Engineering, Wiley.

[29]. Kumar, M., Shukla, M. & Agarwal, S., 2013. A Hybrid

Approach of Requirement Engineering in Agile Software

Development. In Proceedings of the International

Conference on Machine Intelligence and Research

Advancement. (Venice, Italy, 21-23 Dec 2013)

DOI=http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?a

rnumber=6918885.

[30]. Lee, C. & Guadagno, L., 2003. FLUID: Echo–Agile

Requirements Authoring and Traceability. In Proceedings of

the Midwest Software Engineering Conference.

[31]. Lee, C., Guadagno, L. & Jia, X., 2003. An Agile Approach to

Capturing Requirements and Traceability. In Proceedings of

the 2nd International Workshop on Traceability in Emerging

Forms of Software Engineering.(CA, USA 19 May)

[32]. Leffingwell, D., 2011. Agile Software Requirements Lean

Requirements Practices for Teams, Programs, and the

Enterprise, Addison Wesley.

[33]. Lucia, A. De & Qusef, A., 2010. Requirements engineering

in agile software development. Journal of Emerging

Technologies in Web Intelligence, 2, 3, 308–313.

[34]. Lundh, E. & Sandberg, M., 2002. Time Constrained

Requirements Engineering with Extreme Programming – An

http://dx.doi.org/10.1145/2068783.2068786
http://www.acm.org/publications
http://dx.doi.org/10.1109/ICSEA.2007.36
http://dx.doi.org/10.1109/MS.2009.145
http://dx.doi.org/10.1109/SECon.2012.6196989
http://dx.doi.org/10.1109/SECON.2013.6567463
http://dx.doi.org/10.1109/SECon.2012.6196988

Experience Report. In Proceedings of the International

Workshop on Time Constrained Requirements

Engineering.(Essen, Germany, 9 May 2002).

[35]. Othmane, L. Ben, Angin, P. & Bhargava, B., 2014. Using

Assurance Cases to Develop Iteratively Security Features

Using Scrum. In Proceedings of Ninth International

Conference on Availability, Reliability and Security.

(Fribourg, Switzerland, 8-12 Sep 2014)

[36]. Paetsch, F., Eberlein, A. & Maurer, F., 2003. Requirements

engineering and agile software development. In Proceedings

of Twelfth IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises

(Linz, Austria, 4-6 Sep 2003). IEEE Comput. Soc,

[37]. Paetsch, F. & Maurer, F., 2003. Requirements Engineering

and Agile Software Development. In Proceedings of Twelfth

IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises. (Linz, Austria,

4-6 Sep 2003). IEEE Comput. Soc,.

[38]. Pichler, M., Rumetshofer, H. & Wahler, W., 2006. Agile

Requirements Engineering for a Social Insurance for

Occupational Risks Organization: A Case Study. In

Proceedings of 14th IEEE International Requirements

Engineering Conference .RE’06.(Minnesota, U.S.A. 11-15

Sep 2006). IEEE Comput. Soc,.

[39]. Poonkundran, B., 2013. Agile Methodology in Fixed Price

projects. Global Advanced Research Journal of Enigneering,

Technology and Innovation, 2, 9, 243–249.

[40]. Pressman, R.S., 1996. Software engineering A practitioner’s

Approach 7th ed., Mc Graw Hill.

[41]. Racheva, Z., Daneva, M., Sikkel, K., et al., 2010. Do we

know enough about requirements prioritization in agile

projects: Insights from a case study In Proceedings of the

18th IEEE International Requirements Engineering

Conference, (27 Sep- 1 Oct 2010, Sydney, Australia) IEEE

Comput. Soc.

[42]. Racheva, Z., Daneva, M. & Buglione, L., 2008a. Supporting

the dynamic reprioritization of requirements in agile

development of software products. In Proceedings of the

International Workshop on Software Product Management.(

Barcelona, Spain, 9th Sep 2008).

[43]. Racheva, Z., Daneva, M. & Buglione, L., 2008b. Supporting

the dynamic reprioritization of requirements in agile

development of software products. In Second International

Workshop on Software Product Management. ISWPM’08.

Barcelona, Spain, 9th Sep 2008).

[44]. Racheva, Z., Daneva, M. & Herrmann, A., 2010. A

Conceptual Model of Client-driven Agile Requirements

Prioritization : Results of a Case Study. In IEEE

International Symposium on Empirical Software Engineering

and Measurement . (Bolzano-Bozen, Italy. 16-17 Sep 2010).

[45]. Ramesh, B., Baskerville, R. & Cao, L., 2010. Agile

requirements engineering practices and challenges: an

empirical study. Information Systems Journal, 20, 5, 449–

480.

[46]. Schwaber, K., 2002. The Impact of Agile Processes on

Requirements Engineering. In Proceedings of the

International Workshop on Time Constrained Requirements

Engineering. (Essen, Germany, 9 May 2002).

[47]. Sillitti, A. et al., 2005. Managing Uncertainty in

Requirements : A Survey in Documentation-driven and Agile

Companies. In 11th IEEE International Software Metrics

Symposium.(Como, Italy, 19-22 Sep 2005).

[48]. Sommerville, I., 2011. Software Engineering, Pearson

Education Inc.

[49]. Sonia & Singhal, A., 2011. Development of Agile Security

Framework Using a Hybrid Technique for Requirements

Elicitation. In Advances in Computing, Communication and

Control S. Unnikrishnan, S. Surve, & D. Bhoir, Ed..

Springer-Verlag Berlin Heidelberg. 178–188..

[50]. Tarhan, A. & Yilmaz, S.G., 2014. Systematic analyses and

comparison of development performance and product quality

of Incremental Process and Agile Process. Information and

Software Technology, 56, 5, 477–494.

[51]. Taromirad, M. & Paige, R.F., 2012. Agile requirements

traceability using domain-specific modeling languages. In

Proceedings of Extreme Modeling Workshop. (1 oct 2012,

Innsbruck, Austria).

[52]. Tomayko, J.E., 2002. Engineering of Unstable Requirements

Using Agile Methods. In Proceedings of the International

Workshop on Time Constrained Requirements Engineering.

.(Essen, Germany, 9 May 2002).

[53]. Wolfgang, E., 2011. Working with User Stories. In

Workshop on Agile Requirements Engineering. (Lancaster,

United Kingdom, July 25-29, 2011).ARE’11. ACM. New

York,NY

[54]. Yu, Y. & Sharp, H., 2011. Analysing requirements in a case

study of pairing. In Workshop on Agile Requirements

Engineering (Lancaster, United Kingdom, July 25-29,

2011).ARE’11. ACM. New York,NY

[55]. Zhu, Y., 2009. Requirements Engineering in an Agile

Environment. Master’s Thesis, Uppsala University.

