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Abstract. We present a mobile decision support system (mDSS) which runs on
a patient Body Area Network consisting of a smartphone and a set of biosensors.
Quality-of-Data (QoD) awareness in decision making is achieved by means of a
component known as the Quality-of-Data Broker, which also runs on the
smartphone. The QoD-aware mDSS collaborates with a more sophisticated
decision support system running on a fixed back-end server in order to provide
distributed decision support. This distributed decision support system has been
implemented as part of a larger system developed during the European project
MobiGuide. The MobiGuide system is a guideline-based Patient Guidance
System designed to assist patients in the management of chronic illnesses. The
system, including the QOD-aware mDSS, has been validated by clinicians and is
being evaluated in patient pilots against two clinical guidelines.

Keywords: Decision support � Computer-interpretable clinical guidelines �
Knowledge representation for healthcare processes � Context-aware healthcare
processes � Mobile process and task support in healthcare

1 Introduction

We present the design and implementation of a quality-aware mobile decision support
system (mDSS) [1]. The mDSS forms part of a larger system developed during the IST
MobiGuide project, in which a guideline-based Patient Guidance System (PGS) designed
to assist patients in the management of chronic illnesses is researched, developed and
evaluated. TheMobiGuide PGS supports the patient and theirmedical team in adhering to
best evidence as encapsulated in clinical practice guidelines. Moreover it supports
communication between them, information sharing and shared decision making between
patient and clinician. The goal is to support mobile, guideline-based monitoring and
management, supporting independence whilst preserving safety.
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The mDSS is part of a distributed Decision Support System (DSS). The
knowledge-base of the distributed DSS is based on the knowledge encapsulated in
Clinical Guidelines. The mobile part is implemented, along with other components, on
a smartphone, as part of a Body Area Network (BAN) which performs patient moni-
toring by means of body-worn or mobile sensors and delivers guideline-based rec-
ommendations to patients via a smartphone interface.

We define a BAN as a body worn network of communicating devices, incorpo-
rating a processing platform (e.g. smartphone). In the case of a health BAN, the devices
may include medical devices such as biosensors as well as general purpose devices
(e.g. alarm buttons). BAN data such as measurements from biosensors may be pro-
cessed locally on the BAN or sent to a remote system for processing, or a combination
of the two. In 2001 we proposed the first application of BAN technology in healthcare
[2] to support trauma care and home care. A number of health BANs for patient
monitoring were prototyped and trialled during the IST Mobihealth project. In sub-
sequent research health BAN applications were developed for a range of chronic
conditions and BAN applications were augmented with context awareness [3]. Real
time support for clinical guidelines was proposed in [4] and adaptive feedback, aug-
menting telemonitoring with teletreatment, was added [5].

In MobiGuide we extend mobile health research by distributing decision support
functionality between the patient’s mobile system and a fixed back-end system; a
feature shared with ubiquitous healthcare systems such as [6, 7]. However, in Mobi-
Guide we also incorporate clinical decision support based on clinical guideline
knowledge and introduce quality of data awareness into the formalized clinical
guidelines which form the knowledge bases of the distributed decision support systems.

Quality-of-Data (QoD) awareness is based on augmentation of clinical guidelines
with quality information during knowledge engineering and by labelling data with
quality labels at run time so that decision making can be informed by quality of clinical
data. Technological context and the associated impact on quality of clinical data are
handled by the Quality-of-Data Broker (QoD Broker), which runs on the BAN. The
QoD aware mDSS can run standalone on the BAN if necessary but normally collab-
orates with the more advanced DSS system running on the back-end.

In MobiGuide we focus on two patient groups: patients with Atrial Fibrillation
(AF) and pregnant women with Gestational Diabetes Mellitus (GDM). The knowledge
bases of the AF and GDM applications are based respectively on clinical guidelines [8,
9]. The MobiGuide system is designed to be generic, hence any well formulated
clinical guideline could be used as a basis for a MobiGuide application for another
clinical condition, assuming the appropriate knowledge engineering effort to derive a
Computer Interpretable Guideline (CIG) from the narrative guideline.

This paper describes the mobile decision support system (mDSS), how QoD
awareness is achieved via the QoD Broker, and how the mDSS collaborates with the
back-end decision support system (BE DSS) to provide distributed decision support.
Section 2 describes the knowledge engineering phase; specifically how guideline
knowledge is transformed into a knowledge base and how quality information is
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introduced at this stage. Section 3 presents the model for distribution of decision
support between the BE DSS and the mDSS. Section 4 describes the QoD-aware
mDSS and its relation to the back-end system. Sections 5 and 6 describe respectively
the QoD Broker and the mDSS. Discussion and conclusions are found in Sect. 7.

2 Formalizing Clinical Guidelines

Clinical guidelines bring together the best and latest scientifically proven knowledge
about how to manage and treat a particular condition and as such represent current
medical consensus. They are developed by panels of top medical experts who review
evidence from clinical trials and scientific literature in order to support evidence-based
care. Most guidelines are written in natural language, however, and in order to integrate
a guideline into an automated DSS the narrative guideline must be formalized to
produce a Computer Interpretable Guideline (CIG). In the formalization step the
guideline is analysed and carefully transformed into a semantically equivalent com-
puter interpretable version expressed in a formal language such as Asbru [10].

Based on the knowledge acquisition methodologies of [11, 12], the guideline is first
adapted to local practices and the tacit knowledge elicited from the narrative text,
resulting in a local narrative consensus which is then marked up with semantic labels.
This labelled, semi-structured text is then converted into a semi-formal representation
which, in the MobiGuide project, takes the form of “parallel workflows” representing
the sequence of tasks leading to clinical recommendations [13]. These workflows are
then transformed into an executable form. As part of the analysis of the guideline, the
narrative guideline and parallel workflows are also converted into a process model to
identify possible options for distributing the required decision support functionality
across the distributed DSS [14]. In this model, guideline knowledge is represented as a
network of data flow processes, each of which encapsulates a separable portion of the
guideline knowledge and represents, by definition, a unit operation that can be executed
in parallel with the others. In this way, the model facilitates the identification of
concurrent and similar tasks for distribution and allows a detailed exploration of the
different possible distribution options.

In MobiGuide formalization is followed by two other steps during knowledge
engineering: customization and personalization. These steps enable integration of con-
text information and personalization of guidelines in order to improve effectiveness /
efficacy of disease management whilst preserving patient safety by adding context
awareness to the guideline and adapting it to the individual patient. The customisation
step extends the CIG, for all patients, with different possible contexts; the personalisation
step instantiates the customised CIG for an individual patient. During customization the
CIG is extended with the possible contexts that could affect patient guidance. These
contexts include personal context information, such as whether the patient has support at
home or how their daily routine may change for example in holiday contexts or at social
events such as weddings. As part of this step technological context information,
expressed in terms of quality of data (QoD), is also added to the CIG.
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Our definition of ‘technological context’ [15], which is aligned with Dey’s [16], is
the technological information, often expressed in terms of Quality of Service (QoS),
provided by a collection of technological resources which characterize the treatment of
a patient. The performance variations of technological resources (e.g. motion artefacts,
battery level or poor internet connectivity) that characterize technological context affect
the QoS of the system. As a result, the quality of the output of technological resources
(i.e. the quality of the clinical data) will also be affected (see Sect. 5). Therefore, we
augment the CIG with technological context information expressed in terms of QoD.
This augmentation of the knowledge is performed by medical practitioners in collab-
oration with requirements engineers. First, requirements engineers prepare for each
clinical variable (in each treatment) a “QoD effect table” that contains the five QoD
dimensions that we adopted for our research (see Sect. 5). Medical practitioners
determine via semi structured interviews the potential impact of each QoD dimension
on treatment and how the treatment should be adapted to enhance patient safety.
Requirements engineers include this information in the “QoD effect table”. When the
medical practitioners have validated the “QoD effect table” it is merged into the
treatment scenarios and represented as data flow diagrams. Accordingly, the data flow
diagrams cover the impact of QoD on different treatments. In case potential incon-
sistencies or conflicting conditions are encountered, medical practitioners modify the
diagrams. Once the medical practitioners have validated the data flow diagrams, the
information is incorporated into the formalized guideline. Subsequently these treatment
adaptation mechanisms are validated with a live application of the telemedicine system
that runs the executable QoD-aware CIG in the DSS. The resulting “customized” CIG
defines how treatment is to be adapted for all patients according to the different possible
contexts. Points where individual patient preferences can be taken into account are also
specified in the customization step [17].

Personalization of the CIG takes place during a patient-physician encounter when
they define together the concepts, specific to this individual patient, that will induce the
contexts defined in the previous customization step and specify patient preferences
(such as preferred timing of measurements). The resulting augmented CIG reflects the
real state of the patient and allows him/her to receive decision-support suited to the
context, based on the system’s knowledge base which contains recommendations
approved by physicians. These patient preferences can then be taken into account
during CIG execution, enabling personalized recommendations to be delivered at
appropriate times.

As a result, in the knowledge engineering phase the knowledge-base of the DSS
(the augmented CIG) is extended amongst others with recommendations adapted to
variations in QoD. In the operational phase incoming data (e.g. patient data from
sensors) is annotated with quality labels by the QoD Broker. Together these two enable
the DSS to be QoD-aware, so that the safety of the patient can be enhanced even when
technological disruptions occur.

At the end of this process, the resulting (augmented) CIG is a formalized, cus-
tomized, personalized and QoD aware version of the guideline. The two augmented
CIGs for AF and GDM in MobiGuide are documented in [17].
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3 Distributed Decision Support

In order to provide decision support to the patient anytime anywhere, the MobiGuide
system incorporates, amongst other components, two decision support systems: one on
the patient’s smartphone (the mDSS) and one on the back-end server (BE-DSS).
Although the BE-DSS, based on a continuous guideline application engine [18], has
more resources available than a smartphone to perform complex data processing, it is
dependent on a reliable mobile communications infrastructure for receiving patient data
acquired by the BAN; this may not always be available. Therefore, by distributing some
functionality to the patient’s smartphone, the resources of which may be too limited for
some complex decision support, the MobiGuide distributed DSS supports real-time
operation independent of the network environment with the mobile part providing data
input, basic processing, feedback, and guidance even if the network is temporarily
unavailable. Furthermore, delegating processing to patients’ mobile systems supports
scalability of the service to large patient populations by processing raw bulk data locally
and providing only the necessary summaries to the BE-DSS. For example, heart rate and
physical activity level data are processed entirely locally on the BAN.

The mechanism for distributing knowledge and processing responsibilities between
the mDSS and the BE DSS is known as Projection. In order to determine how to
delegate parts of the decision support to the mDSS, several factors are considered:

• The actor of the decision (patient or physician), since it is more appropriate for the
mDSS to provide decision support to patients only;

• The temporal horizon of future recommendations, whether they are alerts, for
example, which require immediate patient attention and should therefore be per-
formed by the mDSS, or longer-term decisions which are less dependent on reliable
connectivity and can, as a result, be performed by the BE-DSS despite potential
intermittent loss of connectivity;

• The data and knowledge resources needed for the decision compared to the
resources available on the smartphone;

• The need for data stored in the PHR (Personal Health Record), which may not be
accessible outside the hospital due to security and privacy considerations;

• The dependencies between different parts of the decision support, which can be
identified, for example, by modelling the guideline as a network of concurrent
processes (Sect. 2); and

• A consideration of where a potential personalization of the guideline should reside.

These principles need to be considered by the knowledge engineer and expert
physicians during the knowledge specification phase. Once these factors are decided,
the BE-DSS delegates procedural knowledge to the mDSS by creating and sending
procedural directives called projections which incorporate the delegated procedural
knowledge and the contextual information from the PHR (e.g. patient preferences and
clinical history) that are required to interpret the raw BAN data. A procedural pro-
jection is a simplified decision procedure that can run stand-alone on the mDSS to
handle decisions of part of the GL, typically for time spans ranging from days to
months. It may eventually be replaced by another projection if the mDSS signals
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exceptional circumstances and/or the BE-DSS decides to change the procedure. Pro-
jections contain mostly fixed schedules (such as measurement or medicine schedules),
along with the conditions which could trigger schedule changes, such as QoD related
conditions (see Fig. 2). The mDSS executes the schedules stand-alone until one of the
change triggers occur. Then it sends a signal, a callback, to the BE-DSS which triggers
the BE-DSS to change the projections if necessary. By a judicious choice of procedural
knowledge to project to the mDSS, callbacks will occur at relatively low frequency,
thus reducing the risks and effects associated with loss of connectivity to the back-end.
While optimal functioning of the system does require the network to be available at
regular intervals, the systems designed to degrade gracefully if the network is
unavailable for longer periods of time.

Projections are subdivided into unit projections, which can run as parallel pro-
cesses. The BE-DSS can send multiple new unit projections plus a directive to stop
previously running projections in a single message. The main directives comprising a
projection are detailed in Sect. 6, but typically, a projection contains a declarative part,
which tags items in the mDSS database according to certain criteria, and a procedural
part, which is usually a wait loop which triggers on a particular event or time. Figure 1
shows an example projection which represents a condition in the GDM guideline (two
abnormal blood glucose measurements within one week) which triggers a recom-
mendation to change the blood glucose measurement schedule. Although not explicitly
shown in Fig. 1, projections may also include details of the clinical effects of quality of
data. Data with insufficient quality may, for example, be tagged differently by being
given a different ID and may, as a result, trigger different procedures.

unitProjection("20095","2 abnormal measurements in past week") {
annotateTemporal("or", [
"event.getNumber(4985)>=150",
"event.getNumber(4986)>=150",
"event.getNumber(4987)>=150",
"event.getNumber(4988)>=150" 
], "abnormal_BG", "date");
while (true) {
waitTemporalQuery("count >= 2", "abnormal_BG", "8 calendardays");
callback("5111", "2 abnormal values in BG were found in your measurements in 

the past week, system is calculating another schedule for you"); } }

Fig. 1. Example projection. The annotateTemporal statement defines the condition under which
a record or set of records is annotated with a particular tag. In this case, it tags a set of events as
abnormal_BG if one or more blood glucose (BG) measurements over 150 occur in one calendar
day. The number 4985-4988 represent BG measurements at particular times of the day with
quality higher than “very low”. The wait loop at the bottom waits for at least two abnormal_BGs
to occur within 8 calendar days, then sends a callback.
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4 The Quality-of-Data Aware mDSS

The focus of the paper is on the mobile part of the MobiGuide system, specifically the
mDSS and its interaction with QoD Broker. This section focuses on the mDSS and the
influence of QoD on the decisions output by the mDSS.

Figure 2 shows the components comprising the mDSS and their main interaction
with other components on the smartphone and the back-end. Communication proceeds
through a piece of middleware called the BAN service, which handles authentication,
network communication, and sensor handling. Furthermore, in case of temporary
absence of connectivity, the BAN service can temporarily store all messages that are to
be exchanged between the back-end and the smartphone in a queue. The mDSS
components are:

• The projection engine, a scripting engine which takes care of starting, interpreting,
and stopping projections. It receives projections from the BE-DSS and outputs
callbacks for the BE-DSS, measurement requests to Patient GUI, and records for
storage in the databases.

• The local database which stores records relevant for the mDSS functioning ema-
nating from the projection engine, GUI or QoD Broker.

• The simulator, which enables a sequence of events to be simulated system-wide. It
emits events which are then stored in the databases, namely the local database as
well as the personal health record, and reacted to by the mDSS and BE-DSS.

Fig. 2. Simplified architecture of the mobile QoD aware mDSS
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• The summarizer, which produces summaries of AF monitoring sessions which are
stored in the personal health record. Clinical abstractions include average heart rate
and AF episode information.

5 The Quality-of-Data Broker

The Quality-of-Data (QoD) Broker is the component responsible for translating tech-
nological context information into QoD. Our design approach, aligned with that of
Berti et al. [19], began with determination of the QoD dimensions relevant to the
clinical application. The second step was to incorporate algorithms for quantifying
QoD and finally we determined together with clinical specialists which is the relative
QoD, since QoD requirements may diverge depending on the context (e.g. the specifics
of treatment and patient condition).

QoD plays a major role in healthcare [20, 21]. The dimensions used to quantify
QoD, sometimes termed QoD attributes, are highly diverse. They do not refer only to
‘accuracy’ or ‘correctness’ [22–25], but also to other quality attributes relevant for the
user, aligned with ‘fitness for use’ theory [26, 27]. Based on literature and requirements
of the clinical application, we express QoD according to five dimensions [15]:

• Accuracy: degree of correctness at which the attentive phenomenon is represented
by the data. For example, if the heart rate (HR) sensor is not properly placed and the
data is noisy, the accuracy of the monitored HR will be ‘poor’.

• Dependability: degree of certainty that data is available (or complete), and can be
used for meaningful decisions regardless of speed or accuracy. An example of
‘poor’ dependability is when it is not possible to measure HR due to the sensor
unavailability due to lack of battery or when data connectivity is poor and data
cannot be transmitted to the point of decision.

• Timeliness: time interval to transport data from source to destination. For example,
HR data may contain a ‘significant’ delay for making a treatment decision on time
due to data processing or transmission delay. This may lead to ‘poor’ timeliness and
increase treatment risk if the patient needs to be notified immediately.

• Cost: amount of money required to obtain data for the decision-making process.
Cost is a quality dimension that is addressed in very few QoD literature studies [28,
29], but is an important QoD dimension since it may affect other QoD dimensions,
such as timeliness [29]. Ballou et al. [28] studied the tradeoff between cost and other
QoD dimensions and found that ‘in a majority of the cases the best solution in terms
of error rate is the worst in terms of cost’. Moreover, medical practitioners attest the
significance of cost in telemedicine systems, since it may influence treatment
guidance. For example, if the patient pays more for roaming data than with Wi-Fi,
when Wi-Fi is not available extra cost is needed, leading to ‘poor’ cost. Besides, if
the roaming option is not chosen by the patient due to the additional cost, data will
not be transmitted immediately, implying additional data delay; otherwise, data can
be transmitted immediately, but at higher (i.e. poorer) cost.

• Quality of Evidence: degree of conformance with guidelines, rules of certification/
legislation bodies and evidence based medicine (e.g. controlled trials). This is aligned
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with [24]. Hence, it indicates how reliable the source of information is. For example,
‘poor’ Quality of Evidence (QoEvidence) of HR data is defined when an HR sensor
does not hold the CE certificate that guarantees output data quality.

Notice that, depending on the context, the impact of the QoD dimensions may vary.
For example, if the patient has a fixed cost for roaming data, cost may not have much
influence. However, if the patient is abroad, data roaming cost to transmit clinical data
to the BE DSS may need to be considered.

In order to compute clinical data quality, using the layering technique [30], we
developed a conceptual model which defines the functional and non-functional relation
between technological and clinical concepts. The non-functional relation is based on
the functional relation and defines relations between QoD of technological variables,
such as raw data, and QoD of meaningful clinical variables relevant to the treatment,
such as HR. The non-functional relation also includes computational models used to
determine the impact of QoS of technological resources on QoD. As described in [15],
these computational models consist of transfer functions (fi), such as mathematical
functions or graph-based mapping functions. These transfer functions are used to
provide QoD based on QoS and previous QoD: QoDi = fi(QoSi, QoDi-1). For example,
the input data (D i-1) of a technological resource, such as a HR processor, may be an
electrocardiogram (ECG) with Signal to Noise ratio (SNR) equal to 0.7 dB. The SNR is
an attribute that characterizes the Accuracy of the ECG. The HR processor manufac-
turer may have a SNR robustness graph, which shows how robust the HR process is
against noise. Based on a graph-based mapping function, we can obtain the Sensitivity
(Se) and Specificity (Sp) values of the output HR. From these values and applying a
simple mathematical function, the scalar value of accuracy is computed: Accu-
racy = Se × 0.5 + Sp × 0.5 (e.g. Accuracy = 85 %). Other examples to compute QoD
dimensions are shown in [15]. These QoD dimension values need to be translated to a
clinically meaningful quality grades by applying the Relative Quality of Data step.

Relative QoD is a relevant concept in QoD that emphasizes the importance of
taking into account the consumer’s viewpoint to judge QoD based on a “fitness for use”
study [26]. In our research, we applied this concept by stratifying the scalar values of
the QoD dimensions from the computational models into one of four quality grades:
High, Medium, Low, Very Low [15, 30]. These grades are adapted from [24]. This
stratification model is based on the medical practitioners’ interpretation of the scalar
QoD values [15], considering also additional technological information. For example, a
scalar value of HR clinical variable with accuracy = 50 % may be due to a noisy ECG
signal, where the R peaks of the ECG used to compute HR are not easily identified.
Additionally, the medical practitioners considered the context of the application (e.g.
outdoors physical exercise treatment) and the user condition (e.g. persistent AF patient)
to determine each QoD grade. Hence, with the support of the QoD expert, the medical
practitioners determined for each parameter (e.g. HR) the clinically relevant ranges of
QoD dimensions (e.g. Accuracy) to be mapped onto each QoD grade in each context.
For example, Accuracy = 85 % may correspond to a ‘Medium’ quality grade in a
specific case (Table 1), while in a different context, this value may be mapped to ‘Low’.
In order to calculate this relative QoD information aligned to the context and user,
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QoD Broker needs treatment declarative data, which contains the necessary context and
user information. This information is provided by the mDSS.

Table 1 illustrates an example of the stratification model for the scalar values of
Accuracy QoD dimension of heart rate monitoring (HRmon) clinical variable. In this
example, the context is an outdoors physical exercise treatment for permanent Atrial
Fibrillation (AF) patients. As shown in Table 1, scalar values ranges, in this case from
0 % to 100 %, are mapped to one of the quality grades as specified by the cardiologist.

QoD Broker acquires treatment declarative data from the mDSS and QoS infor-
mation and clinical data from sensors and patient GUI to compute QoD information.
Additionally, QoD Broker provides technological recommendations to the patient via
the GUI (Fig. 2) to improve clinical data quality, so that treatment efficacy and patient
safety can be optimized. For example, QoD Broker may ask the patient to re-enter a
data value when an error is detected, or it may advise the patient to charge the
smartphone battery before physical exercise to pre-empt battery failure during exercise
therapy. In this way the QoD Broker not only detects low quality data, but can also, in
some cases, pre-empt collection of low quality data and ensure capture of higher
quality data. The QoD Broker is implemented in the mobile part of the MobiGuide
system to acquire QoS information from the technological resources. The mDSS
processes the clinical data and its QoD. This enhances the safety of the mDSS rec-
ommendations, since its knowledge is based on the QoD-aware CIG. The QoD
information is also stored in the back-end PHR, so that it can be used by the medical
practitioner and by the BE-DSS to support a QoD-aware decision making process.

As discussed by Weber et al. [27], a QoD method is needed to design better health
information systems. Their study focuses on Data Quality by contract (DQbC), which
applies pre-conditions (data input constraints) and post-conditions (assurances of the
output data), and compares the data with other data sources to quantify the quality. Our
approach focuses on the QoD for an autonomous mobile patient guidance system.
However the DQbC design theory and method is applicable in our model once the data
is stored in the PHR.

6 The Mobile Decision Support System

The mDSS component is an Android service which communicates with other com-
ponents by subscribing and publishing to the appropriate channels provided by the
BAN service middleware. The mDSS functions as a sort of communication hub within

Table 1. Stratification model example for HRmon accuracy [15]

Clinical variable HRmon

Scalar ranges Grade value

[0 %, 69.9 %] Very Low
[70 %, 79.9 %] Low
[80 %, 94.9 %] Medium
[95 %, 100 %] High
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the mobile device, so a substantial part of the mDSS consists of message handling and
passthrough mechanisms, making it a suitable host for the data simulator (see below).

The most interesting part of the mDSS is the projection engine. The projections
were developed in several steps. First, semi-formal projections were specified
according to the overall BE-DSS CIG specification. These were then developed into
fully executable specifications using a projection language that was designed to be
simple, yet flexible, powerful and generic. The projection language is based on Java-
Script for execution using the Rhino scripting engine, which was chosen for its tech-
nical suitability: it runs on Android and enables full processing state save/restore by
means of its built-in Continuation mechanism.

High-level functions were developed for enabling concise specification of guide-
lines. These functions principally operate on the local database, whose entries consist
of time stamped events with one or more values and annotations attached to each. The
most important functions are the following:

• Annotations. An annotation statement specifies a condition under which an event
should be annotated with a particular annotation, or a set of events according to
particular conditions within the set.

• Temporal queries. This involves specifying a calculation over time, such as a sum
of values or count of events occurring within a specified time window. The pro-
jection can be made to wait for (trigger on) a temporal query. To ensure that the
system does not re-trigger on the same condition again, the events that led up to the
trigger are tagged so that they are no longer considered for the next temporal query.
Additionally, a refractory period can be defined that specifies how long the trigger
will remain inactive after triggering.

• Calendar queries. In some cases, the system reacts to events in the user’s calendar,
in particular if risky events like operations are planned in the near future.

• Periodic wait. The system can wait for a particular weekday or time to occur. A start
and end date can also be specified.

• Event functions. Events from the database can be queried, manipulated, and stored.
• Message functions. Several functions exist for sending specific types of messages,

such as patient notifications, measurement requests, and callbacks.

Apart from the projection engine, the mDSS also contains a summarizer component
which summarises the BAN data streams according to the clinicians’ requirements,
thus mitigating any problem of information overload from the raw data. In the
MobiGuide project, it was decided in consultation with the clinicians that summaries
are needed for the AF application, specifically for the streaming heart rate and R-R
interval data derived from the BioHarnessTM sensor. As recommended by the AF
guideline [17], patients should wear this sensor regularly during daily living, and
whenever an AF symptom is felt, and for each monitoring session, the Summarizer
computes the standard deviation of the R-R intervals every minute as well as the
average, minimum and maximum heart rate detected during the whole session. Fur-
thermore, the Summarizer receives data concerning episodes of irregular heart rate
from the AF detector software running in the BAN and computes from it the total
proportion of time in which the heart rate is irregular as well as the average, minimum
and maximum heart rate of each irregular heart rate episode.
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To enable rigorous testing, we designed a data simulator, which provides a generic
means for testing the MobiGuide system against different scenarios and on data
spanning potentially long time periods. A simulation scenario is subdivided into
multiple steps which can be started from the GUI, allowing the user to interact with the
system between steps.

7 Discussion and Conclusions

The components described here have been implemented as part of the MobiGuide
system, which is being evaluated against the AF and GDM guidelines. Using a par-
ticipatory design approach, medical domain experts validated the domain knowledge
and system functionality during system design and development. Patient user as well as
clinician user participation during the design trajectory was also a priority, with patient
focus groups and surveys used to gain feedback from patients on the concepts, the
design and the perceived value of the service. Regarding impact of Quality of Data, the
medical practitioners understood the potential negative implications of degradations of
technological context and determined that the inclusion of data quality awareness has
the potential to improve patient safety and treatment effectiveness.

The MobiGuide system components have undergone unit and integration testing as
well as a pre-pilot testing phase. The pre-pilot study was performed with volunteers in
order to verify that the system functionalities run according to the medical requirements
and successful results were obtained. Amongst other things, these tests confirmed the
technical feasibility of providing QoD-aware guideline-based decision support to
patients via a semi-autonomous system running on their smartphones. Currently, as a
further step in the clinical and technical evaluation, the MobiGuide system is being
piloted on patients in Spain and Italy. The GDM pilot site is Corporacio Sanitaria Parc
Tauli de Sabadell near Barcelona in Spain and the pilot site for AF patients is Fondazione
Salvatore Maugeri Clinica del Lavoro e della Riabitazione in Pavia, Italy.

For the University of Twente, the research conducted in MobiGuide together with
our partners has extended our research into health BAN applications, amongst others,
by incorporating clinical decision support based on clinical guideline knowledge into
the BAN application, by distributing decision support functionality between the
patient’s mobile system and a fixed back-end system via a projection mechanism, and
by introducing quality of data awareness to BAN applications.

The research on clinical decision support in the context of evidence-based medicine
has produced new modelling approaches to be applied in the analysis of guideline
knowledge and generic mechanisms (the projection model and language) for dis-
tributing clinical knowledge and decision support functionality. The QoD research
demonstrates that the approach applied not only succeeds in detection of data quality
problems (thus enabling pre-emption of adverse effects of poor data quality) but also
enhancement of clinical data quality through identification and corrective action where
certain technological resource problems are identified.
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