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ABSTRACT: Large deformation Finite Element (FE) simulations of anisotropic material often show slow 
convergence or break down with increasing anisotropy and deformation. Large deformations are generally 
approximated by multiple small linearised steps. This leads to poor performance and contradicting 
formulations. Here, a new conceptually simple scheme was implemented in an updated Lagrange formulation. 
An appropriate decomposition of the deformation gradient results in constitutive relations defined in invariant 
tensors such as the right Cauchy-Green tensor. Consistent tangent matrices are given for a linearly elastic 
fibre model and for a generalized anisotropic material. The simulations are robust, showing quadratic 
convergence for arbitrary degrees of anisotropy and arbitrary deformations with strain increments over 100%. 
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1 INTRODUCTION 

Numerical optimization of products and production 
processes becomes increasingly important in the 
design phase of composite structures. It can reduce 
the time to market and can avoid the production of 
costly prototypes. Numerical simulations of the 
forming processes such as e.g. draping, rubber 
pressing or diaphragm forming are an essential part 
of these optimization tools.  
 
Finite Element (FE) simulations are capable of 
simulating the production process in great detail, 
including mechanisms such as tool-part friction, 
inter-ply friction, wrinkling and fibre bridging. 
These FE simulations are however time consuming 
and often not very robust. Large deformation FE 
simulations of anisotropic material often show slow 
convergence or break down with increasing 
anisotropy and deformation. 

1.1 Uniaxial tensile test 

A simulation of a simple tensile test with a ply of 
unidirectional fibres reveals the difficulties when 
using a standard FE formulation. The material is 
highly anisotropic with a stiffness ratio of 1 to 105. 
An arbitrary commercial FE code, ANSYS, is used to 
simulate the experiment. Plane stress quadrilaterals 
(PLANE42) are used. The left and right side are 
clamped and the right side moves in the y-direction 
(see figure 1). The incremental displacement δ is 
very small, only 5·10-5 times the length of the 
specimen. Nevertheless, the simulation breaks down 
after only 4 steps at an elongation of only 0.02%. 
Figure 1 shows the last converged solution.  
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Fig. 1. Deformed shape (x250) tensile test simulation with a 

highly anisotropic material. 

The ply widens near the clamped edges, while it 
should contract due to the Poisson effect. 
This is caused by updating the material orientations 
using the wrong geometry. Element strains ε are 
found by: 

B uε = ⋅ , (1) 

where B contains the derivatives of the element 
shape functions and u denotes the nodal 
displacements. Implicit codes obtain the highest 
order of convergence if B is evaluated on the 
intermediate geometry between the initial state and 
the current deformed state. The resulting stresses 
and subsequently the nodal forces become 
misaligned if the material orientation is updated 
using the same intermediate geometry, as illustrated 
in figure 2b.  

 
Fig. 2. Resulting (mis-) alignment of the nodal force 

 



The orientation update should take place using the 
current geometry to avoid misalignment of the nodal 
forces in large deformation simulations with 
anisotropic material (c). 

1.2 Pure shear 

Incorrect deformed shapes can be avoided by 
evaluating the material tensor using the final 
geometry. Unfortunately this leads to less accurate 
strain predictions as shown in the next example. One 
element is sheared up to 75°. Applying pure shear 
should not introduce strains in the fibres which are 
aligned with the frame. Figure 3 shows a fibre strain 
of 0.3 [-], evaluated according to equation (1), if the 
deformation is applied in one step. The accuracy 
improves if the total deformation is split into several 
steps, but this increases the calculation time 
significantly. As much as 86 steps are necessary to 
reduce the fibre strain below 1%. 
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Fig. 3. Inaccurate fibre strain in pure shear 

The ‘standard’ large deformation simulations are 
based on the assumption that a large nonlinear 
displacement can be accurately approximated by 
multiple small steps in which a linear theory is 
applied. This assumption leads to poor performance 
in implicit FE simulations with (highly) anisotropic 
material. The previous examples illustrate that it 
leads to contradicting requirements as well. A 
review of the Finite Element formulation is 
necessary if large deformations of anisotropic 
material are considered. 

2 LARGE DEFORMATION THEORY 

Figure 4 shows a volume of material in the 
undeformed or initial state and in the deformed or 
current state. The deformation gradient F(X,t) maps 
the initial configuration onto the current 
configuration and can be decomposed in a stretch 
tensor G and a subsequent rotation R: 

= ⋅F R G  (2) 
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Fig. 4. Initial and current configuration of a body. 

This decomposition is not unique and G does not 
necessarily have to be symmetric. In case of a one 
dimensional fibre it is convenient to take a rotation 
R that rotates the initial fibre direction a0 to the 
current fibre direction a. The non-symmetrical 
tensor G now relates the current length ℓ to the 
original length ℓ0. 
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2.1 Invariancy of the local stress tensor 

The local stress tensor τ is invariant and related to 
the Cauchy stress tensor σ through the following 
relation:  

T
i ij jτ= ⋅ ⋅R e e Rσ  (4) 

with ei and ej the local base vectors. These local base 
vectors co-rotate with the materials axes of 
anisotropy and allow for constitutive equations in 
terms of an invariant and constant material tensor 
E. There is no need for non-orthogonal constitutive 
equations as introduced by Yu [2] and Xue [3]. 
This approach leads to a conceptually simple scheme 
for an updated or total Lagrange formulation and is 
introduced by Huétink [1]. Nonlinearities due to 
reorientation of the material are taken into account 
when mapping the local stress tensor to the global 
Cauchy stress tensor. 
The rate of the Cauchy stress is necessary to 
assemble the element stiffness matrix. This rate is 
related to the local stress tensor by: 

T T T= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅R R R R R Rσ τ τ τ  (5) 

The next step is to find the local stress τ as a 
function of an appropriate strain measure. 

2.2 Strains and stresses 

The right Cauchy-Green tensor C equals unity if no 
deformation takes place and is invariant under rigid 
body rotations. Huétink [1] showed that the free 
energy can be expressed as a function of C only, 
whereas that is not possible for the left Cauchy-
Green tensor B in case of anisotropy. The right 
Cauchy-Green tensor C is therefore an appropriate 



strain measure: 
T= ⋅C F F  (6) 

The fibres behave linearly elastic. The free energy Ψ 
of the fibres then equals the elastic stored energy [1]:  
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where Ef denotes the fibre stiffness and ρ0 the stress-
free density of the material. The local stress now 
reads: 
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and the Cauchy stress: 
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This large deformation formulation of the fibre 
model can be extended to an arbitrary anisotropic 
elastic model. 
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with 4E is the invariant and constant fourth order 
material tensor. 4I is a fourth order tensor and has 
the property 4I : A=A, where A is an arbitrary 
second order tensor. 

2.3 Parallel fraction model 

The model consists of several material fractions. 
Deformation is equal for each fraction and each 
fraction contributes to the total stress proportional to 
its volume fraction v. 

i i
i

v=∑σ σ  (11) 

where i denotes the fraction number and the sum of 
the volume fractions equals unity. This allows for 
implementation of several deformation mechanisms 
into one model, as shown in ten Thije et al. [4]. 

2.4 Consistent tangent matrix 

The performance of implicit FE simulations depends 
largely on the consistency of the tangent (stiffness) 
matrix when using a Newton-Raphson procedure. 
The iterative process converges very slow or even 
diverges if not all the nonlinearities are taken into 
account, especially when it concerns highly 
anisotropic materials.  
 
The time derivative of the weak mechanical 
equilibrium equation can be derived from the virtual 
power and reads: 
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where w are the element weighting functions, v is 
the velocity and D is the rate of deformation tensor. 
Using the constitutive model for the fibres and 
ignoring the surface traction part this can be 
rewritten to: 
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The time derivative when using the generalized 
anisotropic material model of equation (10) reads: 
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3 APPLICATION: BIAS EXTENSION 

The large deformation FE formulation was 
implemented in Matlab to examine the performance. 
The bias extension experiment is a suitable test case 
for the simulation performance. This experiment was 
extensively described by Potter [5]. Figure 5 shows 
the undeformed and the deformed shape. The biaxial 
fabric is gripped on the short edges and pulled apart. 
The fabric develops three deformation regions: an 
undeformed region, a central region with pure shear 
and a region with intermediate shear. The mesh is 
aligned with the fibre directions to avoid intra ply 
shear locking. Reduced integration of quadrilaterals 
or higher order elements appears to be effective as 
well, but gives rise to hourglass deformation modes. 
This is in line with the work of Yu et al. [6]. 

 
Fig. 5. The undeformed and deformed shape of the bias 

extension simulation (no displacement scaling). 

The deformation shown in figure 5 is applied in only 
one step, which is a remarkable good performance 
for an implicit FE code. Figure 6 shows the 



convergence behaviour of this simulation. 
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Fig. 6. Convergence plot of the one-step bias extension 

simulation from figure 5. 

The unbalance norm is given by ║R-F║/║F║ and 
the displacement norm by ║∆u║/║u║, where R are 
the reaction forces, F the applied nodal loads, ∆u the 
displacement found during the iteration and u the 
total displacement. The simulation initially 
converges slowly, due to strain increments over 
100% and fibre rotations up to 45°. After 8 iterations 
it shows quadratic convergence. All individual steps 
converge to machine precision within 6 iterations if 
the simulation is split into more than 3 steps, 
showing quadratic convergence from the first 
iteration on. 
Another large advantage of the nonlinear Cauchy 
Green strain definition is the increased robustness of 
the simulation when using poorly shaped elements. 
Figure 5 shows elements with angles below 2°, but 
the simulation can be continued with another step 
without problems.  

3.1 Numerical issues 

Figure 6 shows a displacement norm that gets down 
to machine precision. The unbalance norm remains 
103 times higher. This is due to the condition of the 
system. The fibre stiffness is 103 times higher than 
the bulk stiffness, causing unbalances in the same 
order of magnitude. 
Care should be taken when storing the deformation 
gradient. Large rounding errors can occur if 
deformations are small. F can be written as I + δF 
and significant digits of δF are lost when storing F. 
This causes inaccuracy if the local stress τ is 
evaluated (equation 8). Subtraction of I then results 
in inaccurate strains due to the lost significant digits. 
Storing δF instead of F and rewriting the strain 
definition in terms of δF solves this problem and 
does not lead to large numerical rounding errors if 
small deformations are applied. 

4 CONCLUSIONS 

The standard FE codes are not very suitable for large 
deformation simulations of highly anisotropic 
materials. It leads to confusing formulations as well. 
To avoid misalignment of the nodal forces, the 
material axis of anisotropy should be evaluated on 
the final geometry. However, this causes the 
accuracy of the strain prediction to drop 
significantly. 
Instead, the deformation gradient is decomposed into 
a   rotation tensor and a stretch tensor. The rotation 
reflects the rotation of the axis of anisotropy. This is 
an advantage when modelling fibre reinforced 
composites. Stresses are computed using invariant 
local stress and stiffness tensors. This leads to a 
simple and straightforward implementation of 
constitutive laws, which do not have to account for 
any rotation of the material.  
Consistent tangent matrices are given for linearly 
elastic fibres and for a generalized anisotropic 
material. Simulations converge quadratically for 
arbitrary deformation gradients and arbitrary degrees 
of anisotropy. Simulations are far more robust than 
the standard implementations. Using the right 
Cauchy Green strain definition causes badly shaped 
element to behave much better than when using a 
linear strain definition. 
The scheme is implemented and tested in 2D 
simulations. The next step is to test the behaviour 
the new scheme in a full 3D forming simulation. 
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