
Côte de Resyste
Automatic model-based testing of communication protocols

Axel Belinfante, Ed Brinksma, Jan Feenstra,
Jan Tretmans and René de Vries

University of Twente
Formal Methods and Tools group, Department of Computer Science

P.O. Box 217, 7500 AE Enschede, The Netherlands
{belinfan, brinksma, feenstra, tretmans, rdevries}@cs.utwente.nl

1. Software Testing

Software quality is an issue that currently attracts a lot of
attention. Software invades everywhere in our society and
life and we are increasingly dependent on it. Moreover, the
complexity of software is still growing. This also applies
to software in mobile systems. Consequently, the quality,
functional correctness and reliability of software is an issue
of increasing importance and growing concern. Systematic
testing of software plays an important rôle in the quest for
improved quality. Despite its importance, testing is often
an under-exposed phase in the software development pro-
cess. Moreover, testing turns out to be expensive, difficult
and problematic. One source of problems can be an im-
precise or ambiguous specification, so that a good basis for
testing is missing. Another reason is the usually manual
and laborious testing process without effective automation,
so that testing is error-prone and consumes many resources.
Furthermore, quite often the testing phase gets jammed be-
tween moving code delivery dates and fixed custom deliv-
ery dates. On the other hand, research and development in
testing have been rather immature. Testing methodology is
mostly governed by heuristics. Fortunately, this situation is
gradually improving. Triggered by the quest for improved
quality and imposed by increased product liability, testing
is considered more important and treated more seriously.
Being a software tester is becoming a true profession.

2. Côte de Resyste

The projectCôte de Resyste(COnformance TEsting OF
REactive SYSTEms) aims at improving the testing process
by using formal methods. InCôte de Resystewe develop
theories, methods and tools to enable fully automatic test-
ing of software systems based on formal specifications. In
doing so,Côte de Resysteconcentrates on functional testing

of reactive systems. Functional testing involves checking
the correct behaviour of a system: does the system do what
it should do (as opposed to, e.g., testing the performance or
robustness). Reactive systems are mostly technical, event-
driven systems in which stimulus/response behaviour is im-
portant, such as embedded systems, communication proto-
cols and process control software. Administrative systems
are typically not reactive systems.

Côte de Resysteis a cooperation between Philips Re-
search Laboratories Eindhoven, Lucent Technologies R&D
Centre Enschede, Eindhoven University of Technology and
the University of Twente. It is a 4 year, 23 man-year project
supported by the Dutch Technology Foundation STW [2, 4].
Our main challenge is to develop test techniques and tools
with a high practical applicability, while starting from a
well-defined and sound theoretical basis. The applicability
and usability is evaluated by performing case studies sup-
plied by Philips, Lucent and associated partners.

3. Formal Methods

Currently, most system specifications are written in nat-
ural languages, such as English or Dutch. Although such
informal specifications are easily accessible, they are often
incomplete and liable to different and possibly inconsistent
interpretations. Such ambiguities are not a good basis for
testing: if it is not clear what a system shall do, it is difficult
to test whether it does what it should do. With formal meth-
ods systems are specified and modelled by applying tech-
niques from mathematics and logic. Such formal specifica-
tions and models have a precise, unambiguous semantics,
which enables the analysis of systems and the reasoning
about them with mathematical precision and rigour. More-
over, formal languages are more easily amenable to auto-
matic processing by means of tools. For example, tools ex-
ist that are able to verify fully automatically the absence of



deadlock based on a formal description of the design. Until
recently formal methods were a merely academic topic, but
now their use in industrial software development is increas-
ing, in particular for safety critical systems and for telecom-
munication software. One particular Dutch project where
formal methods have been used successfully is the control
system for the storm surge barrier in the Nieuwe Waterweg.

Figure 1. The storm surge barrier in the Nieuwe Wa-
terweg near Hoek van Holland is completely software
controlled. Flooding of Rotterdam is avoided and
must be reliable. During the system design the formal
methodsZ and PROMELA have been used. Testing
was performed based on these models.

4. Testing with Formal Methods

A formal specification is a precise, complete, consistent
and unambiguous basis for design and code development
as well as for testing. This is a first big advantage in con-
trast with traditional testing processes where such a test ba-
sis is often lacking. A second advantage of the use of for-
mal specifications for testing is their suitability to automatic
processing by means of tools. Algorithms have been de-
veloped which derive tests from a formal specification [3].
These algorithms have their theoretical underpinning in the
theories of labelled transition systems, process algebra and
testing preorders. Moreover, these algorithms have been
implemented in tools leading to automatic, faster and less
error-prone test generation. This opens the way towards
completely automatic testing where the system under test
and its formal specification are the only required prerequi-
sites. Formal methods provide a rigorous and sound basis
for algorithmic and automatic generation of tests. Tests can
be formally proved to be valid, i.e., they test what should be

tested, and only that.

5. TORX: A Tool for Formal Testing

Within Côte de Resystewe are developing the formal
testing tool TORX. TORX integrates automatic test gener-
ation and automatic test execution in anon-the-flymanner.
On-the-fly testing implies that derived test actions are im-
mediately executed and, moreover, that only the part of the
test that will actually be executed is derived ‘lazy test gener-
ation’. TORX is a prototype tool with which some academic
and industrial case studies have been successfully tested.
One of the examples was a chat-box protocol, which was
tested based on specifications in the formal languages LO-
TOS and Promela [1]. Due to the on-the-fly testing method
long tests consisting of more than 500,000 test events could
be generated and executed completely automatically. From
a set of 28 mutants of the chat-box protocol, with carefully
inserted faults, all erroneous implementations could be suc-
cessfully detected which could not be achieved with tradi-
tional testing tools.

the stimulus

verify
the response

the stimulus

observe
the response

select

TorX Under
Test

System
specification

send

Figure 2. The TORX tool selects stimuli from the
specification and stimulates the system under test.
The responses are observed and verified against the
specification.

6. Applications of Testing with Formal
Methods

Currently, TORX and its accompanying test methods are
evaluated by applying them to different case studies. One of
the evaluation studies concerns a communication protocol
between video recorders and television sets for download-
ing channel presets. The results of this study are promis-
ing: some faults were detected which had slipped through
the conventional testing procedures. The second case study
is Lucent Technologies V5.1 access network protocol. A
third case study is a mobile application in the context of the
‘Rekeningrijden’ project. Interpay is developing a system
for automated fee charging for turnpike roads. The system
should debit an electronic purse and register a balance incre-
ment on an account at the toll gate when a vehicle passes.
To ensure that the payment transactions are correctly pro-
cessed by the system, the system should be tested. This
testing activity should increase the confidence in the correct

2



functioning of the system. Due to the fact that many cars
can pass a toll gate simultaneously, the number of parallel
transactions in progress can be large. This fact contributes
to the complexity of the generation, execution and analysis
of test experiments. The testing activity done byCôte de
Resysteand Interpay is scheduled in the beginning of 2001.

7. Perspectives

Current work concentrates on improving TORX, on de-
veloping methods for effective selection of test sets and
on generic test execution environments. The case stud-
ies strengthen our view that within a few years it will be
possible to perform automatic testing of reactive, modestly
complex, industrial software systems based on their formal
specifications. The expectation is that the extra effort re-
quired for developing the necessary formal system speci-
fications will be more than compensated by faster, cheaper
and more effective testing. This does not mean that all prob-
lems have been completely solved, yet. One of the most im-
portant research questions, which is currently investigated,
is how the completeness and coverage of an automatically
generated test suite can be expressed, measured and, ulti-
mately, controlled. Even more intriguing is the question
how test suite coverage can be related to a measure of prod-
uct quality. After all, product quality is the only actual rea-
son to perform testing.

References

[1] A. Belinfante, J. Feenstra, R. d. Vries, J. Tretmans, N. Goga,
L. Feijs, S. Mauw, and L. Heerink. Formal test automation:
A simple experiment. In G. Csopaki, S. Dibuz, and K. Tar-
nay, editors,12th Int. Workshop on Testing of Communicating
Systems, pages 179–196. Kluwer Academic Publishers, 1999.

[2] Dutch Technology Foundation STW.Côte de Resyste–
COnformance TEsting of REactive SYSTEms. Project
proposal STW TIF.4111, University of Twente, Eind-
hoven University of Technology, Philips Research Labo-
ratories, KPN Research, Utrecht, The Netherlands, 1996.
http://fmt.cs.utwente.nl/CdR .

[3] J. Tretmans. Test generation with inputs, outputs and repeti-
tive quiescence.Software—Concepts and Tools, 17(3):103–
120, 1996. Also: Technical Report No. 96-26, Centre
for Telematics and Information Technology, University of
Twente, The Netherlands.

[4] R. d. Vries, J. Tretmans, A. Belinfante, J. Feenstra, L. Feijs,
S. Mauw, N. Goga, L. Heerink, and A. d. Heer. Côte
de Resyste in PROGRESS. In S. T. Foundation, editor,
PROGRESS2000 – Workshop on Embedded Systems, pages
157–164, Utrecht, The Netherlands, October 13 2000.

3


