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Abstract

The so calledow reduced frequency model has been shown to be both an accurate and a relatively simple
description of wave propagation in narrow tubes or layers, under sigatlsconditions. In this paper,
the low reduced frequency model will be applied on a circular layer betweiexed surface and a rigidly
translating plate. The outer circumference of the layer is partially closednfiden boundary condition)
and partially open (Dirichlet boundary condition). s&mi-analytical solution for this problem is used to
calculate the volume flow that is generated by the squeezing motion of the pldtthearesulting force on

the plate. The volume flow per unit force is evaluated for several boyrmdaditions.

1 Introduction

Acoustic wave propagation under small signal conditions is usually deschi the wave equation. This
equation does not take thermal and viscous effects into account. This statifi is justified for wave
propagation in relatively large spaces. In narrow layer (or tube) gemadowever, the thermal and viscous
effects can not be neglected. The wave equation is therefore notlsuivatbescribe wave propagation in
these geometries. The so called low reduced frequency model hasiogante be an accurate description of
wave propagation, under these conditions [1]. This model is much simptetttbdlinearized) Navier Stokes
model from which it has been derived. The model has been usedssfgite to describe the behavior of
folded solar panels during launch and the transmission loss of doubleawvedls for example. The receiver
of a hearing aid device, i.e. a tiny loudspeaker, is another application irhvalemustic waves propagate in
thin layers. It could be a design criterion to squeeze a certain amountaftaif a layer, using as less force
as possible. The volume flow per unit force can be calculated from a swtyjiti@al solution of the low
reduced frequency model. The effect of several changes in lboyiednditions on the volume flow per unit
force will be shown in this paper.

2 Theory

In this paper, the behavior of a circular layer of air will be modeled. Thidccbe a layer in a hearing aid
device. The layer is located between a fixed surface and a circular tageltpat translates perpendicularly
to this surface. The plate and fixed surface are parallel to each othegap is either open or closed at the
outer circumference. Figure 1 gives a schematic overview of this systeenbdrriers close off the air layer
S0 air can only escape through the openings. The polar coordinatensysiez) is displayed in this figure.
The gap heighk is assumed to be very small compared to the wavelength of sound.

Due to the small height of the air layer it is expected that viscous effecta@abe neglected. The low
reduced frequency model is an accurate model for this situation and wilbdée to describe the air layer.
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Figure 1: Plate translating near a fixed surface

An introduction to this model, the applied boundary conditions, and the puoedd formulate the semi-
analytical solution will be presented in the next sections.

2.1 The low reduced frequency model

The low reduced frequency model is derived from the Navier stokesatems, see Beltman [1]. This model
can be applied to an air layer between parallel plates. The equations of tthéd, waoitten in dimensionless
cylinder coordinatesr( ¢, z), are:
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wherev”, v?, andv® denote the dimensionless velocities in the, andz directions;p, p, andT' denote
the dimensionless density, dimensionless pressure, and dimensionlessateamnepend-, 6, andz are the
dimensionless coordinates. The following relations were used to make theitiesiothermodynamic prop-
erties, and coordinates dimensionless:

" = Covreiwt7 ﬁ — PO(l +p€iwt)’ 7 L,
1—)49 = Coveethv p = pO(]- +p€th)a 07 (2)
0% = covie™t, T=To(1+ Te™t), zZ = hoz.

The barred variables are dimensionful,is the speed of soungy, pg, andTy are the properties of the air
in the layer at resty is the frequency in radians per second, &gds the thickness of the air layer.

The solution to the equations depends on the boundary conditions anditiiérfensionless parameters:
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with p, C,, C,,, and\ denoting viscosity, specific heat at constant pressure, specifiaheatstant volume,
and thermal conductivity. The square root of the Prandtl numband the ratio of specific heatsare
thermodynamic constants. The two other parametershar®w reduced frequency k& and theshear wave
number s. These two parameters depend on the layer thickhgssd the (angular) frequency and are
therefore the most interesting from an engineering point of view.

2.2 Boundary conditions at the oscillating plate and the fixe d surface

The boundary conditions that are applied at the upper and lower boesdd the layer are the no-slip
condition (the air at the boundaries has the same velocity as the surfadejeasothermal condition (air
at the boundary has the same static temperature as the plates). The longailyas a fixed (static) surface
located at: = 0. The upper boundary is a plate that translates rigidly araugadl (thusz = hg) according
to:

h = ho(1 4 he™?). (4)

Thus the variablé: is the dimensionless amplitude of the translation of the plate. Beltman [1] shows how
these boundary conditions reduce the system of equations to a secengbartial differential equation for
the pressure that has a strong resemblance to the wave equation (inrogtinddinates):

10(rgl)  10% >
— r ———— —I“p=nl*h 5
r or + r2 962 p=mnt i (52)

with: .
/ 1 -
I = %, n=1|1 + VTD y
_ Cosh(sxﬁ)—l) _ _ ( cosh(sovi)—1 ) -
B=2 <s i sinh(sv/7) 1, D=2 so/isinh(so/4) L.
The parameter is called ‘propagation constant’ and‘polytropic constant’. Viscous effects are applied
trough the parametes and thermal effects through the paraméferThese parameters change if the bound-
ary conditions change (to adiabatic boundary conditions for instanée) differential equation shows that
the pressure is independent of theoordinate. This is a direct consequence of (1c). The problem is now
reduced to a two dimensional problem.

(5b)

The particle velocities in the propagation directions can be expressed indetinespressurg (for the other
properties see [1]):

. B
o= B (6a)
v Or
~0 iB Op
it 6b
! yr 00’ (6b)
in which ¢" and?? are the particle velocities averaged over the layer thickness:
1
" = /UT dz, (6¢€)
0
1
o = / v’ dz (6d)
0

The shape of the velocity profile across the layer is of little interest for thgemp&ee [1] for more details.
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2.3 Boundary conditions at the circular boundary of the laye r

In the previous section we found a second order partial differentiahtéan for the pressure (5). This
equation can be solved after formulating a boundary condition for they @@nt of the boundary. The
boundary is either closed off by a barrier, or open. At the open bayndcationso)p we demand the
pressure to equal zero (Dirichlet boundary condition). At the clogeohéary location®€) we demand
the radial particle velocity to be zero. Equation (6a) shows that this gonels to demanding the radial
(normal) derivative of the pressure to be zero (Neumann boundadit@mm). The boundary conditions are
therefore:

p=0 atoQp, (7a)
@ =0 atoQy. (7b)
or

The boundary (outer circumference) is located at:
w =

rR="R. (8)
co

The differential equation of the pressure (5) can be solved by sepaet variables This results in the
following general solution:

p(r,0) = Z ((Cﬁl sin(mf) + C<, cos(mf)) (Cp, L (T'r) + C’f;Km(Fr))> — hn. 9)

m=0

The(),’s are constants of whici; has no influence on the solution and can be set to zero. The fungtjons
andK,, are the modified bessel functions of the first and second kind. Thédasd,, (I'r) go to infinity

atr = 0 and will therefore be omitted from the solution. If the plate would be annutet,ret contain

r = 0, these functions do need to be taken into account. This paper will onlyatgadystems with barriers
that are symmetric around the lile= 0. This allows for the sine terms to be omitted. What remains of the
solution is:

p(r,0) = i Cy cos(m@)1,,(T'r) — hn. (10)
m=0

The constant§’,,, in this solution can be determined by evaluating the boundary conditions (@)mérical
scheme will be used to do this.

2.4 Numerical calculation of the constants

The constantg’,,, from equation (10) can be calculated by creating a weak formulation with wihnes
as weighing functions. Equation (10) was obtained by demanding barcatidas that are symmetric to
the lined = 0. Wijnant [2] gives a more extensive (and slightly different) solution f@& tlon-symmetric
problem.

A linear system of equations is created with following the following recipe:
e The solution (10) is substituted into the boundary conditions (7)
e ther-derivative is written out

e The equations are multiplied with the weighing functigng,_, cos(w6)

The equations are integrated along the boundaries on which these are valid

The series is truncated upto = N
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e The order of the summations and the integration is reversed

The resulting matrix vector equation is:

N N N
> > Culw(TR) / cos(mf) cos(wf) df = / hn cos(wf) df,  (11a)
w=0m=0 o0 sz@QD

Al m  Ins(TR)

Z Z Crln(TR) (R + FIm(FR)> / cos(mb) cos(wd) df = 0. (11b)

w=0m=0 On

This equation gives a matrix of sizZ8V by N. A numerical computer program can easily find the least
squares solution for this system. It is numerically much less problematic tatgke(I'R) as the vector of
unknowns instead of just,, .

3 Results

The found solution can be verified by looking at the values of the pressud the radial velocity at the
boundary, see figure 2. The boundary conditions are satisfied judigingfigure 2. The spikes in the
velocity tend to get narrower, but higher whahincreases. Note that the low reduced frequency model only
accounts for viscothermal effects in the direction across the narrow laytein the propagation directions.

This semi-analytic solution has been verified by means of finite element caloslééilso based on the low
reduced frequency model) by Wijnant [2]. Van Blijderveen [3] hasfiext this model with experiments.
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Figure 2: Boundary

The pressure profile (figure 3) can also be plotted. Wijnant showsymeprofiles for many different values
of the shear wave numberand the dimensionless radidsin his paper [2]. Figures 2 and 3 were obtained
with R =1,s =1, h = 1,0 = 0.844, v = 1.401, N = 200 (which is high), and two barriers that
close off 50% of the circumference. The constants resulting from sobduogtion (11) were corrected with
Lanczos sigma factors. These factors are intended for use with Ftrarisforms and are also useful in this
(Fourier-like) application.

Once the constants,, are known, other interesting properties can be calculated from the soltitierforce
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Figure 3: Pressure profile

of the air layer on the plate can be calculated by integrating the pressurthewgea of the plate:

R 27w
P
F= / / prdfdr = WTRC()Il(FR) — 7R2hn. (12)
0 0

The constant’; is the only constant that the force depends on. However, a sufficienber of variables
must be calculated to get an accurate valuefgr

The volume flow can be calculated by integrating the normal (radial) velocitbgalwe circular boundary:

2

2i B RT

Q= / V"R = —Z:RCOM(FR). (13)
0

Thus de volume flow depends on no other constant thaas well.

The realized volume flow per unit force could be an interesting value foesapplications, like the hearing

aid receiver: )
Q iBT
T TR (14)
7 T 20, (TR)
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Figure 4: Translating plates with different boundary conditions

Different boundary configurations will be considered in this papelueid shows symmetric barrier place-
ments with one, two, and three barriers with an open/closed ratio of 50%préksure profiles under these
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Figure 5: Pressure profiles

plates are plotted in figure 5 (fear= 5, R = 5, v = 1.40, ando = 0.844). As can be seen, the three profiles
are completely different.

Equation (14) can be used to calculate the volume flow per unit force. d:@shows% for these three
configurations for different dimensionless radii and shear wave ntanlieshows that that the flow is lower
for small shear wave numbers (highly viscous behavior)s At 0.1, the volume flow per unit force is not
dependent on the number of boundaries (for the given range of thexsiomess radius). For a shear wave
number ofs = 1, and a dimensionless radius less than 1, more flow is generated in the catidiguvith
three boundaries. Far= 10 it can be seen how the dimensionless radii on which resonances oengech
with barrier placement. Note that the dimensionless radius depends ongherioy.

Another possibility is to vary the open/closed ratio. Figure 7 sh§v\f9r different open/closed ratios in a
configuration with three boundaries. As could be expected, the volumesfloigher in more open configu-
rations for all shear wave humbers. The angle (phase) is hardly io#déry the open/closed ratio.

Figures 6 and 7 were obtained by using= 1.40, 0 = 0.844, and N = 100. All figures show the
dimensionless values. These can be made dimensionfull by:

F=p(2)'F, (15)
o g, (16)
B w

Q_ e o
F N Po F.

Thus the frequency is needed to calculate the shear wave number, the dimensionless radits naake
the obtained results dimensionfull. To get a frequency response ofsicghgystem, equation (11) must be
solved for each frequency point.

4 Conclusions

The low reduced frequency model is used to model a circular layer betaegidly translating plate and
a fixed surface. The outer circumference of this layer is partially opdrpartially closed. The model can
be solved analytically up to a series expansion with unknown constantse toastants can be calculated
numerically. Only the first constant is needed to calculate the force of tee daythe plate, and the volume
flow. However, the first constant can only be calculated accuratelgpiffcient number of constants is taken
into account. The volume flow per unit force has been calculated for difesvent boundary configurations.
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Figure 6: The effect of the number of barriers (50% open). Dimensisnielume flow per unit force versus
dimensionless radius for different shear wave numbers: one babtigy, Golid), two barriers (green, dash),
and three barriers (red, dash-dot)
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Figure 7: The effect of the open/closed ratio for a setup with three baril@mensionless volume flow per
unit force versus dimensionless radius for different shear wave exand5% open (blue, solid), 50% open
(green, dash), and 25% open (red, dash-dot)
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