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Abstract
The so calledlow reduced frequency model has been shown to be both an accurate and a relatively simple
description of wave propagation in narrow tubes or layers, under small signal conditions. In this paper,
the low reduced frequency model will be applied on a circular layer between a fixed surface and a rigidly
translating plate. The outer circumference of the layer is partially closed (Neumann boundary condition)
and partially open (Dirichlet boundary condition). Asemi-analytical solution for this problem is used to
calculate the volume flow that is generated by the squeezing motion of the plate, and the resulting force on
the plate. The volume flow per unit force is evaluated for several boundary conditions.

1 Introduction

Acoustic wave propagation under small signal conditions is usually described by the wave equation. This
equation does not take thermal and viscous effects into account. This simplification is justified for wave
propagation in relatively large spaces. In narrow layer (or tube) geometries however, the thermal and viscous
effects can not be neglected. The wave equation is therefore not suitable to describe wave propagation in
these geometries. The so called low reduced frequency model has been shown to be an accurate description of
wave propagation, under these conditions [1]. This model is much simpler than the (linearized) Navier Stokes
model from which it has been derived. The model has been used successfully to describe the behavior of
folded solar panels during launch and the transmission loss of double wall panels, for example. The receiver
of a hearing aid device, i.e. a tiny loudspeaker, is another application in which acoustic waves propagate in
thin layers. It could be a design criterion to squeeze a certain amount of airout of a layer, using as less force
as possible. The volume flow per unit force can be calculated from a semi-analytical solution of the low
reduced frequency model. The effect of several changes in boundary conditions on the volume flow per unit
force will be shown in this paper.

2 Theory

In this paper, the behavior of a circular layer of air will be modeled. This could be a layer in a hearing aid
device. The layer is located between a fixed surface and a circular rigid plate that translates perpendicularly
to this surface. The plate and fixed surface are parallel to each other. The gap is either open or closed at the
outer circumference. Figure 1 gives a schematic overview of this system. The barriers close off the air layer
so air can only escape through the openings. The polar coordinate system (r̄,θ,z̄) is displayed in this figure.
The gap heighth0 is assumed to be very small compared to the wavelength of sound.

Due to the small height of the air layer it is expected that viscous effects cannot be neglected. The low
reduced frequency model is an accurate model for this situation and will beused to describe the air layer.
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Figure 1: Plate translating near a fixed surface

An introduction to this model, the applied boundary conditions, and the procedure to formulate the semi-
analytical solution will be presented in the next sections.

2.1 The low reduced frequency model

The low reduced frequency model is derived from the Navier stokes equations, see Beltman [1]. This model
can be applied to an air layer between parallel plates. The equations of this model, written in dimensionless
cylinder coordinates (r, θ, z), are:
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wherevr, vθ, andvz denote the dimensionless velocities in ther, θ, andz directions;ρ, p, andT denote
the dimensionless density, dimensionless pressure, and dimensionless temperature; andr, θ, andz are the
dimensionless coordinates. The following relations were used to make the velocities, thermodynamic prop-
erties, and coordinates dimensionless:
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(2)

The barred variables are dimensionfull,c0 is the speed of sound,ρ0, p0, andT0 are the properties of the air
in the layer at rest,ω is the frequency in radians per second, andh0 is the thickness of the air layer.

The solution to the equations depends on the boundary conditions and the four dimensionless parameters:
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with µ, Cp, Cv, andλ denoting viscosity, specific heat at constant pressure, specific heatat constant volume,
and thermal conductivity. The square root of the Prandtl numberσ and the ratio of specific heatsγ are
thermodynamic constants. The two other parameters arethe low reduced frequency k and theshear wave
number s. These two parameters depend on the layer thicknessh0 and the (angular) frequencyω and are
therefore the most interesting from an engineering point of view.

2.2 Boundary conditions at the oscillating plate and the fixe d surface

The boundary conditions that are applied at the upper and lower boundaries of the layer are the no-slip
condition (the air at the boundaries has the same velocity as the surfaces) and the isothermal condition (air
at the boundary has the same static temperature as the plates). The lower boundary is a fixed (static) surface
located atz = 0. The upper boundary is a plate that translates rigidly aroundz = 1 (thusz̄ = h0) according
to:

h̄ = h0(1 + heiωt). (4)

Thus the variableh is the dimensionless amplitude of the translation of the plate. Beltman [1] shows how
these boundary conditions reduce the system of equations to a second order partial differential equation for
the pressure that has a strong resemblance to the wave equation (in cylinder coordinates):
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The parameterΓ is called ‘propagation constant’ andn ‘polytropic constant’. Viscous effects are applied
trough the parameterB and thermal effects through the parameterD. These parameters change if the bound-
ary conditions change (to adiabatic boundary conditions for instance). The differential equation shows that
the pressure is independent of thez coordinate. This is a direct consequence of (1c). The problem is now
reduced to a two dimensional problem.

The particle velocities in the propagation directions can be expressed in termsof the pressurep (for the other
properties see [1]):
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in which v̂r andv̂θ are the particle velocities averaged over the layer thickness:
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∫

0

vθ dz (6d)

The shape of the velocity profile across the layer is of little interest for this paper. See [1] for more details.
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2.3 Boundary conditions at the circular boundary of the laye r

In the previous section we found a second order partial differential equation for the pressure (5). This
equation can be solved after formulating a boundary condition for the every point of the boundary. The
boundary is either closed off by a barrier, or open. At the open boundary locations∂ΩD we demand the
pressure to equal zero (Dirichlet boundary condition). At the closed boundary locations∂ΩN we demand
the radial particle velocity to be zero. Equation (6a) shows that this corresponds to demanding the radial
(normal) derivative of the pressure to be zero (Neumann boundary condition). The boundary conditions are
therefore:

p = 0 at∂ΩD, (7a)

∂p

∂r
= 0 at∂ΩN . (7b)

The boundary (outer circumference) is located at:

R =
ω

c0
R̄. (8)

The differential equation of the pressure (5) can be solved by separation of variables This results in the
following general solution:
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TheCm’s are constants of whichCs
0 has no influence on the solution and can be set to zero. The functionsIm

andKm are the modified bessel functions of the first and second kind. The functionsKm(Γr) go to infinity
at r = 0 and will therefore be omitted from the solution. If the plate would be annular, and not contain
r = 0, these functions do need to be taken into account. This paper will only evaluate systems with barriers
that are symmetric around the lineθ = 0. This allows for the sine terms to be omitted. What remains of the
solution is:

p(r, θ) =
∞

∑

m=0

Cm cos(mθ)Im(Γr)− hn. (10)

The constantsCm in this solution can be determined by evaluating the boundary conditions (7). Anumerical
scheme will be used to do this.

2.4 Numerical calculation of the constants

The constantsCm from equation (10) can be calculated by creating a weak formulation with with cosines
as weighing functions. Equation (10) was obtained by demanding barrier locations that are symmetric to
the lineθ = 0. Wijnant [2] gives a more extensive (and slightly different) solution for the non-symmetric
problem.

A linear system of equations is created with following the following recipe:

• The solution (10) is substituted into the boundary conditions (7)

• ther-derivative is written out

• The equations are multiplied with the weighing functions
∑N

w=0 cos(wθ)

• The equations are integrated along the boundaries on which these are valid

• The series is truncated up tom = N
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• The order of the summations and the integration is reversed

The resulting matrix vector equation is:
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This equation gives a matrix of size2N by N . A numerical computer program can easily find the least
squares solution for this system. It is numerically much less problematic to takeCmIm(ΓR) as the vector of
unknowns instead of justCm.

3 Results

The found solution can be verified by looking at the values of the pressure and the radial velocity at the
boundary, see figure 2. The boundary conditions are satisfied judgingfrom figure 2. The spikes in the
velocity tend to get narrower, but higher whenN increases. Note that the low reduced frequency model only
accounts for viscothermal effects in the direction across the narrow layer, not in the propagation directions.

This semi-analytic solution has been verified by means of finite element calculations (also based on the low
reduced frequency model) by Wijnant [2]. Van Blijderveen [3] has verified this model with experiments.
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Figure 2: Boundary

The pressure profile (figure 3) can also be plotted. Wijnant shows pressure profiles for many different values
of the shear wave numbers and the dimensionless radiusR in his paper [2]. Figures 2 and 3 were obtained
with R = 1, s = 1, h = 1, σ = 0.844, γ = 1.401, N = 200 (which is high), and two barriers that
close off 50% of the circumference. The constants resulting from solvingequation (11) were corrected with
Lanczos sigma factors. These factors are intended for use with Fouriertransforms and are also useful in this
(Fourier-like) application.

Once the constantsCm are known, other interesting properties can be calculated from the solution. The force
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Figure 3: Pressure profile

of the air layer on the plate can be calculated by integrating the pressure over the area of the plate:

F =

R
∫

0

2π
∫

0

pr dθ dr =
2πR

Γ
C0I1(ΓR)− πR2hn. (12)

The constantC0 is the only constant that the force depends on. However, a sufficient number of variables
must be calculated to get an accurate value forC0.

The volume flow can be calculated by integrating the normal (radial) velocity along the circular boundary:

Q =

2π
∫

0

v̂rR dθ = −

2iBπRΓ

γ
C0I1(ΓR). (13)

Thus de volume flow depends on no other constant thanC0 as well.

The realized volume flow per unit force could be an interesting value for some applications, like the hearing
aid receiver:

Q

F
= −

iBΓ2

γ − γΓRhn
2C0I1(ΓR)

. (14)

One barrier Two barriers Three barriers

Figure 4: Translating plates with different boundary conditions

Different boundary configurations will be considered in this paper. Figure 4 shows symmetric barrier place-
ments with one, two, and three barriers with an open/closed ratio of 50%. Thepressure profiles under these
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Figure 5: Pressure profiles

plates are plotted in figure 5 (fors = 5, R = 5, γ = 1.40, andσ = 0.844). As can be seen, the three profiles
are completely different.

Equation (14) can be used to calculate the volume flow per unit force. Figure 6 showsQ
F

for these three
configurations for different dimensionless radii and shear wave numbers. It shows that that the flow is lower
for small shear wave numbers (highly viscous behavior). Ats = 0.1, the volume flow per unit force is not
dependent on the number of boundaries (for the given range of the dimensionless radius). For a shear wave
number ofs = 1, and a dimensionless radius less than 1, more flow is generated in the configuration with
three boundaries. Fors = 10 it can be seen how the dimensionless radii on which resonances occur change
with barrier placement. Note that the dimensionless radius depends on the frequency.

Another possibility is to vary the open/closed ratio. Figure 7 showsQ
F

for different open/closed ratios in a
configuration with three boundaries. As could be expected, the volume flowis higher in more open configu-
rations for all shear wave numbers. The angle (phase) is hardly influenced by the open/closed ratio.

Figures 6 and 7 were obtained by usingγ = 1.40, σ = 0.844, andN = 100. All figures show the
dimensionless values. These can be made dimensionfull by:
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(c0

ω

)2
F, (15)
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2
0

ω
Q, (16)

Q̄

F̄
=
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Q

F
. (17)

Thus the frequencyω is needed to calculate the shear wave number, the dimensionless radius, andto make
the obtained results dimensionfull. To get a frequency response of a physical system, equation (11) must be
solved for each frequency point.

4 Conclusions

The low reduced frequency model is used to model a circular layer between a rigidly translating plate and
a fixed surface. The outer circumference of this layer is partially open and partially closed. The model can
be solved analytically up to a series expansion with unknown constants. These constants can be calculated
numerically. Only the first constant is needed to calculate the force of the layer on the plate, and the volume
flow. However, the first constant can only be calculated accurately, if asufficient number of constants is taken
into account. The volume flow per unit force has been calculated for a fewdifferent boundary configurations.
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Figure 6: The effect of the number of barriers (50% open). Dimensionless volume flow per unit force versus
dimensionless radius for different shear wave numbers: one barrier (blue, solid), two barriers (green, dash),
and three barriers (red, dash-dot)
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Figure 7: The effect of the open/closed ratio for a setup with three barriers. Dimensionless volume flow per
unit force versus dimensionless radius for different shear wave numbers: 75% open (blue, solid), 50% open
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