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SUMMARY
A computational method based on the Euler equations for

unsteady flow is employed to predict the structure and dynam-

ics of unsteady sheet cavitation as it occurs on stationary hydro-

foils, placed in a steady uniform inflow. An equilibrium cavi-

tation model is employed, which assumes local thermodynamic

and mechanical equilibrium in the two-phase flow region. Fur-

thermore, the phase transition does not depend on empirical con-

stants in this model.

In order to be able to predict the dynamics of the pres-

sure waves, the fluid is considered as a compressible medium

by adopting appropriate equations of state for the liquid phase,

the two-phase mixture and the vapor phase of the fluid. When

these thermodynamic relations are used directly in the computa-

tional method, it was found that over 90% of the computational

time was spent by computations associated with these closure re-

lations.

Therefore, in this paper this approach is replaced by using

precomputed thermodynamic tables, containing the same infor-

mation. It will be shown that the thermodynamic functions for

the liquid, vapor, and mixture phases are consistent and have

unique values in all the phases. Accordingly, a unique table can

be prepared for any of the thermodynamic variables {p,T,c,α},

i.e. pressure, temperature, speed of sound, and vapor void frac-

tion, covering all three phases in each table. Based on uniqueness

property of the tables, the thermodynamic state can be character-

ized without any need for determining the flow phase, although

it has been stored in a table for post processing purposes (and for

later viscous simulations).

To show that this approach is beneficial, results on sheet cav-

itation for the NACA0015 hydrofoil will be presented. The re-

sults clearly show the shedding of a sheet cavity and the strong

pressure pulses, originating from the collapse of shed vapor struc-

tures. The usage of the tables leads to a speed-up of the compu-

tations of approximately a factor of 10.

NOMENCLATURE

p∞ [Pa] Free-stream pressure

ρ∞

[
kg m−3

]
Free-stream density

U∞

[
m s−1

]
Free-stream velocity

V
[
m3

]
Volume of the fluid

Vv

[
m3

]
Volume of the vapor

psat [Pa] Saturation pressure

ρv,sat

[
kg m−3

]
Saturation vapor density

ρl,sat

[
kg m−3

]
Saturation liquid density

σ = p∞−psat (T )
1/2ρ∞U2

∞
Cavitation number

α = Vv
V
=

ρ−ρl,sat (T )

ρv,sat (T )−ρl,sat (T )
Void fraction

INTRODUCTION

Cavitation is an unsteady process which involves formation

and collapse of vapor cavities in a liquid. Vapor cavities appear

in regions where the liquid pressure drops below the saturation

pressure and afterwards collapse in regions with higher pressure.

There are many applications involving cavitating flows, some ex-

amples are in technical applications such as pumps, turbines, ship

propellers, fuel injection systems, bearings, and in medical sci-

ences such as lithotripsy treatment and the flow through artificial

heart valves.

The implosions and explosions of vapor regions of cavitat-

ing flows in hydraulic systems may cause a number of problems.

These include vibration and noise, surface erosion in the case of

developed cavitation, and deteriorating the performance of the

system such as lift reduction and increase in drag of a foil and

loss of turbomachinary efficiency. However, besides the harmful

effects, cavitation is used in some industrial processes to produce

high pressure peaks and apply it for cleaning of surfaces, disper-

sion of particles in a liquid, production of emulsions etc. Cavi-

tation cannot be avoided in many applications due to a demand

for high efficiency or is an essential part of the design in some

other applications. Hence to be able to control the effects of cavi-

tation, it is essential to understand the driving mechanisms of this

phenomenon.
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In this paper a computational method is presented to simu-

late an unsteady cavitation computation, which is a continuation

of the work performed by Schmidt et al. [1] and Koop et al.

[2, 3]. The method is applied to an unsteady sheet cavitation,

for which an inviscid compressible flow is assumed together with

appropriate thermodynamic equations of state i.e. Tait’s equa-

tion for the liquid phase, a perfect gas for the vapor phase, and

an equilibrium model for the mixture phase. These thermody-

namic equations are highly nonlinear and especially for the mix-

ture phase computationally costly. E.g. a profiling of the code

used by Koop [3] showed that roughly 90% of the computational

work was carried out in the routines for these thermodynamic

relations. As an alternative, we have prepared a set of thermo-

dynamic tables, which eliminate the iterative steps for solving

thermodynamic equations. Using this approach a speed up of ap-

proximately a factor 10 can be obtained.

This paper is organized as follows. First the physical model

is described in section 1, including the thermodynamic closure

relations. This is followed by the construction of the tables, sec-

tion 2, and the discretization method, section 3. Results are pre-

sented in section 4 and this paper ends with the conclusions and

a description of future work, section 5.

1 PHYSICAL MODELING
In order to model the sheet cavitation some assumptions

must be used. Since the main structures of sheet cavitation are

dominantly inertia driven, the flow is considered inviscid. One

of the main issues in numerical simulation of unsteady cavitating

flow is the simultaneous treatment of two very different flow re-

gions, i.e. the (nearly) incompressible flow of pure liquid in most

of the flow domain with a fluid of relatively high density and the

highly compressible flow of (pure) vapor with very low density in

a small part of the flow domain. To be able to capture the shock

waves, the flow is considered compressible. Based on the model

from Saurel et al. [4] and Schmidt et al. [1] the equilibrium cavi-

tation model is adopted. In this model the two-phase flow regime

is assumed to be a homogeneous mixture of liquid and vapor. Fur-

thermore relative velocities between the liquid and vapor parts are

neglected, and local pressure and temperature equilibrium are as-

sumed. In other words, the two-phase flow is in mechanical and

thermodynamic equilibrium. Based on these assumptions, appro-

priate thermodynamic equations need to be introduced to cover

all the possible states. The equations of state must preserve the

hyperbolic nature of the resulting system of equations so that the

pressure waves in the fluid can be represented. The governing

equations of motion for the model described above are the Euler

equations which in integral conservation form are given by

∂

∂ t

∫∫∫
Ω

UdΩ+
∫∫

Γ=∂Ω

�F(U) .ndΓ = 0. (1)

Here it is assumed that Ω is a bounded polygon domain in R
3

with boundary ∂Ω, the vector U denotes the vector of conserva-

tive variables, that is U = [ρ ,ρu,ρv,ρw,ρE] and �F(U) ·n is the

normal component of the inviscid flux vector in Cartesian coor-

dinates

�F(U) .n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ û

ρ ûu+ pnx

ρ ûv+ pny

ρ ûw+ pnz

ρ ûH

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where û is the velocity normal to the surface Γ that is û = u ·n.

Furthermore H denotes the total enthalpy

H = E +
p

ρ
= h+

1

2
u.u, (3)

where E and h are the total energy and specific static enthalpy,

h = e+ p/ρ , respectively. E is defined as

E = e+
1

2
u.u, (4)

where e denotes the specific internal energy.

The unknowns for the system of equations are

{ρ,u,v,w,e, p,T}, To close the system of equations two

additional equations are needed, which are given by the thermo-

dynamics, namely ρ = ρ (p,T ) and h = h(p,T ). These relations

must be known for the liquid, vapor, and mixture phases. In

the following equations of state are given. The expressions for

liquid, vapor, and saturation densities are denoted by subscripts

l, v, and sat, respectively. The speed of sound within each state

is obtained from [2]

c2 =
ρ
(

∂h
∂T

)
p

ρ
(

∂ρ
∂ p

)
T

(
∂h
∂T

)
p
+
(

∂ρ
∂T

)
p

{
1−ρ

(
∂h
∂ p

)
T

} . (5)

LIQUID PHASE
Following by Saurel et al. [4], a modified Tait equation of

state is used which describes the liquid pressure in terms of den-

sity and temperature

pl (ρl ,Tl) = K0

[(
ρl

ρl,sat

)N

−1

]
+ psat , (6)

where for water K0 = 3.3× 108 Pa and N = 7.15 are constants.

An approximate caloric equation of state, given by

el (ρl ,Tl) = el (Tl) =Cvl (Tl −T0)+ el0, (7)

is adopted, which is based on [2] and provides a good approx-

imation. The constants in the above equation with their corre-

sponding values for water are defined as: Cvl = 4180J kg−1 K−1,

the specific heat at constant volume, T0 = 273.15K a reference

temperature, and el0 = 617.0J kg−1 a reference internal energy.
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VAPOR PHASE

The equations of state for the vapor phase are considered

based on a calorically perfect gas model. Therefore the corre-

sponding equation for the pressure is

pv (ρv,Tv) = ρvRTv (8)

and the caloric equation of state can be expressed as

ev (Tv) =Cvv (Tv −T0)+Lv (T0)+ el0, (9)

where the constants with their corresponding values for water va-

por are defined as: Lv (T0) = 2.3753×106 J kg−1 the latent heat

of vaporization, T0 = 273.15K the reference temperature, and

Cvv = 1410.8J kg−1 K−1 the specific heat at constant volume.

MIXTURE PHASE

For the mixture phase it is assumed that the liquid and vapor

phases are in mechanical and thermodynamic equilibrium. The

equation of state for pressure is considered by taking the mixture

pressure equal to the saturation pressure:

pl = pv = psat (T ) . (10)

The mixture density can be written as

ρ = αρv,sat (T )+(1−α)ρl,sat (T ) , (11)

and the caloric equation of state for the mixture is defined by

ρe = αρv,sat (T )ev(T )+(1−α)ρl,satel (T ) (12)

where α is the void fraction of the vapor. The saturation pa-

rameters are functions of temperature and are obtained via the

following curve fits [5].

ln

(
psat (T )

pc

)
=

Tc

T

7

∑
i=1

aiθ
âi , (13)

ρl,sat (T )

ρc

=
7

∑
i=1

biθ
b̂i , (14)

ln

(
ρv,sat (T )

ρc

)
=

7

∑
i=1

ciθ
ĉi , (15)

where ai, âi,bi, b̂i,ci, ĉi are constants (see [5] for the actual val-

ues). These functions are valid for ranges of temperature Tr ≤
T ≤ Tc, where Tr, and Tc are the triple point and critical point

temperatures, respectively. The values of the constants used in the

above expressions are Tc = 647.16K, pc = 22.12×106 Pa, ρc =
322.0kg m−3, Tr = 273.15K.

2 THERMODYNAMIC TABLES

The thermodynamic equations of state introduced in pre-

vious sections are highly nonlinear, especially for the mixture

phase. By profiling the code used by Koop et al. [3] it was found

that approximately 90% of the computational time was spent in

the iterative algorithms used for solving these thermodynamic

equations of states. To remove this bottleneck, thermodynamic

tables are proposed in this paper. Considering the equations of

state for the liquid, vapor, and mixture phases (equations (7),

(9), and (12)), it can be shown that these equations give a unique

relation between internal energy, temperature, density and pres-

sure. Equation (12) can be written as

e(ρ ,T ) =
α
(
ρv,satev −ρl,satel

)
+ρl,satel

ρ
(16)

For ρ , density of the mixture, the relation ρv,sat ≤ ρ ≤ ρl,sat holds.

Then from equation (16) we have e
(
ρl,sat ,T

)
= el,sat = el (T ),

and e(ρv,sat ,T ) = ev,sat = ev (T ). Hence, the caloric equations of

state for liquid, vapor, and mixture phases imply the following

inequality

el (T )≤ e(ρ,T )≤ ev (T ) (17)

Therefore it is concluded that the caloric equations of state in the

current study cover all the possible thermodynamic states con-

sistently. In other words, the thermodynamic state of the system

here is uniquely defined by the equations of state for liquid, va-

por, and mixture. Figure 1 may help to create a visual insight

into this expression. Due to uniqueness of thermodynamic equa-

tions of state, a thermodynamic table can be prepared covering

data for desired variables in all the liquid, vapor, and mixture

Figure 1. Sampling cross sections of plots for energy e versus tem-

perature 200 ≤ T ≤ 450(K) with constant density (2 × 10−6 ≤ ρ ≤

1100(kg m−3)). Green: saturation/vapor phase, red: saturation/liquid

phase, blue: mixture phase, yellow: ρ ≈ 2 × 10−4(kg m−3), brown:

ρ ≈ 4.8(kg m−3), cyan: ρ = 20(kg m−3)
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phases. Hence, a set of tables can be prepared containing data for

the dependent variables based on known data from the thermody-

namic pairings. In this study a set of tables has been prepared for

Ψ = {T, p,c,α} based on a pairing (ρ,e), where c, and α denote

the speed of sound and void fraction of vapor, respectively.

In a cavitating fluid the density range is varying from rather

low densities (vapor) to high densities (liquid). Moreover, con-

sidering figure 1 it is observed that the ranges of energy can also

possess very different values when comparing the parts with low

densities to the ones with high densities. Therefore, preparing a

single table for all the phases based on a thermodynamic pairing

(ρ,e) with equal steps in the entire table (which is needed for

an efficient look-up procedure) will be either inaccurate or very

inefficient and costly. To deal with this problem, each table for

the thermodynamic data was split into different regions with re-

spect to density and the corresponding energy ranges. In order to

keep consistency at the boundaries between regions of the table,

an overlapping part is considered between neighboring regions.

The interpolation in the overlapping part is carried out based on a

weighted averaging of the interpolated data from the overlapping

regions. Let indices m, and n represent two neighboring regions

of the table with an overlapping region denoted by index mn. The

density ranges are assumed as ρa
m ≤ ρm ≤ ρb

m, and ρa
n ≤ ρn ≤ ρb

n

for regions m and n, where superscripts a and b refer to the start-

ing and ending values of the domain, respectively. The thermo-

dynamic data in overlapping parts (ρa
n ≤ ρmn ≤ ρb

m) are obtained

by a weighted averaging of their interpolated values in the over-

lapping regions. Let the thermodynamic data in overlapping part

be Ψmn, then

Ψmn = βΨm +(1−β )Ψn (18)

where β is the averaging weight such that

β =
ρmn −ρb

m

ρa
n −ρb

m

(19)

Figure 2, represents regions of the prepared tables and the values

of the boundaries for each region. The overlapping parts between

each two neighboring regions are clear from the same figure. The

maximum relative error of interpolation for temperature is found

to be of the order O
(
10−4

)
in the whole domain.

3 DISCRETIZATION METHOD

The governing equations (equation (1)) are solved using

a cell-centered finite volume approach on multiblock structured

grids. Dividing the physical domain in a set of non-overlapping

non-deforming volumes Vi with boundary ∂Vi, and replacing the

inter-cell flux by a numerical flux H which is assumed to be con-

stant over face Si j, the discretized form of the equations for each

volume at time level tn can be written as

∂ Ūi

∂ t
=−ℜi, (20)

Figure 2. Regions of thermodynamic tables (6 regions), each region

is defined between two solid and dashed lines of the same color. Blue:

2× 10−6 ≤ ρ ≤ 0.001(kg m−3), black: 9× 10−4 ≤ ρ ≤ 0.1(kg m−3),

brown: 0.06 ≤ ρ � 4.8(kg m−3), violet: 4 ≤ ρ ≤ 20(kg m−3), cyan:

18 ≤ ρ ≤ 100(kg m−3), red: 90 ≤ ρ ≤ 1100(kg m−3). Green and red

lines represent saturation/vapor phase and saturation/liquid phase lines,

respectively.

where

Ūi =
1

|Vi|

∫∫∫
Vi

UdΩ (21)

and ℜi is the spatial residual

ℜi =
1

|Vi|

NS,i

∑
j=1

H
(
UL,UR,nij

)∣∣Si j

∣∣ . (22)

UL and UR are the variables on left and right sides of the vol-

ume’s face and are determined via the MUSCL reconstruction

technique [6]. The actual variables used for the reconstruction

are density, three components of velocity and internal energy, i.e.

{ρ,u,v,w,e}. This turned out to be a more stable reconstruc-

tion than using the conservative variables {ρ ,ρu,ρv,ρw,ρE},

because for the latter it cannot be guaranteed that the internal

energy is interpolated monotonically, which is crucial for the sta-

bility of the method.

For the numerical flux scheme H in equation (22) the

AUSM+-up for all speeds ( [7], [8]) is used. This flux scheme

requires a cut-off Mach number for the correct treatment of the

pressure in the low Mach number regime. The results shown in

section 4 are obtained by choosing a cut off value of 0.01.

The discretized form of the equations for each cell at time

level tn can be written as

∂ Ūi

∂ t
= ℜ(Un

i ) , (23)
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where ℜ(Un
i ) is the residual at time tn. The temporal discretiza-

tion is carried out using a third order accurate three-stage TVD

Runge-Kutta method ( [9]). Assuming Un
i the vector of variables

at time step n, then Un+1
i is obtained as shown below

U
(1)
i = Un

i +Δtℜ(Un
i ) (24)

U
(2)
i =

3

4
Un

i +
1

4
U
(1)
i +

1

4
Δtℜ(U

(1)
i ) (25)

Un+1
i =

1

3
Un

i +
2

3
U
(2)
i +

2

3
Δtℜ(U

(2)
i ) (26)

For cavitating flows the time step Δt must be taken very small

such that the details of the propagation of pressure waves are

resolved. Furthermore at each time step the CFL condition is

checked using the following definition,

C = Δt
max(|ui|+ ci, |ui|)

�i

. (27)

where C is the CFL number, and �i the characteristic length of the

cell.

4 RESULTS
The physical model in combination with the thermodynamic

models and the spatial discretization described above has been

tested for the unsteady 2D cavitating flow around a NACA0015

at 6o angle of attack. This is a standard test case, which has also

been computed by Sauer & Schnerr [10], Schnerr et al. [11] and

Koop [2]. In contrast to the references above tunnel walls have

not been included. Furthermore a non-reflecting boundary condi-

tion treatment has not yet been implemented at this stage of the

research. Instead a farfield boundary is used with the farfield lo-

cated 900 chord lengths away. A picture of the O-type grid used

is shown in figure 3. It consists of 256 cells around the airfoil

Figure 3. Detail of computational grid around the NACA0015 hydro-

foil. The grid consists of 256 cells around the airfoil and 72 cells normal

to the airfoil

U∞ p∞ T∞ ρ∞ c∞ σ

[m s−1] [105Pa] [K] [kg m−3] [m s−1] [−]

50 12.5 293 998.7 1540.0 1.0

Table 1. Conditions for the cavitating flow around the 2D NACA0015

hydrofoil at 6o angle of attack with chord length c = 0.13m.

and 72 cells normal to the airfoil. An accuracy study for the fully

wetted flow case, not included in this paper, indicated that this

resolution was sufficient to obtain grid converged values for the

lift coefficient. It has been assumed that this grid was also fine

enough for an accurate representation of the cavitation case, al-

though the authors realize that much more complicated physics is

involved when cavitation is occurs.

Following Koop [2] the free-stream velocity has been in-

creased to speed up the shedding process. However, the cavitation

number σ is kept the same compared to the original conditions,

hence also the free-stream pressure has been increased. A sum-

mary of the conditions can be found in table 1.

The initial solution for the unsteady cavitating flow is the

steady, fully wetted flow solution obtained using the modified

Tait equation, see section 1. In order to guarantee a monotonic

solution, the MinMod limiter is employed in the MUSCL recon-

struction, see section 3. A time step of 10−9 seconds was chosen,

such that all physical phenomena could be captured. A total of

16 million time steps were carried out, which took approximately

60 hours of computing time on 12 processors (Intel Xeon X5650

@ 2.67GHz).

Figure 4 shows the void fraction at six different time in-

stances, where the time between each of the figures is 0.0005

seconds. The shedding of the vapor cloud is clearly visible in

these figures. Furthermore, figures 4(d), 4(e) and 4(f) show the

formation of the attached sheed cavity and the appearance of the

reentrant jet, leading to the formation of the next vapor cloud.

When the vapor region, which contains vorticity, passes the

trailing edge of the airfoil, vorticity of opposite sign is generated

at the trailing edge, leading to a change in the force experienced

(a) t = t0 (b) t = t0 +0.0005s (c) t = t0 +0.0010s

(d) t = t0 +0.0020s (e) t = t0 +0.0025s (f) t = t0 +0.0030s

Figure 4. Void fractions at different time instances for the cavitating

flow over the NACA0015 hydrofoil at 6o angle of attack, σ = 1.0

.
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(a) t = t1 (b) t = t1 +10−5s (c) t = t1 +2 ·10−5s

(d) t = t1 +3 ·10−5s (e) t = t1 +4 ·10−5s (f) t = t1 +5 ·10−5s

Figure 5. Pressures at different time instances for the cavitating flow

over the NACA0015 hydrofoil at 6o angle of attack.

.

by the hydrofoil. The vorticity at the trailing edge is so intense

that the flow cavitates.

In figure 5 an image sequence of the pressure is depicted.

The time interval between these images is 10−5 seconds, i.e. 50

times smaller than the time interval shown in figure 4. It is clear

that the thermodynamic cavitation model used in this work is able

to predict the collapse of the vapor cloud and the corresponding

formation of a shock wave. As the time intervals between the

pressure pictures is only 10−5 seconds, this shows that this phe-

nomenon takes place at a much smaller time scale than the shed-

ding of the vapor clouds.

The region with high pressure (maximum pressure around

80 bar, at least in the used sampling rate of 5 microseconds) is

generated at the moment the shed vapor region collapses just up-

stream of the trailing edge. Following the collapse a shock wave

is formed which propagates outwards and rebounds from the hy-

drofoil’s upper surface as well as the upstream vapor region. The

shock front also curls around the trailing edge and propagates up-

stream along the hydrofoil’s lower surface.

5 CONCLUSIONS AND FUTURE WORK

For the equilibrium cavitation model developed by Saurel et

al. [4] and Schmidt et al. [1] thermodynamic tables for all three

phases, liquid, vapor and mixture, have been presented. The

analytical expressions for the thermodynamic closure relations,

which are computationally intensive [2], have been replaced by

tables containing the same information. By splitting the table

in subtables, with each equidistant spacing, an efficient look-up

procedure can be used, which hardly requires any computational

time. Consequently a speed-up of approximately a factor of 10

can be obtained compared to the original method of by Koop [2].

The robustness of the approach have been shown by simulat-

ing the cavitating flow around the 2D NACA0015 hydrofoil at 6o

angle of attack. In the results the formation of the sheet cavity of

the reentrant jet can clearly be seen as well as shedding and the

collapse of the vapor region.

Future work to be carried out is the extension of the method

to viscous flows using the LES approach for modeling effects

of turbulence and apply the method to vortex cavitation. Fur-

thermore, it is worthwhile to investigate whether implicit time

stepping techniques are useful for this type of application. In

the simulation shown in section 4 the time step is 10−9 seconds.

When the extension to viscous flow is made, the time step must be

reduced even further for stability reasons, especially when finer

grids are employed. On the other hand, a time step of approx-

imately 10−6 seconds may be sufficient to capture the physics

of pressure waves. If this is indeed the case, implicit time in-

tegration methods will be significantly more efficient than their

explicit counterparts.
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