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Preface

Welcome to the 19th CIRP Conference on Life Cycle Engineering hosted by the University of California, Berkeley! The Berkeley campus is
both the University of California’s flagship campus as well as a renowned research center that continues a legacy of innovation in engineering,
science, society, culture, and politics. We hope that this environment will lead to a productive discussion within our Life Cycle Engineering (LCE)
community.

The 19th CIRP LCE conference continues a strong tradition of scientific meetings in the areas of sustainability and engineering. The
theme for this year’s conference is Leveraging Technology for a Sustainable World. As resources have become increasingly scarce and the
environmental impact of business and industry has grown, it has become vital for engineers to provide leadership in developing those innovations
that will enable green businesses and industries that remain socially responsible and economically successful. It is our goal that this conference
will serve as an international forum for researchers to review and discuss the current developments, technology improvements, and future
research directions that will allow engineers to meet this societal need.

The conference includes over 100 technical papers that have been accepted after a rigorous peer review and revision process. The research
covers Businesses and Organizations, Case Studies, End of Life Management, Life Cycle Design, Machine Tool Technologies for Sustainability,
Manufacturing Processes, Manufacturing Systems, Methods and Tools for Sustainability, Social Sustainability, Supply Chain Management.
Keynote talks will be given by Dr. Julian Allwood of the University of Cambridge, Dr. Michael Overcash of Wichita State University, Mr. Richard
Helling of Dow Chemical, Ms. Karen Huber of Caterpillar, and Mr. Adam Hansel of DTL/Mori Seiki. We hope that these presentations and the
proceedings will serve as a valuable source of information on the state of LCE.

We would like to thank all of the participants for their contributions to the conference program and proceedings, as well as the organizing
team at the Laboratory for Manufacturing and Sustainability for their support. We would also like to extend our gratitude to the members of the
Scientific Committees for their continued support in helping to make this a successful conference!

The conference program would not be possible without the generous financial support of our industry sponsors who, at the time of this
writing, include: Samsung, Mori Seiki/DMG, Esprit by DP Technologies, and Dow Chemical. In addition our thanks go to the National Science
Foundation NSF, who provided financial support for graduate students and postdoctoral researchers attending the conference.

Thank you again for your support of the 19th CIRP LCE conference and we look forward to a great meeting!

David A. Dornfeld
Barbara S. Linke
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Abstract 
Life cycle innovation is achieved by continuous technology insertion in each stage of the life cycle. For capital assets, 
opportunities for innovation are produced through integration, collaboration and long term partnerships. Such opportunities 
arise in the acquisition phase, and the client must balance product, process and supply chain decisions. To understand 
what is missing in the innovation chain, we present a novel life cycle model relating products and capital assets. We then 
provide a framework that exposes links between the asset and maintenance architectures. We believe both to be 
fundamental contributions for reducing uncertainty, helping collaboration in complex projects.  
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1 INTRODUCTION 

Capital assets are complex socio-technical systems, which are 
engineered to provide the vast majority of services of industrialized 
society. These systems have long life cycles, and are known to 
create a particularly complex environment for managing innovation 
[1]. The amount of uncertainty involved makes the development  
and acquisition of capital assets particularly risky for the 
user/owner/maintainer. In such setting, collaboration and cooperation 
through long term partnerships can have a fundamental role in 
creating higher level innovations [2].  

There are many common characteristics between oil refineries, 
chemical plants, energy plants, distribution grids, telecom networks, 
aerospace, land and marine transportation systems. First, billions of 
dollars are invested in acquiring these systems every year, in almost 
every country and organization in the world. However, for complex 
systems initial investment can represent as little as 12 - 35% of the 
life cycle costs. Most of the expenditure (up to 75%) occurs during 
operations and support [3] [4]. Second, from acquisition and 
contracting to the end-of-life stage such systems have a life span of 
30+ years. Third, unlike typical products, which are mass produced, 
capital assets tend to be constructed under unique project and 
contractual circumstances. Many stakeholders and organizations are 
involved and managing relations instead of market transactions 
appears to be important. 

Innovations can appear in such a long life span of capital assets 
during the original design or re-design, construction (of the asset) or 
overhaul, or during the utilization and support stage –once the asset 
is (re)commissioned. Such innovations become process innovations 
for the operator/owner of the asset, and can have a significant impact 
on the performance of the client organization. 

To frame our research we present the following context. Large 
organizations or consortia typically construct complex capital assets. 
The client is a public or private organization. Assets are bought and 
then used to provide a public service, to manufacture products, or to 
perform a special function within a wider production system, such as 
a robot in a Flexible Manufacturing System. These assets are 
engineered by integrating components from a number of Original 
Equipment Manufacturers (OEMs). Therefore, we refer to the 
constructor as the systems integrator. After the development 

process, knowledge and information sharing is an important 
component in the transfer of product ownership. Therefore, 
collaboration through long term partnerships will have a prominent 
role in the effectiveness of the product when fielding assets within 
production organizations that use and maintain high value assets. 
Building long term partnerships can provide the feedback to boost 
innovation for the supplier. 

Our research focuses on reducing the uncertainty of such projects 
and we take the perspective of the asset manager. Specifically, we 
propose a framework that builds on the work by [5-7] to show the 
links between two fundamental architectures: (i) the architecture of a 
maintenance factory and (ii) the complex asset’s architecture. By 
exposing these links we are in a better position to understand how 
asset performance is influenced by design decisions and the 
maintenance environment.  

This paper is organized as follows. In section two, we review 
literature on innovations associated to particular life cycle stages. 
Next, in section three, we explain the transition of the product 
ownership and the challenges involved in asset innovations that 
provide process innovation for the client organization. Following 
section three, in section four we present the structure of our research 
and provide a framework to relate the architecture of the 
maintenance factory to the asset architecture. Finally, we present our 
summary and conclusions in section five. 

 
2 LITERATURE REVIEW 

Innovation provides changes that make organizations, products and 
processes adapt to changing markets, use profiles or operating 
environments. Organizations can compete because innovations help 
them to improve quality, reduce costs, improve delivery or increase 
flexibility. Innovation has been linked to organizational performance, 
for example in sales and market share [8].  

2.1 Types of Innovation 

Innovation research typically focuses on either manufacturing or 
service organizations. For manufacturing, four types of innovations 
are (i) product innovation, (ii) process innovation, (iii) marketing 
innovation and (iv) organizational innovation [8] [9]. In the service 
sector, innovations have been related to the service delivery process, 
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as this affects the types of service offerings and service quality. We 
continue with a brief discussion of the characteristics of each type of 
innovation. 

Product innovation 

Product innovations are improvements or new added value in terms of 
a product’s characteristics. This value can be in the form of new 
specs, new functions, new components and materials, improved ease 
of use or customer satisfaction, increased quality or lower cost [8].  

Process innovation  

Process innovations happen when new technologies eliminate non-
value adding activities, decrease variable costs, increase  output 
quality or improve delivery [8]. 

Marketing Innovation 

Market innovations produce change in any of the four key elements 
of placement, package, pricing or promotion. The marketing 
innovations translate in new package, appearance, shape and/or 
volume (not technical or functional), new placement (distribution 
channels), new promotion techniques or new pricing techniques [8]. 

Organizational Innovation 

These types of innovations can be in the form of new routines, new 
procedures, new management processes, new management 
systems, new organization structure, new information systems or 
new information sharing practices. Organizational innovations have 
the potential of driving change within a current way of working. This 
in turn affects an organization’s innovation capability, and has been 
found to be strongly related to the ability to turn innovation into 
performance [8]. 

Service innovation 

Innovations in services result in improved user friendliness, improved 
availability, reliability, affordance with respect to maintenance, safety, 
sustainability or in increased speed of service production or delivery 
[10]. 

2.2 Innovating in the Life Cycle 

The horizontal process of Figure 1 shows the generic life cycle of 
products. A typical product is designed, produced and is 
used/supported until it reaches its retirement age [11]. In contrast, 
the life cycle of capital assets, e.g. complex production equipment 
used by manufacturing organizations, can be extended by multiple 
re-design and overhaul/technology refresh (projects) stages. In 
practice, this happens recursively within the span of the capital  
 

asset’s life cycle. The concept of the asset life cycle is shown in the 
spiral model of Figure 1, which is inspired on the spiral model of 
software development by [12]. During the utilization stage, a 
manufacturing asset provides the required service to make other 
products. This relationship between the life cycles of capital assets 
and the generic life cycle model of products is also represented in  
Figure 1. In manufacturing operations, a single asset can 
accommodate a part of the production (stage) for several different 
products before it becomes obsolete. 

In a similar way as in manufacturing, capital assets are also a prime 
component of the processes of service industries. Therefore, 
innovations inserted through the purchase of capital assets become 
a driver of change in the service delivery process. An innovation 
survey conducted in 1996 found that about a quarter of all innovation 
investment of service companies was made on machines and 
physical resources [10].  

Life cycle innovation is achieved by continuous technology insertion 
in each stage of the asset life cycle. Figure 1 shows how the asset’s 
life cycle model accommodates all innovation types (numbers 1-4): 
Product innovations (1) are achieved in the design or re-design stage 
of capital assets. Process innovations (2) correspond to the 
construction or overhaul and technology-refresh programs. Marketing 
innovations (3) are inserted in the tendering process, when new 
contracting arrangements, delivery agreements and long term 
partnerships are made with the systems integrator and OEMs. 
Finally, service innovations (4) are inserted during the utilization and 
support stages. 

3 COOPERATION IN ASSET ACQUISITIONS 

Fielding a new asset is an investment in process innovation for the 
user/owner/maintainer. This makes the case of capital assets 
especially important. It affects all the client organizations that rely on 
production capacity for delivering their products and/or services. 
Asset downtime reduces production capacity, and downtime is 
influenced by design and by the fit of the asset to the support 
infrastructure. Overlooking small effects during design can have 
large consequences on asset performance.  

3.1 Historical Perspective 

In the past, industries designed high value capital products in  
teams, which involved the production organization (user), and the 
suppliers –to whom the construction was outsourced. Reliability, 
availability  and  costs were  in some cases  implicitly considered, 

 

Figure 1: Innovation in the life cycle of a capital asset (spiral), and the generic life cycle of a product manufactured by the asset. 
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together with technical innovation [13]. For large utilities of 
government and defense, a strong engineering-led vision was 
predominant in the market until the 1990s. Large state owned 
companies or government agencies had in-house capabilities to 
specify, design and sometimes even manufacture their own assets.  

Also in The Netherlands there was “a strong dominance for 
technology” [13]. Technical innovation was perhaps an additional 
objective. Traditionally, organizations specified the technical and 
design features, and evaluated detail design of capital assets. 
Construction was agreed-on with design freezes. Engineering 
offices, constructors and consultants were coordinated by the client, 
who had the technical expertise in fields such as civil, electrical or 
mechanical engineering. Maintenance mostly remained an in-house 
organization. In such arrangement, the role of the client was more or 
less that of a system integrator, as is portrayed in Figure 2a.  

Based on the functional/technical specifications, asset construction 
was contracted out. After detail design was complete, the technical 
knowledge was received from the subcontractors via the main 
contractor. This provided sufficient knowledge to compile the 
operating and maintenance instructions based on the documentation 
supplied. Moreover, this also enabled solutions to teething problems 
before fielding equipment [13].  

“Intensive collaboration with the industry at that time meant that a 
reliable business case could be drawn up. When implementing the 
project, minimal discussion was required in order to create 
understanding with all parties and collaborate in a goal-oriented 
manner. Engineers from all stakeholder organizations participated 
with systems integration teams during the design phase, and during 
manufacturing, acceptance inspections were performed at various 
factories. Active collaboration took place” [13]. 

3.2 Modern Challenges 

Industrial market business practices have changed in recent years. 
Globalization, deregulation of markets, behavior of the organization 
(core competence problem), and the evolution of information 
technologies have been found to be main drivers outside the control 
of the organization [14]. As shown in Figure 2b large public utilities 
evolved from a discipline focused client, to asset manager in the 
chain. One main contractor now performs the system integrator’s 
function, and the client has the role of monitoring the asset 
performance. In some cases, manufacturers are responsible for all 
services required by their solutions. The approach of the buying 
organization has been to develop contracting schemes that try to 
bind the supplier to the promised performance. As high value capital 
goods have become more complex, so have management practices 
and the operational environment.  

Today, lack of collaboration makes knowledge transfer difficult. 
Therefore, once the product ownership is transferred to the 

user/owner, innovation is compromised. In this context, collaboration 
between supplier organizations and support organizations can lead 
to product innovation that leaves room for continuous process 
innovation after transferring ownership of the asset. However, 
collaboration between suppliers of high value capital assets and 
support organizations is difficult. To achieve the shared goal of 
providing value to a third party client, a holistic approach to life cycle 
cost is needed (in place of purchase price), while providing a desired 
threshold for the availability of the capital goods. Some authors 
suggest that long term projects create a particularly complex context 
for managing innovation [1] and a meta-project vision has been 
suggested [15]. 

4 FRAMEWORK 

To find a solution to present challenges, our research targets the 
reduction of uncertainty in such long term projects. We structure our 
research as shown in Figure 3. High level innovations have the 
potential to boost company performance in terms of sales and 
market share. Cooperation is also associated with high level 
innovations. Collaborative and cooperative arrangements are found 
in long term engineering projects which have opened new markets, 
and are also relied-on to share responsibility and reduce 
uncertainties [2]. To help collaboration with the maintenance function 
many authors have suggested ways to integrate RAMS information 
in design [16] or developing support strategies [17]. Recently focus is 
on information exchange through information technologies or 
eMaintenance [18].  

High level innovation is characteristic of complexities in product and 
environment. This environment includes where the asset is fielded, 
as well as the support/operational environment of the organization. 
We present our research in the lower part of Figure 3, and begin by 
proposing a framework (this paper). Our framework intends to 
capture the relationship of the asset architecture and the 
maintenance factory architecture. Building on the framework, future 
research intends to help reduce uncertainty from the perspective of 
the support organization by modeling the relationship of asset design 
and the fitness for support.  

4.1 Coordinating Maintenance Decisions through the Asset 
Architecture 

Fixson [6] proposed a framework to link design decisions across 
three domains: (i) product, (ii) process and (iii) supply chain. We 
begin by building on this framework to better understand and position 
the elements of the maintenance stakeholder. The maintenance 
factory is the embodiment of the support environment. It is the shop 
floor of maintenance operations. 

> � ? � � � � � � � � � � � � � � � � � � � � � � � � 
 > � ? � � � � � � � � � � � � � � � � � � � � 

 

Figure 2: Evolution of the role of large utilities (now the client) in the acquisitions process.  
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Figure 3: Our research and the framework presented in this paper. 

Because of the present business practices, product domain 
decisions are no longer under the control of the maintenance 
organizations. The decisions regarding how the maintenance 
stakeholder will be affected by design are now the responsibility of 
the supplier. This is one of the greater challenges for cooperation, as 
these design decisions will affect the biggest share of the life cycle 
cost of an asset. Therefore, product domain decisions have to focus 
on organizing integrated product teams as well as system 
engineering and integration teams [19] to coordinate design 
decisions with maintenance service providers. Here, long term 
partnerships can play a fundamental role, and a complete design for 
maintenance methodology is required. 

Figure 4 shows a framework for coordinating design decisions in the 
product domain from the perspective of the maintenance 
stakeholder. Because of the span and nature of the operational 
phase of capital assets, meeting effectiveness objectives becomes 
very difficult if collaboration between the asset manager and the 
supplier is not present. At two extremes, situations that can appear in 
the coordination of design are (i) the supplier lacks knowledge of how 
the system performs in the field, and in turn, (ii) the maintainer has 
insufficient knowledge on architectural characteristics, which may 
otherwise help to find solutions to problems presented in the field. 

Decisions are made regarding the (maintenance) process domain at 
the strategic, tactical and operational levels. Strategic decisions are 
related to resource allocation, and can be summarized using, for 
example, the framework of Integrated Logistics Support (ILS) [3], e.g. 
packaging, handling, storage and transportation (PHST). Tactical 
decisions are made for operations planning, scheduling, and work 
design. On the operational level, the types of processes required to 
sustain the capabilities of an asset are prescribed by asset design –
the asset architecture. To a large extent, the operational process 
flows are also determined, because they depend on component 
interfaces and function-component allocation schemes. When 
fielding a new asset, strategic and tactical decisions on the process 
domain are fundamentally a result of the underlying architecture of 
the maintenance factory. Two exceptions can be: (i) when a 
completely new organization develops from scratch, or (ii) when the 
new asset is used as a driver for complete organizational change 
(organization innovation). 

Supply chain domain decisions affect the maintenance logistics 
organization. These decisions comprise assortment management, 
demand forecasting, parts returns forecasting, supply management, 
repair shop control, inventory control, spare parts ordering and 
deployment [20]. 

The framework in Figure 4 represents the problem of coordinating 
decisions when transferring asset ownership, when the asset enters 
the utilization/support stage. Fixson [6] proposed a similar framework 
building on the definition of modular-integral product architectures 
proposed by Ulrich [5]. Next, we extend these definitions in our 
framework to relate the asset architecture to the maintenance factory 
architecture. 

4.2 A Framework to Relate Two Architectures 

The information required for decision making in the support phase of 
capital assets is driven by both the asset architecture and the 
architecture of the maintenance factory. In Figure 4 we present a 
framework to relate both architectures. On the one hand, the 
fundamental elements of the asset architecture are (i) components, 
(ii) interfaces and (iii) functions. Firstly, components are material or 
software entities, which connect through an interface. Secondly, 
functions reflect the purpose of a (i) system, (ii) a system component, 
or (iii) an interface. Finally, interfaces reflect how the (sub) systems 
or components are coupled, and represent the boundaries between 
system functions. Interface reversibility in [6] is directly related to 
asset maintainability. 

Maintainable components of a system are those that can be subject 
to a maintenance operation. However, the end goal of the 
maintenance operation is to restore the system function, not the 
component. Therefore, the function-component allocation plays a 
fundamental role. When analyzing maintenance operations, the 
functions can be grouped in different ways; for example, critical 
functions, secondary functions, redundant functions, control 
functions, safety functions, protection functions.  

The factory architecture, on the other hand, can be characterized by 
(i) resources, (ii) flows and (iii) operations. We use this definition 
extending the work by [7]. This is, to the best of our knowledge, the 
description found in the literature that most closely relates to our 
research focus. Resources represent material and nonmaterial 
entities that are consumed by operations. These can be parts, 
facilities, tools and equipment, manpower, data and computer 
hardware.  

Operations represent conversion activities. An operation is a specific 
action to be performed by a resource entity, analogous to what a 
function is to a component –or an interface– in the asset architecture. 
Maintenance operations or actions can be described in a similar way 
as basic operations of a factory, such as milling, welding or 
assembling. Typical maintenance operations involve overhaul, 
replace, repair, inspect, test, lubricate, correct, clean, replenish, 
adjust, discard, check, remove, install, connect, disconnect or tighten. 

Flows are transitions that occur to resources and operations. These 
transitions relate both resources and operations with themselves and 
with each other. Flows represent the dynamics of a maintenance 
factory in the sense that they reflect information transfers or material 
movements. We therefore use the definition of resource flows and 
operation flows. Again, for analogy, we suggest that flows are to the 
factory architecture as interfaces to the product architecture.  
The environment links both architectural descriptions of the asset 
and the factory, and represents where the asset is fielded for 
operational use. We propose the framework in Figure 4 to better 
understand the consequences of design decisions on product, 
process and supply chain of the maintenance factory. Because our 
architectural descriptions are analogous between the (asset) product 
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Figure 4: A framework to relate the asset architecture and the maintenance factory architecture. 

and the factory, describing their relations can become less complicated. 
We show this in the next subsection by means of an example. 

4.3 A Working Example 

Using our framework, we present in Figure 5 an extension of Ulrich’s 
example of a trailer [5] using Fixson’s descriptions of functions, 
components and interfaces [6]. Trailer 1 (left) has modular-like function-
component allocation (FCA) styles. Trailer 2 (right) has functions, such 
as “support cargo”, which have integral-complex FCA schemes. Each 
layer is a decomposition of the product. Each vertical arrow represents 
the mapping of each decomposition to the next. The component 
decomposition represents component-interface relations. The functional 
decomposition represents function-interface relations. The operation  

 

Figure 5: Decompositions of an example product and the mappings 
of components, functions, maintenance operations and maintenance 

resources. 

decomposition represents operation-flow relations. Finally, the resource 
decomposition represents resources-flow relations. 

The mapping from function to component (F-C) is the function- 
component allocation scheme [6]. The operation-function (O-F) 
allocation mapping determines what activities are performed to restore 
which function. The resource-operation (R-O) allocation mapping 
determines which resource is consumed by which operation. 

In the modular-like architecture of Figure 5, maintenance operations 
can be triggered, for example, by functional failures. The failure 
cause of a functional failure is the mapping to the (lower) component 
decomposition. To correct the failure a maintenance activity is 
performed. Typical maintenance operations are compound activities. 
A typical higher level operation for systems that are repaired by 
replacement consists, for example, of a remove, install and tighten 
sequence. Let us assume the functional failure (FF) of the higher 
level function F3 which corresponds to “connect to vehicle” [6], shown 
in Figure 5. Therefore, the replace sequence (operation-flow) should 
be linked to the components that provide the function connect to 
vehicle. Therefore, at the architecture level the interfaces of 
component C14 should be reversed to repair the function F3. These 
are the interfaces between the hitch (C14) and the box (C13), and 
between the hitch (C14) and the fairing (C15). Resources such as 
manpower, tools, spares and equipment will be required (resource-
flow). The resource-operation allocation is the mapping required to 
estimate the impact on the support architecture. 

4.4 Significance 

Our framework extends existing work and considers a more specific 
match of maintenance factory operations and the product 
architecture. The product being a capital asset in our case of interest, 
and operations being particularly focused on the jobs required to 
maintain the asset. Asset supportability is the fit between both 
architectures, and is measured in terms of asset downtime –caused 
by queuing for the resources of the maintenance factory. Our 
modeling approach in future research will build on this framework.  
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5 SUMMARY 

In this article, we have contrasted the generic life cycle model of 
products and a spiral model for capital asset life cycle. This has 
helped to better visualize innovations in the life cycle of capital 
assets. We then placed emphasis on the transition of product 
ownership from the supplier of capital assets to the 
user/owner/maintainer. In such complex projects, sharing knowledge 
and collaboration between stakeholders appears to be beneficial. 
Collaboration is fundamental because it can streamline information 
sharing, builds trust and strengthens supplier partnerships. High-
level innovation can be achieved in such collaborative environments, 
and this can benefit the product, process and supply chain of the 
asset operator/maintainer.  

To help collaboration between suppliers and client organizations we 
target the reduction of uncertainty in complex engineering projects. 
For such purpose we have provided a framework that relates asset 
supportability to architectural design attributes of complex systems. 
Our framework positions the research on the links between (i) the 
maintenance factory architecture and (ii) the capital asset’s 
architecture. We will use this framework in future research to 
strengthen knowledge about the interfaces between design and the 
(support) maintenance operations. We believe this to be a way 
forward in making more transparent supplier-buyer relations and 
problem solving when fielding capital assets. 
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