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Abstract—To improve power figures of a dual ARM9 RISC
core architecture targeting low-power digital broadcasting
applications, the addition of a coarse-grain architecture is
considered. This paper introduces two of these structures:
PACT’s XPP technology and the Montium, developed by the
University of Twente, and presents the implementation of a
Fast Fourier Transform on 1920 complex samples on both of
them. Results in terms of processing time, resource utilization
and energy dissipation are described and compared to those we
have obtained on the RISC core. Then, as a conclusion, the
paper presents the next steps of the development and some
development issues.

[. INTRODUCTION

The DRM (Digital Radio Mondiale) standard [1], [2]
proposes the digitization of radio broadcasting in frequency
bands below 30 MHz. A System on Chip (SoC) called
DiMITRI was designed to show the feasibility of a DRM
reception solution and to obtain a first receiver prototype [3].
Analyses showed that most computation power is used in the
Coded Orthogonal Frequency Division Multiplexing
(COFDM) [4] demodulation to compute Fast Fourier
Transforms (FFT) and inverse transforms (IFFT) on complex
samples. These FFTs have to be computed on non power-of-
two numbers of samples, which is very uncommon in the
signal processing world. These algorithms already exist in
software on a 32-bit ARM9 RISC core and our objective is
to implement them on a more optimized structure which
would reduce their power dissipation with limited impact on
the silicon area.

More and more, digital systems demand the combination
of high performance and low power dissipation to implement
signal processing algorithms. The usual DSP and RISC
implementations are very flexible at the expense of power
dissipation (for a given algorithm). On the other hand, hard-
wired structures like ASICs lack flexibility and evolution
capabilities but display the best results in terms of
performance and power dissipation. Reconfigurable
structures claim to bridge the gap between programmable
processors and hard-wired structures through an average
balance between flexibility and efficiency (which we define
as the computing performance divided by the power
dissipation). In this paper, the implementation of an
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FFT-1920 on two coarse-grain reconfigurable architectures
is presented, as well as the performances obtained in terms of
processing time, silicon area and power consumption.

II. COARSE-GRAIN RECONFIGURABLE ARCHITECTURES

Reconfigurable architectures may be split into two
families: fine-grain architectures which manipulate bits
(FPGASs) and coarse-grain architectures based on function
units such as multipliers or ALUs which handle words
(multi-bit data). Coarse-grain architectures have been
developed recently to overcome some of the limitations of
fine-grain reconfigurable tiles such as power dissipation,
routing complexity, configuration memory and configuration
time. Two different coarse-grain structures have been studied
and are presented below.

A. PACT XPP Technology

The eXtreme Processing Platform (XPP) is a run-time
coarse-grain reconfigurable architecture based on a 2D array
of computing elements, internal memories and a circuit
switch-like communication network [5]. The XPP64-A1 chip
can be used as a standalone processor, or as a coprocessor
next to a microcontroller [6]. Its structure is presented in
figure 1. The XPP64-Al is built from an 8x8 array of 24-bit
ALU-PAEs (Arithmetic and Logic Unit - Processing Array
Elements) and two rows of 512 24-bit words RAM-PAEs on
the sides. In each configuration, a PAE performs one
dedicated operation. The array is coupled with a
Configuration Manager responsible for the run-time
management of configurations. ALUs do not have
instruction sequencers and caches, since the operations to be
performed are statically configured during the lifetime of a
configuration.

The PAE objects are integrated within a network-on-
chip, providing point-to-point connections with data
handshaking. The dataflow structure implies that an
operation is performed as soon as all necessary input values
are available and the previous output has been consumed by
the downstream operation. The XPP is supported by a
dedicated development suite. The architecture is
programmed using the low level Native Mapping Language
(NML). For our trials, we have used a board including an
XPP64-A1, a microcontroller, some external memories, etc.
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Figure 1. The XPP64-Al structure made of ALU-PAEs and RAM-PAEs

B.  Montium Reconfigurable Tile Processor

The Montium was developed by the University of
Twente [7]. It consists of a Communication and
Configuration Unit (CCU) and the reconfigurable Tile
Processor (TP) which is shown in the upper part of figure 2.
The TP bears a resemblance with a Very Long Instruction
Words (VLIW) processor, but its control structure is quite
different to minimize the energy consumption.
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Figure 2. The Montium processing tile with the Montium TP and the CCU

The TP is the computing part that can be configured to
implement a particular algorithm. It consists of five 16-bit
ALUs which can exploit spatial concurrency and 10 local
SRAMs containing 1024 16-bit words each. A
reconfigurable Address Generation Unit accompanies each
memory. A relatively simple sequencer controls the entire
array, by selecting configuration instructions that are stored
in the decoders. An ASIC synthesis of the Montium TP was

performed in 0.13 pm technology, giving a maximal clock
frequency of 40 to 150 MHz (depending on the algorithm).

III. THE DRM WAVEFORM

The DRM (Digital Radio Mondiale) standard [1],[2] has
been adopted by the ETSI at a European level and by the
IEC (International Electrotechnical Committee) at a
worldwide level. DRM offers digital radio broadcasting in
three frequency bands up to 30 MHz. It brings important
improvements compared to existing analogue broadcasting
in the above mentioned frequency bands: stereophonic
sound, FM-like sound quality, data transmission, etc. A
transmitter can cover a region, a country or even reach any
point in the world.

Our focus is the receiver side, and more specifically the
COFDM demodulation. The market demands will require
low-power for battery-powered mobile receivers. The FFTs
of the COFDM demodulation have proved to occupy most
resources of the ARM9 processor on the DiMITRI chip,
which translates into excessive power dissipation. Therefore,
new structures are explored to decrease the power
consumption. The first idea is naturally to implement a hard-
wired module to compute the FFTs. Unfortunately, in our
case there are 18 types of FFTs and IFFTs', which makes a
hard-wired implementation impracticable from a design
complexity and silicon area viewpoint. A more flexible
structure, like a coarse-grain reconfigurable one, could offer
a better balance between flexibility and efficiency for our
application domain and would also allow to share the same
silicon for all these types of FFTs and IFFTs.

IV. IMPLEMENTATION OF AN FFT-1920

The Discrete Fourier Transform (DFT) transforms a
signal from the time domain to the frequency domain. It is
defined by the following relation between N complex inputs
x(n) and N complex outputs X(k) [8]:

N-l
X(k)y=Y x(m Wy, k=0,1,..,

n=0
27m.nk

where Wk e N
circle also called “twiddle factors”.
formula requires O(N?) operations.

N-1 (1)

are primitive roots of the unit
Directly evaluating this

The Fast Fourier Transform (FFT) is a set of algorithms
that improve the efficiency of the DFT. As mentioned in the
introduction, our objective is to implement an FFT on
N=1920 16-bit complex samples on the XPP64-A1l and the
Montium. This particular case of FFT is linked with the
characteristics of some processing which are performed on
DRM frames. This FFT was chosen because it is the biggest
non power-of-two FFT used in our application. If we manage
to implement it efficiently, we expect that we will also be
able to implement all the other FFTs.

! based on a breakdown by five different prime factors instead of the usual
breakdown by the 2 prime radix (for power-of-two FFTs).



Two different algorithms have been used to split up the
FFT: the “divide and conquer approach” [9], and in
particular radix-2 and radix-4 algorithms [10], and the Prime
Factor Algorithm (PFA) [11]. The PFA turns the original
transform into sets of small DFTs, the lengths of which have
to be co-prime. It makes use of Good’s mapping to convert
the 1D N=N;'N, DFT into a 2D DFT in a row-column
fashion. In our case of N=1920, we have chosen N;=128 and
N,=15 and split up the FFT-1920 into 15 FFT-128 followed
by 128 FFT-15. As 128 is a power of two, the FFT-128 can
be performed using radix-2 and/or radix-4 algorithms that
require O(N log, N) operations.

A. Implementation of the FFT-1920 on the XPP

The real and the imaginary parts of the 1920 input values
are separated and sent to the XPP array by stream transfers
through two input ports. The intermediate values are stored
in two external RAMs in normal order and are read in correct
order using the addresses stored in pre-initialized FIFOs.
Figure 3 outlines the implementation of the FFT-1920 using
the PFA. The 128 FFT-15 are also computed using the PFA
(five FFT-3 followed by three FFT-5) which implies the use
of very efficient algorithms for computing both the FFT-3
and the FFT-5 [12]. The same flow as in figure 3 is used, but
with an FFT-3 and an FFT-5. The implementation of the
FFT-128 is decomposed into the computation of two FFT-64
(with a radix-4 algorithm) followed by 64 FFT-2.
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Figure 3. General view of the FFT-1920 using the PFA

First trials to implement the FFT on the XPP were done
using the beta version of the C compiler provided by PACT.
Unfortunately this C compiler was not efficient enough: the
FFT-1920 occupied more than 100% of the tiles and would
have had to be mapped in several consecutive configurations
of the array. Therefore, the implementation went on in NML.

B.  Implementation of the FFT-1920 on the Montium

Like for the XPP, the implementation of the FFT-1920
on the Montium uses the PFA.

The implementation of the FFT-15 differs from the
implementation on the XPP. It could have been computed
more efficiently by applying the PFA, but the data
reorganization required by each FFT-15 would have
consumed a large amount of resources of the Montium.
Therefore, we have decided to implement it by optimizing
the general DFT formula (1) rewritten with N = 15. The real

and imaginary parts of the twiddle factors for NV odd have the
following properties:
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The butterfly structure of the Montium can be used to
calculate X(k) and X(15—k) concurrently. They are computed
in pairs, using four ALUs. One such pair requires 7 clock
cycles and thus 49 clock cycles are needed for all seven
pairs. X(0) is calculated in parallel (on the fifth ALU) by
adding all the inputs together. In this way, the total number
of multiplications can be reduced by a factor 4 compared to
the normal DFT-15. After the computations of the FFT-15,
all the results are stored back in the memory in an order that
facilitates the FFT-128 computations. A total of 7045 clock
cycles is needed for all 128 FFT-15 calculations.

Afterwards, the 15 FFT-128 are executed on 15 blocks of
data in the memory. Each FFT-128 is computed with a radix-
2 algorithm, which also differs from the mixed-radix
implementation used on the XPP. The details of the radix-2
FFT mapping to the Montium are shown in [7]. The results
of the FFT-128 are stored back in the memory waiting to be
read by the CCU. In contrast to the XPP implementation no
external memory is needed. The size of the configuration file
for the FFT-1920 is 2.6 kbytes. When the configuration is
performed at 100 MHz, it can be loaded in 13 ps.

V. RESULTS

Table I shows the implementation results of an FFT-1920
on 16-bit complex data on the XPP. The algorithm is
executed on the array in one single configuration. The
implementation was verified by comparison with the results
of FFT-1920 computations made in Scilab on identical input
data. The output values are 24-bit values. The estimated
power consumption for one 24-bit PAE is approx. 0.09
mW/MHz when it is heavily computing. Table I also gives
the results we have obtained for an optimised
implementation of the same FFT on a 32-bit ARM9 RISC
processor. Its power consumption, in 0.13 pm technology, is
0.25 mW/MHz [13].

2 Critical parts have been coded in assembly language.



The use of the XPP architecture decreases the calculation
time in cycles by a factor 36 and the energy consumed by 6.
This architecture, originally built for intensive and regular
operations (e.g. DCT, video processing) is flexible enough to
compute a non-regular FFT such as the FFT-1920. The main
drawback is a very large silicon area® which is not affordable
for integration as an IP into the SoC we target”.

TABLE I. COMPARISON OF RESOURCES AND PERFORMANCE FOR THE
IMPLEMENTATION OF ONE FFT-1920

Computing Structures
ARMY XPP64-A1 Montium

CMOS Process (um) 0.13 0.13 0.13
Architecture (# bits) 32 24 16
Clock frequency (MHz) 96 64 100
Processing time (# cycles) 476 000 13 248 14 033
Processing time (ps) 4958 207 140
Resource utilization (mm?) 4.7 35.1 2.0
Power for one FFT® (uJ) 119.0 19.2 8.2

In [7], the power consumption of the Montium, in
0.13 pm technology, is estimated at 0.577 mW/MHz. The
results of the FFT-1920 implementation on the Montium are
also listed in Table I. These results show a saving of a factor
35 in terms of processing time, and 14 in terms of power
consumption compared to the RISC implementation, and a
smaller area. Although its datapath is only 16-bit wide, the
Montium architecture seems to be the most promising to
decrease the power dissipation and speed wup the
computations of the COFDM demodulation. These results
may be explained by the fact that the micro-sequenced
structure of the Montium is more suitable to algorithms that
require lots of local sequencing (e.g. read and write address
generators for accessing the RAMs).

The authors have found no documented ASIC
implementation of non-power-of-two FFTs. [15] presents a
high-speed FFT-1872 implemented on an FPGA®.

VI. CONCLUSION

The evaluation of the coarse-grain reconfigurable
architectures has taught us that, like for the programmable
processors, the choice of a coarse-grain reconfigurable
structure must be adapted to the targeted application to get
the best performance at the lowest cost (in terms of power
consumption and silicon utilization). In the case of the XPP
processor, it is well adapted to intensive processing on large
sets of data such as DCT computation, MPEG4

* Many ALU PAEs are actually used for local micro-sequencers required
by the FFT-1920 algorithm.

* Future versions of the XPP structure are, however, planned to improve the
power and silicon utilization figures.

* Power figures on ARM9 and XPP do not include the external RAM:s.

® This implementation favors computation speed at the expense of silicon
occupation. Further comparisons are difficult since we deliberately favored
flexible solutions able to compute 18 types of FFT on a common hardware.

decompression but a micro-sequenced structure like the
Montium looks more promising for processing that are
somehow less intensive but more complex to control. This
argument was confirmed by the porting of the FFT-1920,
which can be considered as a complex computation but does
not require the full computation power provided by the XPP
architecture.

Within the 4S project [14], our next steps will be the
integration of the DRM application on a platform which
comprises Montium processors to handle COFDM
processing, an ARM9 core and some hard-wired signal
processing accelerators.

The development time has not been taken into account in
our experiments. However, the effort to port algorithms on
coarse-grain reconfigurable structures is considerable when
using the ad-hoc low-level languages (NML, pscudo-
assembler, etc.). The availability and the efficiency of
compilers to quickly port algorithms described in C (or some
other high level language) will be a key issue for the
adoption of these structures in industry.
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