
Reconfigurable Architectures for Adaptable Mobile
Systems
(Invited Paper)

Gerard J.M. Smit, Gerard K. Rauwerda
University of Twente, department EEMCS

P.O. Box 217, 7500 AE Enschede, the Netherlands
g.j.m.smit@utwente.nl

Abstract— Mobile wireless terminals tend to become
multi-mode wireless communication devices. Furthermore,
these devices become adaptive. Heterogeneous reconfig-
urable hardware provides the flexibility, performance and
efficiency to enable the implementation of these devices.
The implementation of a WCDMA and an OFDM receiver
in the same coarse-grained reconfigurable MONTIUM pro-
cessor is discussed.

Index Terms— Heterogeneous reconfigurable hardware,
Software defined radio, SoC, MONTIUM , Wideband
CDMA, OFDM

I. INTRODUCTION

Future wireless communications systems tend to be-
come multi-mode, multi-functional devices. Adaptivity
becomes ever more important. These systems have to
adapt to changing environmental conditions (e.g. more
or less users in a cell or varying noise figures due to
reflections or user movements) as well as to changing
user demands (bandwidth, traffic patterns and QoS).
When the system can adapt – at run-time – to the
environment, significant savings in computational costs
can be obtained [1], [2]. Furthermore, the hardware
architectures have to be extremely efficient as these are
used in battery-operated terminals and cost effective as
they are used in consumer products.

Heterogeneous reconfigurable hardware offers the nec-
essary flexibility for performing multiple wireless com-
munication standards and can achieve the performance
required by the wireless standards. Furthermore, the
combination of mixed-grained reconfigurable hardware
enables energy-efficient implementations of the wire-
less standards. Much work has been done on Software
Defined Radio (SDR) in the SDR forum context [3].
However this forum mainly focuses on general-purpose
processors and they do not concentrate on reconfigurable
platforms and energy-efficiency.

As already stated in the introduction one of the
main reasons for introducing reconfigurable hardware
in a wireless terminal is to support multiple wireless
communication standards. The support of multiple wire-
less communication standards introduces a first level of
adaptivity in the wireless terminal because the terminal
can switch between wireless communication standards.
For example when packet data transport is performed
over UMTS and a WLAN hotspot becomes available the
terminal can switch from UMTS to a WLAN standard.
This is referred to asstandards leveladaptivity. Stan-
dards level adaptivity has an impact on the digital signal
processing in the wireless terminal because the wireless
communication standard defines the DSP functions that
have to be performed to implement the standard.

Although a wireless communication standard usually
defines the DSP functions which have to be performed
to implement the standard, it usually does not define
the algorithms that have to be used to implement these
functions. So the communication system can therefore
‘adapt the algorithms’ that are used to implement a
DSP function. ‘Adapt the algorithms’ means that the
communication system selects an algorithm from a set
of algorithms that implement the same DSP function.
Therefore this second level of adaptivity is referred to
asalgorithm-selection leveladaptivity.

For a specific algorithm, there are also opportuni-
ties for adaptivity by changing parameters of the algo-
rithm. This third level of adaptivity is calledalgorithm-
parameter leveladaptivity [4].

An adaptive wireless terminal only makes sense when
it better suits the needs of a user at an acceptable
complexity and efficiency compared to a traditional
non-adaptive terminal. The standards level of adaptivity
allows the terminal to adapt the communication standard
that is used to the Quality of Service (QoS) require-
ments and the communication environment. Here the

term communication environmentis used to indicate the
available wireless communication standards and wireless
channel conditions at a certain location. The algorithm-
selection level of adaptivity allows the terminal to select
the algorithms that satisfy the QoS requirements in the
given communication environment in the most efficient
manner. The algorithm-parameter level of adaptivity al-
lows the terminal to do the same with the parameters of
a specific algorithm. So a reconfigurable and adaptive
terminal is able to track the QoS requirements and
communication environment on a finer grained scale than
a traditional non-adaptive terminal.

The complexity of an adaptive terminal is determined
by the complexity of the standards that it has to support,
the complexity of the algorithms that are used to imple-
ment the DSP functions of the standard and the com-
plexity of the measurement and control overhead that is
required to make the terminal adaptive. The complexity
of the algorithms in the set of algorithms that is used for
algorithm-selection level adaptivity should therefore be
centered around the complexity of the algorithm that is
used in a traditional non-adaptive terminal. To minimize
the overhead of measuring QoS and channel conditions,
measurements that are already required by the wireless
communication standard should be (re)used wherever
possible. The complexity of any additional measurement
algorithms should be kept low. The same is true for
control algorithms.

In this paper we discuss the implementation of wire-
less communication systems in heterogeneous reconfig-
urable hardware. The implementation of a flexible RAKE
receiver, used for UMTS communications, and the im-
plementation of an OFDM receiver, used in HiperLAN/2,
is studied to show the feasibility of implementing multi-
mode communication systems using reconfigurable hard-
ware.

II. RELATED WORK

So far most algorithmic level research on reconfig-
urability in UMTS, as for example in theMuMoR [5]
project, has focussed on multi-mode reconfigurability
to enable Software Defined Radios (SDRs) supporting
multiple communication standards. TheEASYproject [6]
aims at developing a power/cost efficient System-on-
Chip (SoC) implementation of the HiperLAN/2 standard.
In theAdaptive Wireless Networking (AWGN)project [4],
however, reconfigurability will be used to allow the com-
munication system to adapt to changing environmental
conditions.

Both academy and industry show interest in coarse-
grained reconfigurable architectures. The Pleiades
project at UC Berkeley focuses on an architectural tem-
plate for ultra low-power high-performance multimedia
computing [7]. In the Pleiades architecture template a
general-purpose microprocessor is surrounded by a het-
erogeneous array of autonomous, special-purpose satel-
lite processors. The Pleiades SoC design methodology
assumes a (very) specific algorithm domain. The extreme
processor platform (XPP) of PACT is based on clusters
of coarse-grained processing array elements (PAEs) [8].
Actual PAEs are tailored to the algorithm domain of a
particular XPP processor. Silicon Hive [9] offers coarse-
grained reconfigurable block accelerators (e.g. Avispa
and Moustique) and stream accelerators (e.g. Bresca)
for high performance and low power applications. The
architecture consists of VLIW-like datapath elements.

III. R ECONFIGURABLE HETEROGENEOUS

ARCHITECTURE

Heterogeneous reconfigurable systems might become
the future of mobile hardware. The basic idea behind
the use of heterogeneous reconfigurable hardware is
that one can match the granularity of the DSP algo-
rithms with the granularity of the hardware. For instance
some algorithms perform operations best on bit-level
while other perform best on word-level. Four types
of processing elements can be distinguished:general-
purposeprocessor,fine-grained reconfigurablehardware,
coarse-grained reconfigurablehardware anddedicated
hardware.

A. The Chameleon System-on-Chip

GPP

GPP

FPGA

FPGA

FPGA

FPGA

ASIC

ASIC

Montium

DSP

DSP

Montium

Montium

Montium

Montium

Montium

Fig. 1. The Chameleon SoC.

We propose a System-on-Chip (SoC), which consists
of the above mentioned processing elements. Figure 1
shows the SoC, which we call the Chameleon SoC.
The SoC contains a tiled architecture, where tiles can
be processing elements of different granularities. The
tiles in the SoC are interconnected by a Network-on-
Chip (NoC). Both the SoC and NoC are dynamically
reconfigurable, which means that the programs (running

on the reconfigurable processing elements) as well as the
communication links between the processing elements
are defined at run-time [10].

The Chameleon SoC contains several general-purpose
tiles, i.e. GPP and DSP. The FPGA tiles in the SoC
represent fine-grained processing elements. The coarse-
grained processing elements in the Chameleon SoC are
implemented by MONTIUM tile processors. Some tiles in
the SoC are implemented as ASIC, which have dedicated
functionality.

B. The Montium Tile Processor

M01 M02

Communication and Configuration Unit

M03 M04 M05 M06 M07 M08 M09 M10

ALU5

A C DB

W

OUT2 OUT1

ALU4 E

A C DB

W

OUT2 OUT1

ALU3 E

A C DB

W

OUT2 OUT1

ALU2 E

A C DB

W

OUT2 OUT1

ALU1 E

A C DB

OUT2 OUT1

Sequencer

Memory
decoder

Crossbar
decoder

Register
decoder

ALU
decoder

Fig. 2. The MONTIUM Tile Processor.

The MONTIUM is an example of a coarse-grained
reconfigurable processor. The MONTIUM [11], [10] tar-
gets the 16-bit digital signal processing (DSP) algorithm
domain. A single MONTIUM processing tile is depicted
in Figure 2. At first glance the MONTIUM architecture
bears a resemblance to a VLIW processor. However,
the control structure of the MONTIUM is very different.
For (energy-) efficiency it is imperative to minimize the
control overhead. This can be accomplished by statically
scheduling instructions as much as possible at compile
time.

The lower part of Figure 2 shows the Communica-
tion and Configuration Unit (CCU) and the upper part
shows the reconfigurable Tile Processor (TP). The CCU
implements the interface for off-tile communication. The
definition of the off-tile interface depends on the NoC
technology that is used in the SoC. The CCU enables
the MONTIUM to run in ’streaming’ as well as in ’block’

mode. In ’streaming’ mode the CCU and the MONTIUM

run in parallel (communication and computation overlap
in time). In ’block’ mode the CCU first reads a block
of data, then starts the MONTIUM, and finally after
completion of the MONTIUM the CCU sends the results
to the next tile.

The TP is the computing part that can be configured
to implement a particular algorithm. Figure 2 reveals
that the hardware organization of the tile processor is
very regular. The five identical ALUs (ALU1· · · ALU5)
in a tile can exploit spatial concurrency to enhance
performance. This parallelism demands a very high
memory bandwidth, which is obtained by having 10
local memories (M01· · · M10) in parallel. The small
local memories are also motivated by the locality of
reference principle. The data path has a width of 16-bits
and the ALUs support both signed integer and signed
fixed-point arithmetic. The ALU input registers provide
an even more local level of storage. Locality of reference
is one of the guiding principles applied to obtain energy-
efficiency in the MONTIUM. A vertical segment that
contains one ALU together with its associated input
register files, a part of the interconnect and two local
memories is called a Processing Part (PP). The five
Processing Parts together are called the Processing Part
Array (PPA). A relatively simple sequencer controls
the entire PPA. The sequencer selects configurable PPA
instructions that are stored in the decoders of Figure 2.

Each local SRAM is 16-bit wide and has a depth
of 512 positions, which adds up to a storage capacity
of 8 Kbit per local memory. A reconfigurable Address
Generation Unit (AGU) accompanies each memory. It is
also possible to use the memory as a lookup table for
complicated functions that cannot be calculated using
an ALU, such as sine or division (with one constant).
A memory can be used for both integer and fixed-point
lookups.

Figure 3 shows the ALU that is used in the MONTIUM.
A single ALU has four 16-bit inputs. Each input has
a private input register file that can store up to four
operands. The input register file cannot be bypassed,
i.e. an operand is always read from an input register.
Input registers can be written by various sources via a
flexible interconnect. An ALU has two 16-bit outputs,
which are connected to the interconnect. The ALU is
entirely combinational and consequentially there are no
pipeline registers within the ALU. Neighbouring ALUs
can also communicate directly on level 2. The West-
output of an ALU connects to the East-input of the ALU
neighbouring on the left. The East-West connection does

not introduce a delay or pipeline, as it is not registered.

function
unit 2

function
unit 1

function
unit 3

function
unit 4

multiplier

adder

in_A in_B in_C in_D

out_2 out_1

in_East

out_West

level 1

level 2

Fig. 3. The MONTIUM ALU.

IV. A PPLICATION DOMAIN

A. Software Defined Radio

Software Defined Radio (SDR) denotes wireless com-
munication systems that are characterized by an analog
front-end followed by a programmable, digital baseband
processing part. In the analog front-end, the radio signal
is received, filtered and amplified. The filtered, amplified
radio signal is converted to digital samples, which are
the input of the digital baseband processing part. A
programmable, digital baseband processing part enables
reprogramming of the functional modules that have to
be performed, like modulation/demodulation techniques.

A complete hardware based radio system (e.g. an
ASIC solution) has limited utility since parameters for
each of the functional modules are fixed. A radio system
built using SDR technology extends the utility of the
system to a wide range of applications using different
link-layer protocols and modulation/demodulation tech-
niques. SDR provides an efficient and relatively inexpen-
sive solution to the design of multi-mode, multi-band,
multi-functional wireless devices that can be enhanced
using software upgrades only.

SDR-enabled devices (i.e. mobile terminals) can be
dynamically programmed to reconfigure the characteris-
tics of the device. So, the same hardware can be adapted
to perform different functions at different times.

Another advantage of the SDR template is the fact that
real-adaptive systems can be implemented. Traditional
algorithms in wireless communications are rather static.
The recent emergence of new applications that require
sophisticated adaptive, dynamical algorithms based on
signal and channel statistics to achieve optimum perfor-
mance has drawn renewed attention to run-time recon-
figurability [12].

B. Wideband CDMA receiver

The Universal Mobile Telecommunications System
(UMTS) standard, defined by ETSI, is an example of

a Third Generation (3G) mobile communication system.
The communication system has an air interface that
is based on Code Division Multiple Access (CDMA).
We will investigate the possibilities of implementing
the DSP functionality of a UMTS receiver in recon-
figurable hardware. We only focus on the downlink of
the UMTS receiver at the mobile terminal in the FDD
mode, the most relevant UMTS properties are shown in
Table I [13].

TABLE I

DOWNLINK UMTS PROPERTIES.

chip rate 3.84 Mega chips/s
scrambling code length 38400 chips
spreading factor (SF) 4 – 512
output symbol rate 7.5 – 960 kilo symbols/s
modulation QPSK, 16-QAM

Figure 4 shows the baseband processing, performed
in the W-CDMA receiver. Since multi-path fading is a
common phenomenon in wireless communication sys-
tems, the receiver has to combat for the effects of
multi-path fading. In the UMTS communication system
the signals from the strongest multi-paths are received
individually. This means that the path searcher of the
receiver searches for the strongest received paths and
estimates the path-delays. Whenever the delay of an
individual path is known, the receiver will perform
the de-scrambling and de-spreading operations on the
delayed signal. The operations of de-scrambling and
de-spreading are also denoted as a RAKE finger. In
the Maximal Ratio Combiner (MRC) the received soft-
values of the individual RAKE fingers are combined and
individually weighted to provide optimal Signal-to-Noise
Ratio (SNR). The weighting factors of the individual
RAKE fingers are determined by a channel estimator.
The RAKE fingers in co-operation with the MRC are
called RAKE receiver.

Pulse

shaping
De-mapper

De-scrambling De-spreading

De-scrambling De-spreading

De-scrambling De-spreading

De-scrambling De-spreading

M
a
x
im

a
l
R

a
tio

C
o
m

b
in

in
g

samples bitssymbols
Pulse

shaping
De-mapper

De-scrambling De-spreading

De-scrambling De-spreading

De-scrambling De-spreading

De-scrambling De-spreading

M
a
x
im

a
l
R

a
tio

C
o
m

b
in

in
g

Pulse

shaping
De-mapper

De-scrambling De-spreading

De-scrambling De-spreading

De-scrambling De-spreading

De-scrambling De-spreading

M
a
x
im

a
l
R

a
tio

C
o
m

b
in

in
g

samples bitssymbols

Fig. 4. W-CDMA baseband functions in the receiver.

C. OFDM receiver

HiperLAN/2 is a wireless local area network (WLAN)
access technology and is similar to the IEEE 802.11a
WLAN standard. HiperLAN/2 operates in the 5 GHz
frequency band and makes use of orthogonal frequency
division multiplexing (OFDM) to transmit the analogue
signals. The bit rate of HiperLAN/2 at the physical level
depends on the modulation type and is either 12, 24, 48
or 72 Mbit/s.

The basic idea of OFDM is to transmit high data rate
information by dividing the data into several parallel bit
streams, and let each one of these bit streams modulate
a separate subcarrier. A HiperLAN/2 channel contains
52 subcarriers and has a channel spacing of 20 MHz. 48
subcarriers carry actual data and 4 carry pilots.

Prefix
removal

Freq. offset
correction

Inverse
OFDM

HiperLAN/2 receiver

Equalization
De-

mapping
Phase offset
correction

Fig. 5. HiperLAN/2 baseband functions in the receiver.

The receiver not only performs the inverse operation
of the transmitter, it also has to correct for all the
distortions that are introduced in the wireless channel.
Figure 5 depicts a model of the HiperLAN/2 receiver.
In general, the model can be used for any OFDM-like
system. The diffent standards for OFDM-like systems,
e.g. HiperLAN/2, DAB, DRM, are generally different in
the number of carriers and the transmission bandwidth.
Table II summarizes the OFDM properties for different
standards.

TABLE II

PROPERTIES OF THE DIFFERENTOFDM STANDARDS.

Hiper DAB DRM
LAN/2 I II III IV A B

Bandwidth [MHz] 20 1.54 1.54 1.54 1.54 0.012 0.012
carriers 52 1536 384 192 768 203 181
Symbol time [µs] 4 1,246 312 156 623 26,667 26,667
Frame time [ms] 2 96 24 24 48 400 400

The synchronization of the receiver is performed in
two steps. Firstly, coarse synchronization is performed in
order to synchronize the receiver with the frame. During
coarse-synchronization the received signal is correlated
with known preambles, which indicate the start of a
frame. Secondly, the prefix information of an OFDM
symbol is used for fine-synchronization. After fine-

synchronization, the prefix is removed from the OFDM
symbol.

Differences between the oscillator frequencies of the
transmitter and the receiver result in frequency offset
and cause inter-subcarrier interference. The HiperLAN/2
receiver can compensate for frequency offset by multi-
plying the data samples of an OFDM symbol with the
frequency offset correction coefficient. The frequency
offset correction coefficient can be determined by using
information from the received preamble sections of the
MAC frame.

The inverse OFDM part of the receiver converts the
received signal into received subcarrier values. The re-
ceived sub-carrier values may still suffer from distortions
that need to be corrected before de-mapping them to a
bitstream.

The equalizer corrects the distortions caused by fre-
quency selective fading. The coefficients for the equal-
izer can be determined by using information from the
received preamble sections of the MAC frame. Since the
coherence time of a HiperLAN/2 channel is about 20 ms
and a burst of a MAC frame has a duration of 2 ms, the
coefficients need to be determined only at the start of
the MAC frame [14].

Based on the equalized pilot values, the phase dis-
tortion of the received signal is corrected. The phase
correction coefficient is determined using pilots.

The received complex-number samples will be trans-
lated into an useful received bitstream. The de-map
function assumes that the most likely symbol that was
transmitted, was the symbol that maps to the value
closest to the received value.

V. IMPLEMENTATION

Good development tools are essential for quick imple-
mentation of applications in reconfigurable architectures.
The intention of the MONTIUM development tools is
to start with a high-level description of an application
(in C/C++ or Matlab) and translate this description
to a MONTIUM configuration. The development tools
comprise, among other things, a stand-alone MONTIUM

simulator, a MONTIUM assembler and a MONTIUM

configuration editor [10]. Until now, majority of the
applications are implemented in the MONTIUM using the
assembler and the configuration editor.

For functional simulations we use a co-simulation
environment with Matlab and ModelSim, as depicted in
Figure 6. Using this environment, one can simulate the
(baseband) functionality of a complete communication

system in software (i.e. using Matlab) and partly in
hardware (i.e. using ModelSim).

In Matlab code all functions of the system under
simulation are defined. The software part of the simulator
is furthermore responsible for the control mechanisms
in the system under simulation. VHDL code describes
the functionality implemented in hardware. ModelSim
uses this code to perform simulations of the functionality
in hardware. The software and hardware counterparts
cooperate in one simulation with each other via file
transfers.

Fig. 6. The co-simulation environment.

A. Wideband CDMA receiver

The W-CDMA receiver has been implemented in het-
erogeneous reconfigurable hardware. Since most base-
band processing consists of multiply-accumulate (MAC)
operations, the baseband processing of the receiver was
implemented in coarse-grained reconfigurable hardware,
in our case the MONTIUM. The scrambling code in the
receiver will be generated with simple combinational
logic, consisting of shift-registers and XOR gates. These
are typical operations that can be performed in fine-
grained reconfigurable hardware, like an FPGA. We as-
sume that the control-oriented functionality is performed
in the GPP and provides the right information to the
baseband processing part of the W-CDMA receiver.

In our design the pulse shape filter, which can be
implemented as a FIR filter, is implemented in one
MONTIUM tile. The output streams of the pulse shape
filter are the input for the RAKE receiver, which is
implemented in a second MONTIUM tile. Figure 7 shows
the functional blocks in the W-CDMA receiver that are
implemented in each processing tile.

The W-CDMA receiver runs in ’streaming’ mode. The
receiver can process four individual paths of the received
signal. Consequently, the receiver requires four complex-
number data streams for the four fingers. All fingers

Fig. 7. The RAKE receiver in heterogeneous processing tiles.

require the same scrambling code. The receiver takes
the complex-number scrambling code stream as an input.
The spreading code is stored in local memory, because
the code is relatively small with a maximum length of
512 samples. Furthermore, the spreading code is as-
signed to a particular user in the UMTS communication
system and, therefore, the spreading code will not change
frequently. The received symbols of the individual signal
paths – fingers – are combined, while each symbol is
scaled with a complex-number coefficient. These coef-
ficients are provided by the channel estimator, which is
performed on the GPP. The receiver outputs a bit stream
with the received data.

Figure 2 shows that the CCU is directly connected
to the global buses inside the MONTIUM. The CCU
implements the interface for off-tile communication and
so it guarantees that during ’streaming’ mode the correct
signals are available for the MONTIUM tile. Figure 8
depicts typical signal activity on the global buses inside
the MONTIUM during RAKE processing. The different
signal streams, which are streamed from outside the
MONTIUM, are indicated with characters (’A’ till ’J’) in
Figure 8. The MONTIUM is able to process two RAKE
fingers in parallel. The chips of two RAKE fingers can
be de-scrambled and de-spread in two clock cycles. The
typical signal activity reveals the regular organization of
the implemented receiver. First one chip of finger 1 and
one of finger 2 are de-scrambled and de-spread, in the
next 2 clock cycles one chip of finger 3 and one of
finger 4 are de-scrambled and de-spread. This typical
sequence of signal processing repeats till a complete
symbol (consisting of SF chips) is de-scrambled and de-
spread. The next 5 clock cycles are used for combining
the results of the 4 fingers and de-mapping the symbols
to a bit stream. So, in total4×SF + 5 clock cycles are
needed to process one output symbol.

01 00 10 11 10 11

Clk

SIO 01 00 10 11 10 11

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

A

B

C

D

E

F

G

H

I

A - data finger 1
B - data finger 2
C - data finger 3
D - data finger 4
E - scrambling code

F - MRC coefficient finger 1
G - MRC coefficient finger 2
H - MRC coefficient finger 3
I - MRC coefficient finger 4
J - output bitstream

J

A C

B D

E

A

B

C

D

A C

B D

A

B

C

D

A C

B D

A

B

C

D

A C

B D

E

E

E

E

E

E

E

E

Fig. 8. Signal activity inside the MONTIUM on the global buses (1)· · · (10).

1) Configuration: The configuration size of the
flexible RAKE receiver in the MONTIUM is only 858
bytes. One tile can be configured for RAKE receiving
in 429 clock cycles. For a configuration clock frequency
of 100 MHz this means that a RAKE receiver with 4
fingers can be configured in 4.29µs.

In case the spreading factor changes, and so the
spreading code, the new spreading code only has to be
loaded in the local memory of the MONTIUM and a con-
stant in the MONTIUM configuration has to be changed.
Loading a particular spreading code and reconfiguring
the constant costsSF + 1 clock cycles.

The signal streams for the different fingers are
buffered in local memories inside the MONTIUM. When
the delay of one of the paths changes, then the buffering
strategy in the local memories has to be changed. The
buffering strategy of the memories is configured with 24
bytes. These 24 bytes can be reconfigured in 12 clock
cycles. Consequently, the RAKE receiver can update its
complete path delay profile in 120 ns, assuming that the
configuration clock frequency is 100 MHz.

The signal activity in Figure 8 shows that the signal
processing of 4 RAKE fingers is very regular. The idea
behind the regular structure of the 4-RAKE receiver is
that it can be easily adapted to another configuration with
for instance less fingers. Suppose we want to change the
receiver to a 2 finger one, this means that finger 3 and
finger 4 are no longer needed. The CCU will therefore
stall the streaming of stream ’C’ and ’D’ onto global
buses 1 till 4 (Figure 8). So, the de-scrambling and de-
spreading phase of finger 3 and finger 4 (data streams ’C’
and ’D’) can be bypassed and the number of operations
in the combining phase can also be reduced. In total, for
reconfiguring the number of fingers from 4 to 2, only
24 bytes have to be reconfigured in the configuration

memory of the MONTIUM. Assuming that the clock
frequency of the processor tile during reconfiguration is
100 MHz, the RAKE receiver can be reconfigured in 120
ns, which corresponds to 12 clock cycles.

2) Dynamic Voltage and Frequency Scaling:Volt-
age and frequency scaling is an important measure to
control the power consumption of embedded systems. In
CMOS design, the power consumption depends quadrat-
ically on the supply voltage and linearly on frequency.
The main idea of dynamic voltage and frequency scaling
is that the supply voltage should be kept as low as
possible. Besides, the maximum operating frequency is
tightly coupled to the supply voltage level. This means
that by scaling the clock frequency of hardware, the
supply voltage can be scaled as well, resulting in a
quadratic decrease of the power consumption.

From Figure 8 can be seen that the clock frequency of
the MONTIUM during RAKE processing of 4 fingers is
about 4 times the chip rate. Moreover, when the RAKE
receiver is reconfigured to 2 finger processing, then the
clock frequency of the MONTIUM can be reduced to
about 2 times the chip rate.

Using power estimation tooling, we estimated the
dynamic power consumption of a typical multiply-
accumulate operation in the MONTIUM to be about
0.5 mW/MHz, realized in 0.13µm CMOS technology.
Consequently, the power consumption of the imple-
mented RAKE receiver will be 5 mW in 2-finger mode
and 10 mW in 4-finger mode.

An efficient ASIC implementation of a W-CDMA
RAKE receiver was described in [15]. The receiver
was implemented in 0.13 CMOS technology. According
to [15], the power dissipation of the ASIC implemen-
tation is about 1.5 mW, regardless whether 2 or 4
RAKE fingers are implemented. When we compare the

power consumption of the ASIC implementation with
the MONTIUM implementation, we can conclude that the
power consumption of the MONTIUM is about 3 to 7
times larger. As expected, the ASIC implementation is
more energy-efficient than an implementation in recon-
figurable hardware, however, the ASIC implementation
is fixed and the functionality of the ASIC can not be
changed.

B. HiperLAN/2 receiver

The HiperLAN/2 receiver has been implemented in
the same reconfigurable hardware. Figure 9 shows the
functional blocks in the receiver that are implemented in
each processing tile. The synchronization part (prefix-
removal) has still not been implemented. Nevertheless
the function, which contains many correlation opera-
tions, can easily be implemented in the MONTIUM.

Fig. 9. The HiperLAN/2 receiver in heterogeneous processing tiles.

Irregular tasks, which are outside the algorithm do-
main of the MONTIUM, are performed in software (i.e.
on a GPP). The irregular processes in the HiperLAN/2
receiver are the estimation of frequency offset and com-
putation of equalization coefficients. These coefficients
have to be determined only once per MAC frame, i.e.
once per 2 ms.

During frequency offset correction, which is per-
formed in the MONTIUM tile, every complex-number
sample is multiplied with the frequency offset correction
factor. The frequency offset is estimated in software by
the GPP once per MAC frame. One OFDM symbol, con-
taining 64 complex-number samples, can be corrected in
67 clock cycles.

A Fast Fourier Transform (FFT) on a vector of 64
complex-number time samples can perform the inverse

OFDM function. Using the MONTIUM, the 64-FFT can
be performed in 204 clock cycles for one OFDM symbol.

The equalizer, phase offset correction and de-mapping
functionality are implemented in one MONTIUM tile in
a pipelined fashion. The coefficients for equalization are
determined once every 2 ms in software by the GPP. Dur-
ing equalization, the received carriers are multiplied with
the equalization coefficients. After equalization the pilot
values are used to determine the phase offset correction
factor. The phase offset correction factor is determined
in the MONTIUM, since the phase offset can vary for
every OFDM symbol and the correction factor has to be
determined on an OFDM symbol basis (once every 4µs).
Hence, determining the phase offset correction factor in
software (i.e. GPP) would create large communication
overhead between the GPP and the MONTIUM tile. Phase
offset correction invokes also a complex multiplication,
like equalization. As a consequence the equalizer and
phase offset corrector use the same functionality of the
MONTIUM. In a pipelined, parallel manner the corrected
complex-number samples are translated into a bitstream.
Hard-decision de-mapping is implemented with LUT
functionality. A parametrizable de-mapper has been im-
plemented, which can be used for QPSK, 16-QAM and
64-QAM modulated signals by only changing the LUT
table in the memory of the MONTIUM.

TABLE III

PROPERTIES OF THEHIPERLAN/2 IMPLEMENTATION .

Frequency Equalizer,
offset Inverse Phase offset,

correction OFDM De-mapper

Execution time [cycles] 67 204 110
Communication time [cycles] 128 116 <100

Minimum system clock with
streaming communication [MHz] 17 51 28
Minimum processor clock
with block communication 25 72 37
(@ 100 MHz) [MHz]

Configuration size [bytes] 274 946 576
Configuration time [cycles] 137 473 288

1) Configuration: The total configuration sizes of
the MONTIUM are small for the different functions
(Table III). The FFT implementation in the MONTIUM

requires the largest configuration size, which is less than
1 Kbyte of data. The configuration data can be written
into the configuration memory of the MONTIUM in about
500 clock cycles, since 2 bytes are written in one clock
cycle. Suppose that the MONTIUM is running at a clock
frequency of 100 MHz, then this MONTIUM tile can
be (re-)configured in 4.73µs. Notice that the maximum
radio turn-around time of the HiperLAN/2 system is 6
µs [16], so the implemented HiperLAN/2 receiver can

be considered as a real-time dynamically reconfigurable
receiver.

2) Frequency scaling:All operations in the phys-
ical layer are performed on OFDM symbols. So, one
should assure that each 4µs a new OFDM symbol can be
processed. When a streaming on-chip network between
the processors is assumed, the communication time is
not a bottleneck and one only has to guarantee that,
for example, the data processing for frequency offset
correction is performed during 67 clock cycles in 4µs.
Hence, the minimum clock frequency of the MONTIUM

is 17 MHz, when a streaming on-chip network between
the tiles is assumed.

Typically, the clock frequency of the NoC will be fixed
and only the clock frequency of the processing tiles can
be varied. When we assume the clock frequency of the
NoC to be fixed at 100 MHz, then the clock frequency
of the MONTIUM for frequency offset correction has to
be at least 25 MHz (Table III).

VI. CONCLUSIONS

Because heterogeneous reconfigurable systems might
become the future of mobile hardware, we proposed a
heterogeneous System-on-Chip (SoC) containing recon-
figurable processing elements of different grain sizes.
The processing elements in the SoC are dynamically
interconnected by a Network-on-Chip (NoC).

The MONTIUM architecture showed to have sufficient
flexibility and processing capabilities for implementing
next generation wireless communication systems. The
feasibility of using heterogeneous hardware is demon-
strated by implementing a RAKE receiver and a Hiper-
LAN/2 receiver.

The flexible RAKE receiver implements the baseband
processing for receiving WCDMA signals. It is flexible
because the number of RAKE fingers can be adjusted
in real-time. In less than 5µs a MONTIUM can be
configured for RAKE procesing. One MONTIUM only
has to be partially reconfigured to change the number of
fingers in the RAKE receiver. Adjusting the number of
fingers from 4 to 2 only takes 120 ns; short enough to
classify as dynamic reconfiguration.

The same reconfigurable hardware can be configured
as a HiperLAN/2 receiver. The HiperLAN/2 receiver can
be implemented in four MONTIUM tiles. The perfor-
mance requirements of the receiver can be met at fairly
low clock frequencies, with low configuration overhead.
The MONTIUM tiles can be configured for HiperLAN/2
baseband processing in less than 5µs.

ACKNOWLEDGEMENT

This research is supported by the EU-FP6 project 4S
(Smart Chips for Smart Surroundings)(IST-001908) and
the Freeband Knowledge Impulse programme, a joint
initiative of the Dutch Ministry of Economic Affairs,
knowledge institutions and industry.

REFERENCES

[1] Lodewijk T. Smit, Gerard J. M. Smit, and Johann L. Hurink.
Energy-efficient Wireless Communication for Mobile Multime-
dia Terminals. InProceedings of The International Conference
On Advances in Mobile Multimedia, pages 115–124, Jakarta,
Indonesia, September 2003.

[2] Lodewijk T. Smit. Energy-Efficient Wireless Communication.
PhD thesis, University of Twente, Enschede, the Netherlands,
January 2004.

[3] SDR Forum.http://www.sdrforum.org.
[4] Gerard Rauwerda, Jordy Potman, Fokke Hoeksema, and Gerard

Smit. Adaptive Wireless Networking. InProceedings of the 4th
PROGRESS Symposium on Embedded System, pages 205–211,
Nieuwegein, the Netherlands, October 2003.

[5] MuMoR project. http://www.mumor.org.
[6] EASY project. http://easy.intranet.gr.
[7] A. Abnous. Low-Power Domain-Specific Processors for Dig-

ital Signal Processing. PhD thesis, University of California,
Berkeley, USA, 2001.

[8] V. Baumgarte, F. May, A. Nückel, M. Vorbach, and M. Wein-
hardt. PACT XPP – A Self-Reconfigurable Data Processing
Architecture. InProceedings Engineering of Reconfigurable
Systems and Algorithms, pages 64–70, Las Vegas, Nevada,
USA, June 2001.

[9] Silicon Hive. http://www.siliconhive.com.
[10] Paul M. Heysters.Coarse-Grained Reconfigurable Processors

– Flexibility meets Efficiency. PhD thesis, University of Twente,
Enschede, the Netherlands, September 2004.

[11] Paul M. Heysters, Gerard J. M. Smit, and Egbert Molenkamp.
A Flexible and Energy-Efficient Coarse-Grained Reconfigurable
Architecture for Mobile Systems.Journal of Supercomputing,
26(3):283–308, November 2003.

[12] Jordy Potman, Fokke Hoeksema, and Kees Slump. Tradeoffs
between Spreading Factor, Symbol Constellation Size and Rake
Fingers in UMTS. InProceedings of PRORISC 2003, pages
543–548, Veldhoven, the Netherlands, November 2003.

[13] H. Holma and A. Toskala.WCDMA for UMTS: Radio Access
for Third Generation Mobile Communications. John Wiley &
Sons, 2001.

[14] Anna Berno. Time and Frequency Synchronization Algorithms
for HIPERLAN/2. Master’s thesis, University of Padova, Italy,
October 2001.

[15] Max Nilsson. Efficient ASIC implementation of a WCDMA
Rake Receiver. Master’s thesis, Luleå University of Technology,
Sweden, April 2002.

[16] ETSI. Broadband Radio Access Networks (BRAN); HiperLAN
Type 2; Data Link Control (DLC) Layer Part 1: Basic Data
Transport Functions. ETSI TS 101 761-1 v1.1.1 (2000-04),
April 2000.

