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Abstract. We investigate the dynamics of an ensemble of discrete aerosol droplets in

a homogeneous, isotropic turbulent flow. Our focus is on the stationary distribution

of droplet sizes that develops as a result of evaporation and condensation effects. For

this purpose we simulate turbulence in a domain with periodic boundary conditions using

pseudo-spectral discretization. We solve in addition equations for the temperature and

for a scalar field, which represents the background humidity against which the size of the

droplets evolves. We apply large-scale forcing of the velocity field to reach a statistically

steady state. The droplets are transported by the turbulent field while exchanging heat and

mass with the evolving temperature and humidity fields. In this Euler-Lagrange framework,

we assume the droplets volume fraction to be sufficiently low to allow one-way coupling

of the droplets and turbulence dynamics. The motion of the droplets is time-accurately

tracked. The Stokes drag force is included in the equation of motion of the individual

droplets. The responsiveness of the droplets to small turbulent scales is directly related to

the size of the individual spherical droplets. We perform direct numerical simulation to

ultimately obtain the probability density function of the evolving radius of the droplets at

different points in time with characteristic heat and mass transfer parameters. We de-

termine the gradual convergence of the distribution function to its statistically stationary

state for forced homogeneous, isotropic turbulence.
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1 INTRODUCTION

The interaction of droplets that undergo phase transition with a turbulent flow is
encountered in many areas of engineering1. It is also of special importance in meteorology,
e.g., in cloud physics2. In the context of cloud physics droplets are generated by the
heterogeneous nucleation of water vapor on aerosols. Typically, the size of these aerosol
droplets is of the order of 0.1 µm. The evaporation and condensation of water vapor from
and to the droplets is the governing process for the growth of the droplets from sub micron
size up to a size of around 20 µm, after which they grow mostly by coalescence until they
become large enough to fall as a rain drop under gravity. Experimental evidence3 also
suggests the presence of a fairly wide size distribution 1−20 µm of droplet radii in clouds.
In fact, the size distribution that is generated has a strong influence on the coalescence
rate of droplets which ultimately determines the time associated with the initiation of
rain.

Much pioneering work has been done on the theoretical and numerical investigation
of the influence of turbulence on evaporation and condensation associated with aerosol
droplets1,2,4. The wide range of length and time scales of turbulence makes direct nu-
merical simulation (DNS) of the evolution of the flow in combination with the droplets
very costly. In Celani et al4. the authors used DNS focusing mainly on the large scales
of turbulence. Emphasis has been given to resolving only the small scales5 where it was
found that a rather narrow distribution of droplet radii emerges. This was associated
with the relatively small size of the computational domain.

In this paper we consider the situation of water droplets undergoing phase change and
moving in air. Air also advects the vapor concentration field. We compute the natural size
distribution of the droplets that arises as a result of the interaction between the droplets
and the transporting turbulent flow. We assume the turbulent flow to be homogeneous
and isotropic. We will perform DNS of the velocity field and the passively advected vapor
and temperature field. The droplet trajectories are computed time-accurately in a domain
with periodic boundary conditions.

From our simulation results we inferred the dynamical behavior of inertial particles
moving in a homogeneous, isotropic turbulent flow. We have computed the probability
density function (PDF) of the distribution of the droplets radii at various points in time.
Starting from an ensemble of equal-sized small droplets, it was observed that the distribu-
tion becomes wider as time increases, while the location of the peak gradually increases.
It is seen that these PDFs resemble locally a Gaussian distribution. The full convergence
toward a statistically stationary state is seen to be a flow process.

The paper is organized in the following way. In Section 2 we will introduce the math-
ematical models that we have used for the air flow, droplets trajectory and the passive
scalars. In Section 3 we focus on the details of the numerical tools that we have used for
the simulation. Statistics regarding the droplets size are discussed in Section 4. Conclud-
ing remarks are collected in Section 5.
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2 MATHEMATICAL MODELS

In this Section we first present the fluid mechanical model for the flow field in Sub-
section 2.1. The Lagrangian particle tracking is described in Subsection 2.2. In Sub-
section 2.3 we present the treatment of the evaporation and condensation processes and
finally in Subsection 2.4 we present the equations of the dispersed phase in dimensionless
form.

2.1 Governing equations for the flow field

Our principal goal here is to model the turbulent velocity field u = (u, v, w) which
is advecting both the droplets and the vapor. The flow field we consider is assumed
to be homogeneous and isotropic. We model the three dimensional velocity field u in
dimensionless form by the incompressible Navier-Stokes equation

∂u

∂t
+ (u · ∇)u = −▽pg +

1

Re
▽2 u + f (1)

▽. u = 0

where pg is the pressure of the gas, f is the external forcing term and Re is the Reynolds
number based on a reference length, a reference velocity and the kinematic viscosity of
the fluid.

The temperature of the gas is modelled as a passive scalar in the flow field and its
transport is governed by the advection-diffusion equation. This implies that the tempera-
ture does not affect the flow. We decompose the temperature Tg of the gas into its mean
value, denoted by 〈T〉, and its fluctuating part T̃. The mean temperature varies linearly
and for our purpose it suffices to assume that the mean temperature varies linearly with
x, thus 〈T〉 = αx. Under these assumptions the resulting equation in dimensionless form
becomes

∂T̃

∂t
+ (u · ∇)T̃ − κt∇

2T̃ = −αu (2)

where κt is the thermal diffusivity, defined as κt = 1/(Re · Sc) where Sc is the Schmidt
number.

2.2 Lagrangian description of particle trajectory

Various forces affect the trajectory of droplets in the flow field. The dominant contri-
bution to the force in the flow we consider is the drag force or Stokes drag. We neglect
other forces as discussed in the seminal paper by Maxey and Riley6, such as the Basset
history effect and the added mass effect. We consider the volume fraction of the droplets
in the domain to be small so collisions and coalescence among the droplets is neglected.
Under these assumptions, the equation governing the particle position x and velocity v
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in dimensional form becomes:

dv

dt
=

u(x, t) − v

τv

(3)

dx

dt
= v

where we evaluate the fluid velocity u at the instantaneous location of the particle. Here
τv is the inertial response time of the particle, and is defined in the following way:

τv =
ρdR

2

18µ

where R is the radius of the droplet, ρd is the density of the droplet and µ is the dynamic
viscosity of the gas. In this paper we will consider the particles as water droplets and the
gas to be air.

2.3 Equations for droplet evaporation and condensation

The focus in this paper is on the transport of dispersed droplets by a turbulent flow,
in which phase transition through evaporation and condensation takes place. There are
a number of phenomenological models that describe the change of mass of individual
droplets. This directly affects the size of the droplets and hence their dynamic response
time. The latter dependence is strong, given the quadratic dependence of τv on the radius.
The translation from the mass of a particle to its size is by assuming the droplets to be
strictly spherical.

We consider a droplet of instantaneous mass ”m” moving in the turbulent velocity
field u and let Td be the absolute temperature of the droplet. The droplets are treated
as point particles in the flow domain, and there is no temperature gradient across and
within the particle. While investigating the motion of the small particles in the gas a
quantity of relative importance is the Knudsen number (Kn), which is defined as the ratio
of the gas mean free path to the characteristic radius of the particle. We are considering
the situation when Kn is small (Kn ≪ 1), which means the radii of the droplets are
larger than the mean free path of the carrier gas. The droplet size is quite large in the
cases considered, so the change in size of the droplets by evaporation and condensation,
which takes place as a result of exchange of vapor between the droplet surface and the
surrounding, is governed by diffusion laws. Several authors2,7 used the diffusion growth
model for the droplets undergoing phase change. The rate of change of mass m of the
droplet obeys the following equation8,

dm

dt
= ShπρgκvR(Cv,b − Cv,d) (4)

In this expression Sh is the so-called Sherwood number, which is defined as the ratio of
the convective to the diffusive mass transfer coefficient. In addition, κv is the diffusion
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coefficient of the vapor and Cv,d, Cv,b are the mass fractions of the vapor on the droplet
surface and in the background. These are described next.

The mass fraction on the droplet surface Cv,d can be expressed in terms of the ratio of
the partial vapor pressure to the total pressure on the droplet surface. Now considering
the total pressure to be constant, the partial vapor pressure on the droplet surface can
be evaluated in terms of the temperature of the droplet by Antoine’s equation; which is
actually derived from the Clausius-Clapeyron saturation law9.

The temperature evolution of the droplet is influenced by the change in mass of the
droplet. The temperature equation of the particle can be expressed as

dTd

dt
=

Nu cg

3Pr cd

Td − Tg

τv

+
hL

mcd

dm

dt
(5)

where hL is the latent heat and cd and cg are the specific heat of the droplet and the gas
respectively. Nu and Pr are respectively the Nusselt and Prandtl number. The vapor field
for the background Cv,b is assumed to be advected by the turbulent flow and the vapors
are at sufficiently low concentrations not to affect the flow. Under these assumptions we
model the vapor mass fraction Cv,b by the advection-diffusion equation

∂Cv,b

∂t
+ (u · ∇)Cv,b − κv ∇2Cv,b = − Σi δxi

(V )
dmi

dt
(6)

Here δ is the Dirac measure of the infinitesimal chosen volume V surrounding the point
where vapor concentration is computed and xi is the instantaneous location of the ith
particle. The term on the right hand side of the equation accounts for the fact that
evaporation and condensation locally affect the vapor concentration field. If a droplet
evaporates then this increases the vapor concentration in the surrounding and vice versa.

2.4 Dimensionless formulation of the dispersed phase equations

In our simulation strategy we use the non-dimensional version of all the equations. In
dimensionless form the equations governing the droplet motion can be written as,

dv

dt
=

u− v

St
(7)

dx

dt
= v

Here St is a dimensionless number called the Stokes number of the particle, which is the
ratio of the inertial response time τv to some characteristic time of the flow. We choose
our characteristic time as the Kolmogorov time scale τη, defined by τη = (ν/ǫ)1/2 where ν
is the kinematic viscosity and ǫ is the energy dissipation rate. The rate of change of mass
of the droplet in dimensionless form can be written as

dm

dt
=

Sh m

24Sc St
(Cv,b − Cv,d) (8)
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Also we use the initial maximum temperature T0 of the flow field as the reference tem-
perature. Using this we can make the droplet temperature equation dimensionless in the
following way,

dTd

dt
=

Nu cg

3Pr cd

Td − Tg

St
+

hL

T0cd

1

m

dm

dt
(9)

In the above equations Nu and Sh express the effect of convection on phase transition,
while Pr describes the effect of thermal over viscous diffusion rate.

3 COMPUTATIONAL MODEL AND NUMERICAL SIMULATION

In this Section we describe the basic numerical method that was adopted for the sim-
ulation of dispersed multi-phase flow with phase transition.

We use a de-aliased pseudo-spectral method for both the velocity and the passive scalars
in order to perform direct numerical simulation for the turbulent flow. In this method the
velocity and the scalar field in the Navier-Stokes and the advection diffusion equation are
represented by their Fourier series. The numerical integration of the equations is done by
the four-stage, second order, compact storage, Runge-Kutta method10.

We consider the computational domain to be a cubic box with periodic boundary
conditions in each direction. For an isotropic turbulent flow we adopt the same spatial
resolution in each direction, and have in total N3 computational points in our domain,
where N is the number of grid points in each direction in the physical space. In wave
number space, the wave vector k has three components given by kα = (2π/L)nα where L
is the length of the box and nα = 0,±1,±2,±3, .....,±(N/2 − 1),−N/2 for α = 1, 2, 3.
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Figure 1: Convergence of skewness of the flow for different spatial resolutions N3 with N = 32, 64, 96, 128

as indicated near the corresponding curves.
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In order to resolve the smallest scales of the turbulent motion, which depend on the
viscous dissipation rate, we retain the guiding criterion that kmaxη > 1; where kmax is
the cut-off wave number given by kmax = πN/L and η is the Kolmogorov length scale of
the turbulent flow. In Kuczaj et al.11 the values of kmaxη associated with different spatial
resolutions are presented for Reynolds number Re=1061 and Re=4243. We use large scale
forcing for the flow field, which means that we inject energy in all the Fourier modes in
the wave number space in the first shell. Full details can be obtained from Kuczaj et al.11

In order to assess the accuracy of the simulations we include in Figure 1 predictions for
the velocity skewness. It can be seen that for homogeneous isotropic turbulence the value
of skewness is converging to 0.5 which is proved theoretically in the literature12. The
figure also shows the convergence of our DNS results with the increasing grid resolution.
Although the criterion kmaxη > 1 is not strictly fulfilled for the lower resolutions, we
observe that qualitatively the findings appear reliable.

The numerical treatment of the discrete droplet phase proceeds in a number of steps.
We distribute the droplets initially randomly in space and provide as initial velocity the
fluid velocity as found at the particle location. We assume that all the particles have
initially the same radius. After a sufficiently long evolution the ensemble of droplets
evolves into a statistically stationary distribution which is the result of evaporation and
condensation in the forced turbulent flow. The initial temperature of the particle is set
to be equal to that of the local temperature. In order to get information of the flow
field such as velocity, temperature and vapor mass fraction at the location of a particle
we perform trilinear interpolation. In the literature1 trilinear interpolation was also used
to get adequate results for the particle motion. The time integration of the particle
trajectories was performed by the forward Euler method.

4 STATISTICS OF THE PARTICLE SIZE DISTRIBUTION

DNS of the flow of a dispersed ensemble of droplets undergoing phase transition in a
homogeneous, isotropic turbulent flow requires the specification of a number of parame-
ters. We assume our domain to be a cube having sides of length one. We introduce into
the flow field an ensemble of 104 droplets all of which initially have a radius of 10−6. In
our simulations the Reynolds number is taken as 1061, which corresponds to a Taylor
Reynolds number of 50.

We focus on the evolving radius of all the droplets and compute the corresponding
distribution function. In Figure 2 we display the location of the peak of the distribution
function as a function of time. Here by location we mean the radius at which the size
distribution curve corresponding to a particular time has the highest peak. The initial
condition corresponds to a sharply peaked PDF in which all droplets have the same radius.
The location of the peak of this distribution is increasing with time. This growth gradually
decreases as the statistically stationary state is approached. In order to achieve a more
precise approximation of this ultimate PDF a longer simulation time is required.

The evolution of the PDF of the droplets size-distribution is displayed in Figure 3
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Figure 2: Evolution of the peak value of the distribution function as a function of time, indicating the

gradual convergence of the PDF toward the statistically stationary state.
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Figure 3: Probability density function of the droplet size distribution taken at times 10, 13, 16 and 17 τL

in which τL denotes the large-eddy turn-over time.

for a number of times. We notice that there is still quite some growth in the average
droplets size as a result of condensation onto the droplets, for times ≥ 10τL, in which
τL is the large-eddy turn-over time. The distribution functions are seen to have widened
considerably, compared to the sharply peaked initial condition. The shape of the PDF
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and its dependence on physical parameters of our model will be investigated numerically
in the future and published elsewhere.

5 Concluding remarks

In this paper we have studied the turbulent transport of water droplets in air, that
undergo phase transition represented by evaporation and condensation. The simulation
was based on DNS using pseudo-spectral discretization. We have developed a two-way
coupled mathematical model of the vapor concentration field with the change in mass of
the droplets and observed the effect of turbulence on the size distribution of the droplets.
From our simulation we observed that the PDF of the size distribution becomes wider as
time increases. The convergence toward the statistically stationary state was followed for
104 droplets at a modest Reynolds number. In the future we will incorporate the effect of
the droplet temperature on the gas temperature equation, and we will also compare our
simulation results with experimental data.
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