Model Patterns
The Quest for the Right Level of Abstraction

Arend Rensink ™)

University of Twente, Enschede, The Netherlands
arend.rensink@utwente.nl

Abstract. We know by now that evolution in software is inevitable.
Given that is so, we should not just allow for but accommodate for change
throughout the software lifecycle. The claim of this paper is that, in order
to accommodate for change effectively, we need a modelling discipline
with a built-in notion of refinement, so that domain concepts can be
defined and understood on their appropriate level of abstraction, and
change can be captured on that same level. Refinement serves to connect
levels of abstraction within the same model, enabling a simultaneous
understanding of that same model on different levels. We propose the
term model pattern for the central concept in such a modelling discipline.

1 Introduction

Though computer science students start with the idea that when they create a
new piece of software, then that software will be completed one day, running
happily ever after and never to be looked at again, by the time they graduate we
hope to have disabused them of that notion. For all sorts of reasons, software is
always subject to change; the more successful and widely used, the more urgent
the need to maintain it, adapt it, extend it, port it. Rather than always promising
ourselves that “we will get it right next time” or thinking “we could do so much
better if only we could start from scratch”, we should accept and embrace that
change is an intrinsic facet of software, and accommodate for it from the start.

This paper takes the position that accommodating for change involves finding
the right conceptual level at which the change can be understood. This is, of
course, the same level as that at which the architecture of the software can itself
be understood. It is typically more abstract than the level of the executable code;
instead, in this paper we look at (static, structural) models as the right medium
to understand the software as well as the changes therein.

The Poverty of Metamodels. We argue that the current modelling formalisms —
primarily UML and ECORE — lack machinery to capture the concepts that really
make up the software architecture, and we present an idea for improving upon
this. The building blocks of the established modelling formalisms are essentially
classifiers and associations. Though we agree that in the end, a model must
be refined to that level in order to bridge the gap to executable code, in our
© Springer International Publishing AG 2016

B. Steffen (Ed.): Transactions on FoMaC I, LNCS 9960, pp. 47-70, 2016.
DOI: 10.1007/978-3-319-46508-1_ 4

48 A. Rensink

opinion there is a need to first express specific, complex structures from the
problem domain directly into a model, before completely descending to the level
of classifiers and associations. This is where model patterns come in.

Model patterns, as defined in the paper, come in several flavours: formal and
informal, abstract and concrete. Being formal means to have a mathematically
well-defined specification of the intended structure, in addition to an optional
implementation in terms of existing metamodel technology; an informal pattern
only defines an implementation. Abstract patterns (which are always formal)
only embody the mathematially defined structure; concrete ones (which can be
formal or informal) define an implementation. A concrete pattern implements
an abstract one if its conforming (partial) models provide a one-to-one represen-
tation of the abstractly defined structure; if the concrete pattern is itself formal,
this can be proved once and for all and relied upon when actually applying the
pattern.

Model patterns allow one to take a declarative point of view while design-
ing a domain-specific metamodel: rather than immediately choosing a concrete
representation, one can first pencil in the abstract pattern and then choose a
concrete pattern to implement it. The level on which the abstract patterns are
chosen but not yet concretised is then the “right level of abstraction” of the sub-
title of this paper, and change can often be understood as replacing one chosen
concrete pattern for another that implements the same abstract pattern.

It should be noted that, in the debate of ECORE vs. UML, our models are
inspired by the simpler setting of ECORE. In particular, the notion of an associa-
tion in UML is quite a bit more complex than the corresponding notion in ECORE.
The concepts that UML offers natively can, in fact, be captured by model pat-
terns.

Meta versus Math. Though the primary purpose of introducing patterns is to
help accommodating change by finding the right level of abstraction, there is a
secondary purpose as well: to bridge the gap between “math” and “meta”’. By
the former we refer to the kind of research, sometimes called “formal methods”,
where new ideas are presented mainly by using mathematical terminology to
define structures, transformations and semantics; by the latter we mean the
research in model-driven engineering. Though both fields make use of the same
terminology (in particular, the word “model” is central in both), we feel that
there is a barrier between them through which it is hard to transfer results. In
particular, if one wants to turn conceptual results from the “math” sphere into
practical implementations using “meta” technology, one of the recurring tasks
at hand is to choose appropriate representations, in terms of metamodels, of
common mathematical structures such as sequences, functions, powersets and
tuples. Model patterns, as presented in this paper, can provide a systematic
library of representation choices to support this process.

Because of the position of this paper in the small intersection between math
and meta, we have chosen a certain style of presentation which we feel it may
be necessary to say something about. This is a conceptual paper, rather than
one that presents a concrete implementation. The ideas proposed here can be

Model Patterns: The Quest for the Right Level of Abstraction 49

implemented on top of UML or ECORE by adapting the notions used here to
those respective ecosystems. For instance, here we rely directly on first order
logic to express constraints over models, whereas in a practical implementation
one would probably want to use OCL instead. By staying away from that level of
pragmatism, we avoid some issues (involving the semantics of OCL, among other
things) that do not have to do with the ideas we propose, and would indeed
threaten to hide those ideas.

The target reader of this article is a modelling expert not necessarily familiar
with mathematical definitions, but with a precise enough turn of mind to under-
stand and appreciate them. To serve this target group, we have kept the use of
mathematical notation (e.g., the feared Greek alphabet) to a minimum (while
making sure that there is an unambiguous formalisation backing everything up)
and resisted the temptation to keep all names short. Also, we have refrained
from formalising all of the concepts we introduce in the paper.

Roadmap. The remainder of the paper is structured as follows: Sect. 2 presents
(our take on) the notions of models, constraints and metamodels on which our
contribution is based. Section 3 then introduces model patterns, gives a small cat-
alogue of simple patterns, and shows how they can be instantiated and applied in
a metamodel. Section 4 discusses metamodel refinement, pattern discovery, and
metamodel evolution using patterns. Finally, Sect.5 evaluates the contributions
of this paper, discusses future directions, and revise some related work.

2 Definitions

Throughout this paper, we assume the existence of a well-defined set of identifiers
ID. For the sake of simplicity, we do not impose structure on the identifiers; in
a more realistic setting, one can think of name spaces to hierarchically group
identifiers. As we will see, identifiers are used to stand for a great number of
things.

2.1 Models

The reason why metamodels exist at all is that they give rise to a structured
set of models (which conform to them, in the terminology proposed in [3]), and
so characterise the domain of discourse. In mathematical terms, the relation
between a metamodel and its conforming models is exactly the relation between
a language and its sentences.

Given that, in our view, the set of conforming models of a metamodel is
its supremely important aspect, we concentrate first on properly defining the
concept of a model. We take a very liberal view of models: they are essentially
nothing but graphs, i.e., (labelled) nodes connected by (labelled) edges. As nodes
we allow data values as well as more complex, user-defined entities; this means
that attributes (edges to data values) are treated in much the same fashion as
associations (edges to other user-defined nodes).

50 A. Rensink

Person
name = "Philip Seymour"

student
name "Philip Seymour"
Course
code = 4711

student ‘

code 4711 student stuijent
student Student Student
number name = "Jan Janssen"
Student
m name name = "Jan Janssen"
number student number = 122
number Student
number = 122
(a) Data values displayed as nodes (b) Data values displayed as fields

Fig. 1. Example model, in two distinct versions of concrete syntax

Definition 1 (model). A model consists of

— Node: A finite set of nodes. We will use n (with sub- and superscripts) as a
meta-variable to stand for elements of Node.

— type: A labelling function from Node to ID, associating a node type type(n)
with every node n.

— Edge: A set of triples (n1, lab,na) consisting of source node ny, edge label lab
(an identifier from ID) and target node ns.

An example model is displayed in Fig. 1. Node-inscribed labels are node types.
Note that we put no restriction whatsoever on the nature of the elements of
Node. As stated above and seen in the example, in particular data values may
serve as model nodes; the type-function then yields the corresponding data type.
In Fig. 1a we have left out the type inscription of nodes corresponding to data
values and instead depicted the values themselves as node labels; however, in
Definition 1 such nodes do not have any special status. In any case, one very
important aspect of a node is its identity, as distinct from its content.

The identity of a node is that which distinguishes it from other nodes. For data
value nodes, the identity is the value (there are no two distinct strings "Jan
Janssen", for instance) whereas other nodes may have an external identity
assigned at the time of their creation, whose precise value or representation
is irrelevant except insofar it keeps nodes apart (there may very well be two
persons called “Jan Janssen”: that value is not their identity). For instance,
at run-time the memory address of an object plays the role of node identity,
yet the precise value of that address is irrelevant and may very well change
as a result of compaction.

Model Patterns: The Quest for the Right Level of Abstraction 51

The content of a node consists of the information we can access and use. For
data value nodes, this coincides with their identity, but for other nodes the
content consists of the set of nodes that it has a relation to, in the form of
outgoing edges. For instance, in the model of Fig. 1, the content of the Course-
node consists of its code and the three associated students; the content of the
Person-nodes consists of their respective names.

It is precisely the fact that, for data nodes, the identity coincides with the content
which allows us to use the traditional alternative concrete syntax in Fig. 1b in
which edges to data values are inscribed in the nodes.

It should be noted that, though liberal, models as defined in Definition 1 do
not offer a lot of structure. Edges are just labelled pairs of nodes, which can
easily be understood as records (by combining all outgoing edges of a node) and
offer a straightforward encoding of pointers (essentially, edges are nothing but),
but there is no notion of collections, lists, maps or other structures that are
commonplace in programming languages. Instead, as we will see in the sequel,
such structures are typically encoded.

2.2 Constraints

In any given concrete application, the models that make sense are typically
subject to a lot of constraints imposed by the domain. Such constraints can
be formulated in logic. In this paper we choose to use a variant very close to
predicate logic, with notations adapted somewhat to make them more reader-
friendly, for those not versed in logic. However, we would like to stress that the
choice of logic or notation is coincidental to the main idea proposed in this paper;
if preferred, one could substitute OCL without any conceptual changes.

Our constraints are first of all built upon expressions, which stand for sets
of nodes. Expressions take one of the following forms:

— T, for any identifier T used as node type: The set of all nodes whose type is
T or a subtype of T (the notion of subtype will be explained later).

— z, for any node variable z: The singleton set consisting only of the node x.

— E.lab, where E is a sub-expression and lab an identifier used as edge label: The
set of all nodes reachable through a lab-labelled edge from a node in E.

Given such expressions, our constraint logic offers the following predicates and
combinators:

— E; subsetof E3: The nodes in the set E; are all also in the set Es.

— isempty(E): The set E contains no elements.

— forall z in E : C(x): All elements in the set E satisfy the constraint C (in which
the variable z refers to the E-element in question).

— exists z in E : C(z): There is at least one element in the set E that satisfies the
constraint C (in which the variable x refers to the E-element in question).

— unique z in E : C(x): There is precisely one element in the set E that satisfies
the constraint C (in which the variable x refers to the E-element in question).

52 A. Rensink

Furthermore, constraints can be combined using the usual logical connectives or,
and, implies, not and iff (for “if and only if”).

For instance, in the setting of Fig.1 one may formulate the following con-
straints:

1. forall = in Course : z.student subsetof Student, expressing that every target
of a student-edge from a Course-node is a Student-node.

2. forall z in Student : not isempty(x.name), expressing that every Student-node
has a name-attribute.

3. forall z,y in Student : z.number = y.number implies © = y, expressing that
no two distinct Students may have the same set of numbers. (In fact, we
also expect that every student has exactly one number; however, that is not
expressed by this constraint.)

4. forall z in Student : exists y in Course : x subsetof y.student, expressing that
every Student is a student of at least one Course.

The essential point about a constraint is that it divides the universe of models
into those that satisfy it and those that do not. There is a straightforward
formal definition of satisfaction, but here we will assume that the concepts we
have defined are familiar or straightforward enough so that we can skip that
definition.

For instance, the model of Fig.1 does not satisfy the first three example
constraints above (there is a student-edge from a Course to a Person; there is
a nameless Student; and there are two Students with number 122) but it does
satisfy the last.

In (meta)modelling, certain families of constraints are very common; so much
so that (in graphically depicted metamodels) many of them have their own short-
hand notation, as we will see. Some well-known examples of such families of
constraints are:

OutMult'[lab] = forall = : unique y : y subsetof x.lab

InMult®-![lab] = forall y : (not exists z : y subsetof z.lab)
or (unique x : y subsetof x.lab)

Opposite[laby, labs] = forall x,y : (y subsetof x.laby iff = subsetof y.labs)
Singleton[T'] = unique x : x subsetof T

Keyllaby,labs, ... =Vz,y : (x.laby = y.laby and x.labs = y.labsy and .. .)
impliesz =y

OutMult! [lab] expresses that lab-labelled edges have an outgoing multiplicity of 1.
Likewise, InMultO"l[lab] restricts the incoming multiplicity of lab-labelled edges
to either 0 or 1. This list is not complete: there are, several more very common
multiplicity constraints, and all of them can be applied to incoming as well as out-
going edges. For instance, Constraint 2 above corresponds to OutM ultl“*[name]
and Constraint 4 to InMult'*[student].

Opposite[laby, labs] states that, whenever there is an edge (nq,lab;,n2) in a
graph, there must be an edge (ns,labs,n1) in the opposite direction, and vice
versa. Singleton|[T] states that there is precisely one T-labelled node in the graph.

Model Patterns: The Quest for the Right Level of Abstraction 53

Finally, Key[laby, labs,...] (the notation is meant to suggest that the Key-
predicate can be used with an arbitrary positive number of parameters) states
that the combined targets of the outgoing lab;-edges (i = 1,2,...) together
determine the identity of a node. This relates back to the earlier discussion
about identity versus content: a Key-predicate can be used to specify that the
identity of a node is entirely determined by a specific part of its content.

2.3 Metamodels

We insist on making a sharp distinction between the definition of metamodels
and their (graphical) representation. An important place where this distinction
shows up is that our metamodels include a set of constraints, of the form dis-
cussed above, some of which have a native graphical syntax whereas others do
not; nevertheless, formally we treat all of them in the same way. When depicting
metamodels graphically, though, we will make use of the well-known graphical
conventions.

For the purpose of the following definition, we let Data stand for the set of
primitive data types. In the context of this paper, we fix Data to consist only of
Boolean, Integer and String. As a reminder, we add the stereotype «datatype»
whenever we depict these types graphically.

Definition 2 (metamodel). A metamodel consists of the following compo-
nents:

— Type: A finite set of user-defined node types, which is a subset of ID disjoint
from Data. We will use T' as a meta-variable to stand for elements of Type or
Data.

— sub: a subtype relation over types, consisting of pairs of elements of Type that
impose an irreflexive partial order over Type. The latter means that subtyping
is transitive (if T sub Ty and Ts sub T3 then Ty sub T3) and irreflexive (there
is no type T such that T sub T').

— assoc : A function that assigns to every type T a partial map assocr from
association names (which are IDs) to target types (elements of Type or Data).
If Ty sub Ty, then assoc, (lab) = assocr,(lab) for all lab in the domain of
assoc T, .

— Constr: a set of constraints, in which all occurring node type identifiers are
elements of Type or Data.

Note that the definition above speaks of subtypes. This is subtly different from
the usual notion of inheritance (or extension) in that the latter stands for direct
subtyping. We will sometimes use sub™ to denote the reflexive closure of sub.

There is a limitation in Definition 2 in that subtypes may not redefine asso-
ciations with a label already occurring in any of their supertypes: instead, they
inherit all associations from their supertypes. For practical purposes this does not
actually impose a restriction, since one may always prepend association names
with their source types, and so disambiguate them.

54 A. Rensink

Course
code: Integer

{

,| «datatype» 0.1 Lm student
COde |nteger COde Integer ¢

7 7 Student
student number student humber ! number: Integer
|Student student| >
Person
Y Y : String
@ name™ «data_type» @ nameL «data_type» name
String String Constraints:
Key[code],
Key[number]
(a) Data types as nodes (b) Constrained metamodel (c) Data types as fields

Fig. 2. Example metamodels, in two distinct versions of concrete syntax

An example metamodel, without constraints, is given in Fig.2a. We have
adopted the well-known graphical convention of using open triangular arrows to
represent extension, and labelled open-arrowed edges to represent associations.
The set of types is given by Course, Student and Person, with subtype relation
Student sub Person. The associations are given by:

assoC course = (code — Integer, student — Student)
assOC person = (Name — String)

assOC student = (Name +— String, number — Integer)

A reasonable (though incomplete) set of constraints is given by 2-4 in
Sect. 2.2 above. We will see below that Constraint 1 is actually superfluous,
since it is already enforced by the association definition of assoc course-

We started this section by stating that the raison d’etre of metamodels is
that they define a set of conforming models as their extension. We are now in a
position to formally define that notion of conformance.

Definition 3 (conformance). A model is said to conform to a metamodel if
all of the following hold:

1. type(n) is an element of Type or Data for all nodes n (meaning that nodes
are labelled with metamodel types or data types)

2. aSSOC gype(n,)(lab) sub™ type(ng) for all edges (ny, lab,na) (meaning that model
edges must always correspond to an association defined in the metamodel, and
the target node type must be a subtype of the type declared in the metamodel).

Model Patterns: The Quest for the Right Level of Abstraction 55

8. The model satisfies all constraints in Constr.

For instance, the model of Fig. 1 does not conform to the metamodel of Fig. 2
augmented with the Constraints 24 of Sect. 2.2, for the following reasons:

— The condition in Definition 3.2 does not hold: there is a student-edge from a
Course-node to a Person-node which really should go to a Student-node.

— The condition in Definition 3.3 does not hold: Constraints 2 and 3 are not
satisfied (as remarked before).

A variation of this metamodel, with the same node and edge types but a more
complete set of constraints, is given in Fig. 2b. Figure 2c also depicts this adapted
metamodel, using a more conventional graphical syntax for data type-valued
associations, which here are shown as fields inscribed in their source type nodes.
This notation carries some implicit constraints: for every field lab : T appearing
in such a metamodel, OutMult*[lab] is implied. On the the hand, since these asso-
ciations are no longer depicted as edges, we cannot directly represent the mul-
tiplicity constraints InMult®-![number] and InMult’*[student] in this notation;
they are therefore given explicitly in the form of (equivalent) Key-constraints.!

3 Patterns

We now come to the core new concept of this paper, that of a model pattern. A
pattern can be instantiated (invoked) any number of times in a metamodel. We
propose to develop a library of pattern types with known refinement relations
between them, so that metamodel evolution can be captured in terms of the
replacement of one pattern type by another that is known to refine it, or at least
(if pure refinement is not possible) to stand in a well-understood relation to it.

Definition 4 (pattern). A pattern consists of

— A pattern signature, which is a combination of a pattern name (an element
of ID) and a non-empty sequence sort of unique formal parameter names (ele-
ments of ID), the elements of which stand for types.

— An optional specification, being a mathematical description of the structure
represented by the pattern, in terms of elements of the types in sort. This spec-
ification may make use of all the commonly understood machinery of mathe-
matics, including functions, relations, powerset constructions, auxiliary types,
and logical constraints.

— An optional implementation, being a metamodel such that each of the elements
of sort are members of Type, and one of the elements of sort is a designated
handle.

— If both specification and implementation are given, a proof of correctness. This
proof should show that (a) all models conforming to the implementation sat-
isfy the specification, and (b) all structures satisfying the specification can be
unambiguously represented as models of the implementation.

! In uML, one may denote this constraint by adding a suffix “{id}” behind the field
declaration, as in “code: Integer {id}”.

56 A. Rensink

If a specification is given, we call the pattern formal, otherwise it is informal; if
an implementation is given, we call the pattern concrete, otherwise it is abstract.
Either the specification or the implementation must be given: abstract informal
patterns are not allowed.

The handle will come into play when we discuss pattern instantiation: see
Sect. 3.2 below. When depicting concrete patterns, we distinguish the handle by
shading it gray.

3.1 Example Patterns

We will give a small set of sample patterns for frequently occurring situations,
to illustrate the concept and give some intuition about where and how it can be
used.

Designated Elements. It may happen that we want to globally mark a single
element in a model as being special; for instance, the root of a tree. Mathemat-
ically, such a designated element is sometimes called a point. We can define this
in the form of a pattern as follows:

— Pattern signature: Point(T)
— Pattern specification: T (i.e., the set T itself)

There is a number of ways to implement this: for instance, the designated element
can have a boolean attribute set to true (there must then also be a constraint that
only one T-element may have the value true for that attribute), or the designated
element can be pointed to from a singleton type. These two implementations are
depicted in Fig. 3.

Subsets. A subset is needed whenever we want to distinguish or select some of
the elements of a given existing type. For instance, in our running example, we
might want to distinguish the MSc-students from the others. First we give the
formal abstract pattern for subsets:

— Pattern signature: Set(T)
— Pattern specification: 2T (the powerset of T)

T «singleton» 1
point: Boolean Point | clement .
Constraint: unique x in T : x.point = true
(a) ImplicitPoint (T) (b) ExplicitPoint(T)

Fig. 3. Concrete patterns for designated elements (abstract pattern Point)

Model Patterns: The Quest for the Right Level of Abstraction 57

T «singleton» |
isin: Boolean Set eIement Subtype
(a) ImplicitSet (T) (b) ExplicitSet (T) (c) SubtypeSet(T)

Fig. 4. Concrete patterns for subsets

Sets can be implemented in at least three obvious ways: by adding a boolean
attribute to the sort T, by creating a singleton class with a set-valued association
to T, or by introducing a subtype of T. These implementations are captured by
distinct concrete patterns: ImplicitSet, ExplicitSet and SubtypeSet. Each of these
has the same specification as Set, but a different implementation, depicted in
Fig. 4.

As proofs of correctness for these three implementations, we offer the follow-
ing.

— For ImplicitSet, the set elements are given by All 2 in T : z.isin = true. Clearly,
any subset of T can be unambiguously represented in this way. (Essentially,
ImplicitSet is a representation of the so-called characteristic function of a sub-
set.)

— For ExplicitSet, the set elements are given by x.element, where x is the unique
element of Set. The constraint Singleton[Set] guarantees that there is indeed
such a unique element. Clearly, any subset of T can be unambiguously repre-
sented in this way.

— For SubtypeSet, the set elements are given by Subtype; by Definition 3, this is
a subset of T. Clearly, any subset of T can be unambiguously represented in
this way.

It should be noted that this pattern models a single, global set, and not a set
associated with some other object. If, instead, one wants to model a set of B-
objects associated with every A-object (such as, for instance, the set of Students
associated with every Course in our running example) this requires a set-valued
function or relation, rather than a global set; see below.

Relations. Relations are more complicated than sets, in that they involve two
types (source and target) rather than just one. From a mathematical standpoint,
they are straightforward: the formal abstract pattern is given by

— Pattern signature: Rel(T,U) (where T is the source type and U the target
type).
— Pattern specification: 2TV (the powerset of the cartesian product of T and

u)

58 A. Rensink

R
rbackward source targgt
relﬂ forward

Constraint: Constraint:
Opposite[forward, backward| Key[source, target]
(a) AssocRel(T,U) (b) BiAssocRel(T,U) (¢) TupleRel (T,U)

Fig. 5. Concrete patterns for relations

In this case, there are two bases for concrete implementing patterns: an ordinary
association, or a relation class essentially consisting of a set of tuples. Those are
shown in Fig. 5, together with a variation upon the first of the two involding an
opposite edge, in case one would want to find the set of related T-elements from
a given U-element.

The proof of correctness of AssocRel is straightforward, since the set of edge
instances of rel precisely encodes a relation.

— For TupleRel, the relation is given by the set of (ni,ns) for which there is an
x in Pair such that (x, source, n;) and (x, target, ny) are edges. Vice versa, given
a relation, for every (nj,ns) contained in it, one can construct a Pair-labelled
node with outgoing source- and target-edges to n; and ns. The Key-constraint
guarantees that this encoding is unambiguous (up to the choice of identity of
the Pair-nodes, which however is completely determined by the source- and
target-edges).

Predicates. Mathematically, tuples are nothing but sequences of values from a
fixed number of sets. Thus, we can speak of n-tuples for any natural number 7.
Special cases are:

— n =0, in which case there is just one value, the empty 0-tuple; this does not
correspond to a very useful pattern.

— n =1, in which case the tuples are just single elements of the single set over
which the tuples are formed; hence the abstract tuple pattern over a type T
corresponds to the pattern Set(T) discussed above.

— n = 2, in which case the tuples are pairs, i.e., elements of a binary relation
between the two sets over which the tuples are formed; hence the abstract tuple
pattern over types T and U corresponds precisely to the pattern Rel(T,U)
discussed above.

Extending to higher values of n, we can express higher-arity relationships or
predicates — which is a term borrowed from logic, where a n-ary predicate can
be equated with the set of n-tuples that satisfy it. For predicates there is again
a range of possible implementations. In any case, we need a special tuple type

Model Patterns: The Quest for the Right Level of Abstraction 59

”-1 1 .“1
! 1 1

elemjelems elem, func elemy elemy
Constraint: Key[elemy, ... elemp] Constraint: Key[elemy, ..., elemy]
(a) Tuple-based predicate TuplePred" (b) Function-based predicate FuncPred"

Fig. 6. Formal concrete patterns for Pred"

with outgoing edges to its constituent sets. One may choose to include any of
the opposite edges as well, or turn the predicate into a function from its first
element.

— Pattern signature: Pred"(T1,...,T,) (with n > 2)
— Pattern specification: 2T1%T2X"XTn (which is equivalent to T1 — 272X *Tn)
— Pattern implementations: See Fig. 6

Functions. Functions are essentially a restriction of relations, where every ele-
ment in of the source type is related to precisely one elements in the target type.
Mathematically, this makes them even simpler than relations.

— Pattern signature: Func(T,U)
— Pattern specification: T — U (the function space from T to U)

The concrete implementing patterns are also closely related to those for relations:
either one may use a single-valued association (i.e., with outgoing multiplicity
1), or a map class essentially consisting of a set of tuples, where with respect
to TupleRel one has to constrain the source arrows to be unique, i.e., to have
incoming multiplicity 1.

The correctness proof obligations are a minor variation on those for relations
and omitted here.

There are a number of relevant variations on the concept of a function, which
we will not treat here in detail but which can be modelled in very similar ways:

— Injective functions InjFunc, which have the property that for any element of
the target type, there is at most one element of the source type that maps to it.
This can be captured in the implementation by adding an InMult’*!-constraint
to func (Fig. 7a) or target (Fig. 7b).

— Partial functions PartFunc, which have the property that not every element
of the source type has an associated element of the target type. This can be
captured in the implementation by relaxing the OutMult'-constraint of func
to OutMult®! (Fig. 7a) or doing the same for source (Fig. 7b).

60 A. Rensink

S

source target

funcL@ 1

Constraint:
Key([source, target]

(a) AssocFunc(T,U) (b) TupleFunc(T,U)

Fig. 7. Concrete patterns for functions

Sequence-Valued Functions. The last category of patterns we discuss here are

those that involve (in common metamodel terminology) an ordered association

from one type to another. Here we pay the price of the structural simplicity (one

might say poverty) of our models, which have no in-built notion of ordering.
The formal abstract pattern is straightfoward:

— Pattern signature: SeqFunc(T,U)
— Pattern specification: T — U* (the function space from T to sequences of U)

When choosing an implementation, we are facing well-known issues: (a) Should
we use special linking edges or indices to encode the ordering? (b) Should we
introduce special nodes to carry the ordering information or integrate it into the
existing (target) nodes? (c) Should we mark the start and finish of a list? To
demonstrate the range of possibilities, in Figs. 8 and 9 we show four implementing
patterns.

«datatype» «datatype»
Integer Integer
11 14
idx idx
0..1 1 1
@m0 1ol
(a) ldxSeqFunc(T,U) (b) ExtldxSeqFunc(T,U)
Constraints:

(i) forallxinT:forall e;,ep € x.elem : e}.idx = e;.idx implies e] = ¢
(i) forall x: x.idx >0
(iii) forall x : x.idx > 0 implies exists y : y.idx = x.idx — 1

Fig. 8. Index-based concrete patterns for sequence-valued functions

Model Patterns: The Quest for the Right Level of Abstraction 61

Figure 8 shows two concrete indexed-based patterns, one in which the order-
ing structure (i.e., the index) is added to the target type and one in which it is
put on a separate intermediate node type especially introduced for this purpose.
The first solution is appropriate if no U-node can be in more than one list of
this kind (as indicated by the incoming multiplicity of the elem-edge).

There are a number of non-trivial constraints associated with both of these
patterns:

(i) This expresses that the identity of a list node is determined by its containing
T-node in combination with its index. The effect is that no two nodes in
the same list can have the same index.

(ii) This expresses that list indices are non-negative numbers.

(iii) This expresses that list indices form a consecutive sequence. In combination
with Constraint (ii), it completely fixes the indices used for a list of n ele-
ments to 0,...,n—1. This is necessary to ensure the unambiguous encoding
of a sequence in these concrete patterns.

Figure9 shows two concrete link-based patterns; the difference is again that in
one case the next-links are part of the target type U, making this solution suitable
only if an U-node may appear in no more than one list of this kind, whereas the
other, heavier-weight solution uses a dedicated intermediate node type. There
are again some constraints involved:

(i) Each list should have a unique first element.
(ii) A list element is first if and only if there is no other list element with a
next-pointer to it.

Multi- Parameter Functions. We cannot be comprehensive in this paper. A final
important pattern, which we just briefly discuss here, is that of a function with
two or more parameters — which can equivalently be seen as a function (of
the first parameter) yielding a function (of the second parameter). The abstract
pattern is:

next next—l
0.1] 0.1 0.1] 0.1
01 U 1 Elem | 1
elemafirst: Boolean elem first: Boolean valﬂ

(a) LinkSeqFunc(T,U) (b) ExtLinkSeqFunc(T,U)

Constraints:
(i) forall xin T : uniqueein x.elem : e.first = true
(i) forallxinT,ep inx.elem:
ey .first = true iff not exists e; in x.elem : ¢| subsetof e;.next

Fig. 9. Link-based concrete patterns for sequence-valued functions

62 A. Rensink

— Pattern signature: BinFunc(T, U, V)
— Pattern specification: (T x U) — V; or equivalently T — (U — V)

The equivalent formulations of the specification already suggest distinct direc-
tions of implementation. An intermediate type is almost unavoidable in this case.
In fact, pattern ExtldxSeqFunc in Fig.8b can alternatively be seen as an imple-
mentation of BinFunc(T,Integer, U). Qualified associations in UML are essen-
tially also a way to implement the multi-parameter function pattern.

3.2 Pattern Instantiation
Patterns may be instantiated on top of a given metamodel.

Definition 5 (pattern instance). Given a metamodel, a pattern instance con-
sists of

— A pattern instance name (an element of ID)

— The name of the instantiated pattern together with an argument list, being a
sequence of type and pattern instance names from the metamodel, of length
equal to the sort of the pattern.

— If the instantiated pattern is concrete, an optional substitution of the identifiers
used in the pattern implementation by identifiers to be used in the pattern
instance.

The substitution specified in the last item is necessary to ensure unambiguous
naming: the names in the pattern implementation may overlap with the names
already in the model, and so the former must be renamed to be able to merge
the pattern implementation with the metamodel.

A patterned metamodel is a metamodel with (abstract or concrete) pattern
instances. A pattern instance can be visualised in a given metamodel by (essen-
tially) a labelled hyperedge connecting the arguments of the pattern instance,
and labelled by the pattern name. Such a hyperedge can alternatively be thought
of as a special node. For instance, consider Fig. 10: here the oval nodes are instan-
tiated patterns.

A concrete pattern instance ¢ occurring in a metamodel mm can be applied
by replacing it by the pattern implementation, in the following way:

1. Create a copy of the implementation metamodel mm;, replacing the para-
meter types in the definition by the actual arguments of i and applying the
optional substitution of ¢. If an actual argument of i is a pattern instance
(rather than a type), use the handle of that pattern instance.

2. Add the instantiated metamodel to mm. During this step, by the nature of
metamodels, different copies of any given type are merged.

For instance, if we thus substitute the concrete patterns in Fig. 10b by their
implementations and perform the intended substitution, the result is precisely
the metamodel in Fig. 2 that we started with.

Model Patterns: The Quest for the Right Level of Abstraction 63

code: «datatype»
AssoclnjFunc Inte yeF;
code/func 9

datat
‘Course }—(code:lnjFunc>—> «datatype»

Integer
student:Rel
Student:Set

‘ Person }—(name:Func>—> «dastti\it;/ge»

student:
AssocRel
student/rel

Student:
SubtypeSet
Student/Subtype

number:
AssoclnjFunc
number/func

number:/njFunc

name:
AssocFunc
name/func

«datatype»
String

(a) Abstract patterns (b) Concrete patterns

Fig. 10. Patterned metamodel

4 Usage Scenarios

Our claim is that one can benefit from the use of model patterns both when
developing new metamodels and when updating existing ones to accommodate
changes; and that the latter also applies if the metamodel was not initially
pattern-based.

4.1 Refinement

With refinement we mean fleshing out and extending a metamodel, while keeping
to the constraints that were imposed before. In other words, when a metamodel
mmy is refined to a metamodel mmsy, every model of mms, when restricted to
the node types and edge labels already occurring in mmy, is a model of mm;.
Model patterns can help in refinement because choices can be deferred: rather
than selecting an concrete implementation from the start, one may first go with

Fig. 11. Abstract patterned metamodel of an automaton

64 A. Rensink

an abstract pattern and later on select an appropriate concrete one. We will
illustrate this on an example.

Modelling an Automaton. The example problem is to model the concept of an
automaton. Let us assume that we have a mathematical interpretation at hand.

Trans:
TuplePred3
Trans/Tuple
source/elem;
label/elem,

(a) Instantiated automaton metamodel 1

Trans

target/elems stourc:} label
4 targe 1
State
init: Boolean
final: Boolean

init: Final: Constraints:
ImplicitPoint ImplicitSet (i) Key[source,label, target]
init/point final/isin (if) unique x in State : x.init = true

(b) Refined automaton metamodel 1

init/point

Trans:
FuncPred?
out/func
label/elem,
target/elems

final/element

init: Final: _
ExplicitPoint ExplicitSet «singleton»
Aut/Point Aut/Set Aut

(c) Instantiated automaton metamodel 2

9 out” target label 1
‘ Label ‘ ‘State ‘ !
i1nit final

Constraint: Key/[label, target|

(d) Refined automaton metamodel 2

Fig. 12. Concrete instantiations of the automaton metamodel

Model Patterns: The Quest for the Right Level of Abstraction 65

Definition 6 (automaton). An automaton consists of

— State: a set of states;

— Label: a set of labels;

— Trans: a set of transitions, being triples (qo, lab, 1) consisting of a source state
qo (from State), label lab (from Label) and target state 1 (from State);

— init: an initial state (an element of State);

— Final: a set of final states (a subset of State).

Using the abstract patterns presented in Sect.3, we can immediately give a
corresponding (patterned) metamodel: see Fig. 11.

Refinement is now a matter of choosing concrete implementations of these
patterns. Two examples are shown in Fig. 12.

4.2 Discovery

With “discovery” we mean the process of identifying patterns in an existing,
unpatterned metamodel. The process of instantiation discussed in the previous
section is a forward application of a pattern. However, the instantiation rule may
as well be inverted. That is, given an unpatterned metamodel mm and a library
of concrete patterns, one can pattern match (in another use of the word pattern)
the implementations of the concrete patterns in mm, to find places where the
structure of the metamodel suggests a pattern.

For instance, in the example metamodel in Fig. 2b we can recognise instances
of ExplicitSet, AssoclnjFunc (twice)? and AssocFunc. By replacing the correspond-
ing fragments of the metamodel with instances of those concrete patterns, one
can (semi-)automatically derive the concrete patterned metamodel of Fig. 10b.

Essentially, therefore, pattern discovery is the process of reconstructing the
semantics of a metamodel from its low-level structure. Obviously, this process
cannot be fully automatic: any existing metamodel will have many potential
instances of patterns. A domain expert will have to be involved to reconstruct
the originally intended semantics, by selecting the most appropriate of those
potential patterns. Proper tool support is needed to make this a viable, useful
step.

We see pattern discovery as a great tool especially to refactor existing, legacy
(meta)models.

4.3 Evolution and Migration

The motivation for this paper was accommodating for change. In the context of
model-driven engineering, change means evolution of metamodels, in most cases
accompanied by migration of existing models.

It is here that model patterns yield their greatest benefits. Given a sufficiently
large library of (abstract and concrete) patterns, it is possible to a priori estab-
lish (and prove!) allowed substitutions of one pattern by another. Moreover, the
required migration is also implied.

2 The absract and concrete patterns for injective functions were omitted from Sect. 3.1.

66 A. Rensink

In our modest current setting, such allowed substitutions are already present
in the form of alternative implementations of the same abstract pattern. As an
example, consider the following scenario pertaining to the metamodel of Fig. 2b:

Evolving the Student Metamodel. Suppose that we realise that it was not a good
idea to distinguish the subset of students by turning them into a subtype of
Person: for now it becomes hard for anyone to change his status from Person
to Student and back. Instead, we want to encode the set of students through a
boolean flag in the class Person.

In terms of the patterned metamodel in Fig. 10 (which could either be present
already if the metamodel was developed through refinement, as advocated in
Sect. 4.1, or could alternatively be discovered, as discussed in Sect.4.2), this
change is a matter of choosing another implementation for the Student-pattern.
For instance, instead of SubtypeSet we could choose ImplicitSet, with substitu-
tion isStudent/isin. The resulting metamodel is shown in Fig. 13, together with
an (automatically) migrated model conforming to the original metamodel to a
model conforming to the evolved one.

Note that the handle of the new Student : ImplicitSet pattern is the argument
type Person, meaning that also the number-attribute automatically migrates

Person
name = "Philip Seymour"
isStudent = false
number =0

Person
name = "Philip Seymour"

code: Integer code = 4711
{ 2 student student
student student student Ea—
name = "Jan Janssen"
Person Student) -
name: String name = "Jan Janssen" Isnitrl:](:)ZTL 1";‘39
isStudent: Boolean number = 130
number: Integer
Student F:erson .
|_,|name = Jan Janssen

— name = "Jan Janssen"

number = 122 isStudent = true

number = 122

(a) Evolved metamodel (b) Original model (c) Migrated model

Fig. 13. Metamodel evolution

Model Patterns: The Quest for the Right Level of Abstraction 67

to Person. Thus, in the resulting metamodel, shown in Fig. 13, all persons have
a number, but it is meaningful only for those for which the isStudent-flag is true.

5 Conclusion

5.1 Evaluation

This paper represents an initial attempt to formalise the notion of patterns. For
that reason, rather than trying to be comprehensive and all-encompassing, we
have simplified our setting sufficiently to expose the underlying ideas of patterns
in a self-contained manner. Those simplifications show up in the stripped-down
notions of models, constraints and metamodels, which we have chosen rather
than going straight for ECORE or UML.

To summarise, the main benefits expected from patterns are:

— Commonly occurring implementation structures can be catalogued as pat-
terns, while simultaneously capturing their intended semantics.

— Implementation relations can be defined between patterns and (if the patterns
are formal) proved formally, enabling correctness by construction.

— Metamodel development, especially when occurring on the basis of existing
mathematical definitions, can be eased by deferring the choice of concrete
pattern implementations.

— Metamodel evolution can be understood as replacing one concrete pattern
instance by another, typically implementing the same abstact pattern. Such
replacement steps can be composed, and the corresponding correct model
migration is automatically implied.

— Existing metamodels can be subjected to pattern discovery, bringing the ben-
efits of pattern-based evolution also to legacy models.

Using two running examples, we have built a case for the potential of model
patterns to eventually reap those benefits, but there is no denying that there is
much work to be done before that potential is realised.

Behavioural Models. As remarked in the introduction, in this paper we have
restricted ourselves to structural models only. This is, perhaps, misleading as it
could strengthen the impression that model-driven engineering is mostly about
(data) structures. That is very far from the truth: behavioural models are very
widely used in business process modelling [1], and are also reaching the stage
where they are as successful in specifying language semantics as structural mod-
els are in specifying their syntax: see [13] for an example.

5.2 Future Work

Pattern Library. The example patterns in this paper are actually still quite
rudimentary, involving a few types at the most. One of the upcoming challenges
will be to create a larger catalogue of more involved, but nevertheless generic
patterns.

68 A. Rensink

In Definition 4, we have defined patterns such that their specification is only
optional, but in this paper we have actually only discussed patterns that indeed
do have a specification; i.e., formal patterns. We believe that informal patterns
are nevertheless a useful mechanism to encapsulate commonly occurring meta-
model structures, without imposing the requirement to capture that structure
in mathematical terms.

Dynamics of Models. We have here entirely ignored the manipulation of models —
or in other words, the operations typically defined in a metamodel and (the speci-
fication of) their intended effect on the models.

Actually, the setup lends itself quite well to an extension with operations.
They, too, can be specified formally, on the same level as the current pattern
specification, and implemented concretely, for instance through model transfor-
mation definitions that work on the pattern implementation. The benefit of a
priori proving that one pattern implements another can then easily be extended
to operations as well.

As a small example, consider adding an element to a set. This is a well-
defined operation in the specification of Set; in ImplicitSet it is a matter of setting
the isin-field of the added T-element to true; in ExplicitSet one should create
a new element of Subset with an element-edge to the added T-element; and
in SubtypeSet addition is not well possible as this would require changing the
runtime type of an object. (This is, in essence, the reason brought forward in
Sect. 4.3 against using the SubtypeSet-pattern for modelling Students.)

Validation. As the saying goes, the proof of the pudding is in the eating. At the
moment of writing, this falls into the category of “future work.” In the case of
model patterns, validation should consist of

— Developing metamodels from scratch on the basis of patterns (as proposed
in Sect.4.1), or discovering patterns in existing metamodels (as proposed in
Sect. 4.2).

— Breaking down existing examples of metamodel evolution in terms of pattern
substitutions, as proposed in Sect. 4.3.

5.3 Related Work

This work has its roots in an attempt to formalise the semantics of UML class
diagrams, started in [8]. However, we are neither the first nor the foremost to
have worked on this: other approaches, with varying degree of comprehensiveness
and formality, can be found in [2,4,14,16,17]. Is is, moreover, clear that no such
approach can be complete without including first-order logic, mostly (and in the
context of model-driven engineering naturally) on the basis of ocL, for which
formal foundations have been studied in [5,6,9].

Obviously, a major source of inspiration has been the successful concept of
design pattern promoted in [7] and a long chain of follow-up work. In contrast to
our model patterns, however, design patterns are primarily behavioural (even the

Model Patterns: The Quest for the Right Level of Abstraction 69

category called structural design patterns); together with our focus on model-
driven engineering, this gives the current paper quite distinct aims and scope.

When it comes to model transformation, the idea of introducing patterns has
been studied in [11] (pertaining to patterns in the model transformations them-
selves) and [10] (lifting this to model transformation definitions). Especially the
first of these has a connection to our notion of model patterns and their potential
use in transformation: if we can a priori prove semantic relationships between
patterns, then repeatedly replacing an instance of one pattern by an instance of
another is a way to synthesise correct-by-construction model transformations.

[12] introduces the notion of the intent of a model transformation, and derives
properties as well as transformation themselves on this basis. It also proposes
to establish a catalogue of such intents. However, there is no formalisation of
intents along the lines of our pattern formalisation.

Finally, the idea of introducing patterns into model-driven engineering has
recently inspired a workshop [15], which has, however, unfortunately not resulted
in a written proceedings.

References

1. Aguilar-Saven, R.S.: Business process modelling: review and framework. Int. J.
Prod. Econ. 90(2), 129-149 (2004)

2. Atkinson, C., Kiihne, T.: Model-driven development: a metamodeling foundation.
IEEE Softw. 20(5), 36-41 (2003)

3. Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171-188
(2005)

4. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework.
In: 16th IEEE International Conference on Automated Software Engineering (ASE
2001), 26—29 November 2001, Coronado Island, San Diego, CA, USA, pp. 273-280.
IEEE Computer Society (2001)

5. Brucker, A.D., Tuong, F., Wolff, B.: Featherweight OCL: A proposal for a machine-
checked formal semantics for OCL 2.5. Archive of Formal Proofs 2014 (2014)

6. Brucker, A.D., Wolff, B.: A Proposal for a formal OCL semantics in Isabelle/HOL.
In: Carrenio, V.A., Munioz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410,
pp- 99-114. Springer, Heidelberg (2002). doi:10.1007/3-540-45685-6 8

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

8. Kleppe, A.G., Rensink, A.: On a graph-based semantics for UML class and object
diagrams. In: Ermel, C., De Lara, J., Heckel, R. (eds.) Graph Transformation
and Visual Modelling Techniques. Electronic Communications of the EASST,
Budapest, Hungary, vol. 10. EASST (2008)

9. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H.: Formalizing UML models and OCL constraints in PVS.
Electr. Notes Theoret. Comput. Sci. 115, 39-47 (2005)

10. Lano, K., Rahimi, S.K.: Model-transformation design patterns. IEEE Trans. Softw.
Eng. 40(12), 1224-1259 (2014)

11. Lano, K., Rahimi, S.K., Poernomo, I., Terrell, J., Zschaler, S.: Correct-by-
construction synthesis of model transformations using transformation patterns.
Softw. Syst. Model. 13(2), 873-907 (2014)

http://dx.doi.org/10.1007/3-540-45685-6_8

70

12.

13.

14.
15.

16.

17.

A. Rensink

Lucio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G.M.K., Syriani,
E., Wimmer, M.: Model transformation intents and their properties. Softw. Syst.
Model. 15(3), 647-684 (2016)

Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools (2016, to
appear)

Seidewitz, E.: What models mean. IEEE Softw. 20(5), 26-32 (2003)

Syriani, E., Paige, R., Zschaler, S., Ergin, H.: First International Workshop on
Patterns in Model Engineering (2015). http://www-ens.iro.umontreal.ca/ ~syriani/
pame2015

Varro, D., Pataricza, A.: Metamodeling mathematics: a precise and visual frame-
work for describing semantics domains of UML models. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 18-33. Springer,
Heidelberg (2002). doi:10.1007/3-540-45800-X 3

Varr6é, D., Pataricza, A.: VPM: a visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML (the mathematics of
metamodeling is metamodeling mathematics). Softw. Syst. Model. 2(3), 187-210
(2003)

http://www-ens.iro.umontreal.ca/~syriani/pame2015
http://www-ens.iro.umontreal.ca/~syriani/pame2015
http://dx.doi.org/10.1007/3-540-45800-X_3

	Model Patterns
	1 Introduction
	2 Definitions
	2.1 Models
	2.2 Constraints
	2.3 Metamodels

	3 Patterns
	3.1 Example Patterns
	3.2 Pattern Instantiation

	4 Usage Scenarios
	4.1 Refinement
	4.2 Discovery
	4.3 Evolution and Migration

	5 Conclusion
	5.1 Evaluation
	5.2 Future Work
	5.3 Related Work

	References

