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Abstract In this chapter we present a number of approaches to operating theatre 
planning and scheduling. We organize these approaches hierarchically which 
serves to illustrate the breadth of problems confronted by researchers. At each hi-
erarchical planning level we describe common problems, solution approaches and 
results from studies at partner hospitals. 
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5.1 Introduction 

Within the OR/OM healthcare literature, operating theatre planning and schedul-
ing is one of the most popular topics. This is not surprising, as many patients in a 
hospital undergo surgical intervention in their care pathway. For a hospital, the 
operating theatre accounts for more than 40% of its revenues and a similar large 
part of its costs (HFMA 2005). An efficient operating theatre department thus sig-
nificantly contributes to an efficient healthcare delivery system as a whole.  
 An extensive overview and taxonomy of the operating theatre planning and 
scheduling literature is given by Cardoen et al. (2010). They conclude that the ma-
jority of the research is directed at planning and scheduling of elective patients at 
an operational level of control, and take a deterministic approach. Furthermore, 
they observe that only half of the literature contributions consider up- or down-
stream hospital resources, and few papers report about implementation in practice. 
This appears to be a common problem in OR/OM healthcare literature (Brailsford 
et al. 2009). An up-to-date online bibliography of the operating theatre manage-
ment literature is maintained by Dexter (2011), and a structured literature review 
of operations research in the management of operating theatres is given by Guerri-
ero and Guido (2011).  
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 In this chapter we address operating theatre planning problems on three hierar-
chical managerial levels: strategic, tactical and offline operational planning, as in-
troduced in Section 5.2. 
 The remainder of this chapter addresses recent work in each of these three lev-
els of control. Section 5.2 outlines the planning and control functions on the 
aforementioned hierarchical levels in an operating theatre department. Section 5.3 
addresses the strategic problem of determining the target utilization of an operat-
ing theatre department. Section 5.4 addresses the strategic problem of determining 
the number of surgical teams required during the night to deal with emergency 
cases. Section 5.5 addresses the strategic decision whether to use emergency oper-
ating theatres. Section 5.6 addresses the tactical problem of determining a master 
surgery schedule (a day-to-day allocation of operating theatres to surgical special-
ties) that levels the workload in subsequent departments (wards). Section 5.7 ad-
dresses the offline operational problem of scheduling elective surgeries with sto-
chastic durations, and sequencing them in order to reduce access time of 
emergency surgeries. We will use a wide array of OR techniques, including dis-
crete event and Monte Carlo simulation, statistical modeling and meta-heuristics. 

5.2 A hierarchy of resource planning and control in operating 
theatres 

Competitive manufacturing companies make planning and control decisions in a 
hierarchical manner (Zijm 2000). For example, the long term decision of what 
products to manufacture is at the top of the hierarchy and the real time decision of 
whether to discard a specific part due to its quality is at the bottom of the hierar-
chy. In general the reliance of one decision on another defines the hierarchy. 
Many planning and control frameworks classify decisions into the three hierar-
chical levels strategic, tactical, and operational, as suggested by Anthony (1965). 
Similar hierarchical planning and control frameworks have been proposed for 
healthcare (see Hans et al. 2011). Hans et al. refine the classical hierarchy by split-
ting the operational level into an offline and online operational level, where the 
former is the in advance short term decision making, and the latter the monitoring 
and control of the process in real time. In the remainder of this section we outline 
the main operating theatre planning and control functions on these four hierar-
chical levels.  

5.2.1 Strategic planning and control 

To reach organizational goals, the strategic level addresses the dimensioning of 
core OT resources, such as the number of OTs, the amount of personnel, instru-
ments (e.g. X-ray machines), etc. It also involves case mix planning, i.e. the selec-
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tion of surgery types, and the determination of the desired patient type volumes 
(Vissers et al. 2001). Agreements are made with surgical services / specialties 
concerning their annual patient volumes and assigned OT time. The dimensioning 
of subsequent departments’ resources (e.g. ward beds) is also done (Vanberkel and 
Blake 2007). Strategic planning is typically based on historical data and/or fore-
casts. The planning horizon is typically long term, e.g. a year or more. 

5.2.2 Tactical planning and control 

The tactical level addresses resource usage over a medium term, typically with a 
planning horizon of several weeks (Blake and Donald 2002, Wachtel and Dexter 
2008). The actual aggregate patient demand (e.g. waiting lists, appointment re-
quests for surgery) is used as input. In this stage, the weekly OT time is divided 
over specialties or surgeons, and patient types are assigned to days. For the divi-
sion of OT time, two approaches exist (Denton et al. 2010). When a closed block 
planning approach is used, each specialty will receive a number of OT blocks 
(usually OT-days). In an (uncommon) open block planning approach, OT time is 
assigned following the arrival of requests for OT time by surgeons. 

 On the tactical level, the surgery sequence is usually not of concern. In-
stead, on this level it is verified whether the planned elective surgeries cause re-
source conflicts for the OT, for subsequent departments (ICU, wards), or for re-
quired instruments with limited availability (e.g. X-ray machines). The design of a 
Master Surgical Schedule is a tactical planning problem. 

5.2.3 Operational planning and control (offline) 

The offline operational level addresses scheduling of specific patients to resources 
(and as a consequence, the sequencing of activities) and typically involves a plan-
ning horizon of a week. It encompasses the rostering of OT-personnel, and reserv-
ing resources for add-on surgeries (Dexter et al. 1999). In addition, it addresses the 
sequencing of surgeries (Denton et al. 2007), to prevent critical resource conflicts, 
e.g. regarding X-ray machines, instrument sets, surgeons, etc. When there are no 
dedicated emergency OTs, the sequencing of the elective surgeries can also aid in 
spreading the planned starting times of elective surgeries (which are “break-in 
moments” for emergency surgeries) in order to reduce the emergency surgery 
waiting time (Wullink et al. 2007). 
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5.2.4 Operational planning and control (online) 

The online operational level addresses the monitoring and control of the day-to-
day activities in the OT. Obviously at this level of control, all uncertainty materi-
alizes and has to be dealt with. If necessary, surgeries are rescheduled, or even 
cancelled (Dexter et al. 2004, McIntosh et al. 2006). This is usually done by a day 
coordinator in the OT department. Emergency surgeries, which have to be dealt 
with as soon as possible, are scheduled, and emergency OT teams may have to be 
assembled and dispatched to the first available OT. If there are emergency OTs, 
these emergency surgeries are dispatched to these OTs. If there are no such OTs, 
they are scheduled within the elective surgical schedule. 
 In summary, strategic planning typically addresses capacity dimensioning de-
cisions, considering a long planning horizon of multiple years. Tactical planning 
addresses the aggregate capacity allocation to patient types, on an intermediate 
horizon of weeks or months. Offline operational planning addresses the in-
advance detailed capacity allocation to elective patients, with a short planning 
horizon of days and up to a few weeks. Online operational planning addresses the 
monitoring and control of the process during execution, and encompasses for ex-
ample reacting to unforeseen events. 

5.3 Strategic: the problem with using target OT utilization levels 

Utilization of operating theatres is high on the agenda of hospital managers and 
researchers and is often used as a measure of efficiency, both introspectively as 
well as in benchmarking against other OT departments. As a result, much effort is 
spent trying to maximize OT utilization and sometimes, without understanding the 
factors affecting it. Using straightforward statistical analysis we show how the tar-
get OT utilization of a hospital depends on the patient mix and the hospital’s will-
ingness to accept overtime. This work is described in detail in Houdenhoven et al. 
(2007). Similarly, the erroneousness of target ward occupancies is studied by Har-
per and Shahani (2002) and discussed by Green in Hall (2006). 

5.3.1 General model 

There are various ways to compute the utilization rate. We define the OT utiliza-
tion as the expected total surgery duration (including changeover/cleaning time) 
divided by the amount of time allotted (see Figure 5.1): 
 

	 	 	
	 	 	

	
    (5.1) 
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Our approach can be easily extended to deal with more extensive definitions of 
OT utilization. 

 

Fig. 5.1 Timeline for surgical cases 

The amount of allotted time is computed as follows: 
 

	 	 	 	 	 	 			 5.2  
 
where the slack time (reserved capacity) is determined in such a way that a certain 
frequency of overtime is achieved. This is a managerial choice: slack time reduces 
cancellations and/or costly overtime, but also reduces OT utilization. The frequen-
cy of overtime depends on the distribution of the total surgery duration and can be 
computed according to: 
 

	 	
	 	 	 			 5.3  

 
Now more formally, let  and  denote the average and standard deviation of 
elective surgical case durations of type s, and let  denote the number of cases 
completed in one block. A type s may correspond with the surgeries of for exam-
ple a surgical specialty or a specific surgeon. Likewise, ,  and  denote the 
same for emergency cases. All these parameters are based on historical data. It fol-
lows that the total expected duration of all elective cases in one OT block is 

 and the standard deviation of the total duration of these  cases equals 
. Accordingly: 

 
	 	 	 	 	 	    (5.4) 

 
 

	 . 	 .    (5.5) 
 
The accepted risk (or frequency) of overtime is denoted by . Now we can com-
plete equation (5.2). The amount of allotted time required to achieve an overtime 
frequency of  can be computed as follows: 
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	 	 	 			 5.6  
 
where  is a function yielding probability . The outcome of this function de-
pends on the distribution of the surgery duration. Using  in this way allows 
the approach to be independent of the surgery duration distribution, i.e. function 

 can be changed to reflect various distributions. Using equations (5.4) and 
(5.6) we can complete formula (5.1) for the expected OT utilization as a function 
of the frequency of overtime as follows: 
 

	 	 	
	 	

	 	
    (5.7) 

5.3.2 General results 

We use formula (5.7) for the expected OT utilization to illustrate the relationship 
between OT utilization, patient mix and overtime frequency. In a theoretical sce-
nario where there is no surgery duration variability (i.e., 0), the ex-
pected OT utilization is obviously 100%. 

As a case study we consider Erasmus Medical Center in Rotterdam, the 
Netherlands. OT management in this hospital accepts a 30% risk of overtime. For 
simplicity, they assume that the total surgery duration follows a normal distribu-
tion ~ 	 	 , . Using straightforward sta-
tistical analysis we can show that 0.5 when the acceptable frequency of 
overtime is 30%.This is shown as follows. Let X be the total surgery duration, 
then: 
 

30% 	 	 ⟺ 

	 	 0.7 ⟺ 

	
0.7 ⟺ 

0.7 
 
where ~ 0,1 . It follows that 0.5. 

We use 2 years of historical data from the aforementioned hospital. We 
consider three different surgical specialties (i.e. three different patient mixes) and 
for each we show the trade-off between expected OT utilization and overtime fre-
quency. This is illustrated in Figure 5.2. 
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Fig. 5.2 Trade-off between overtime probability and expected utilization 

 
The calculated expected OT utilization can also be regarded as a target utilization, 
or benchmark. Figure 5.2 shows that a single OT utilization target will result in 
different overtime frequencies for each specialty. For example, a target utilization 
of 80% will result in an overtime frequency of approximately 12% for ophthal-
mology but an overtime frequency of approximately 35% for ENT. In general, a 
low risk of overtime and a complex patient mix will result in a low utilization rate. 
If the accepted risk of overtime is higher and the patient mix less complex, then a 
higher utilization can be achieved. Given that overtime is expensive (and perhaps 
limited by collective bargaining agreements), this example illustrates the inade-
quacy of a single target OT utilization as a performance metric. It also illustrates 
the importance of taking case mix characteristics into account when comparing 
utilization figures between different OT departments. 

5.4 Strategic: on-call or in-house nurses for overnight coverage 
for emergency cases?  

Treating emergency patients is a common activity for most hospitals. Likewise, 
the operating theatre must be available to provide emergency operations 24 hours 
per day. The night shift (e.g., from 11:00 pm to 7:30 am) is typically the most ex-
pensive shift to staff due to collective labor agreements and the inconvenient 
hours. Determining minimum cost staffing levels that provide adequate coverage 
to meet emergency demand is a strategic problem. In this section we describe a 
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case study to determine appropriate night shift staffing levels at Erasmus Medical 
Center. The outcomes of the study were successfully implemented.  

5.4.1 General problem formulation 

Covering the night shift is usually accomplished by using in-hospital and on-call 
nurses. The in-hospital nurses are stationed in the hospital while waiting for emer-
gency cases. The on-call nurses wait at their homes for emergency cases (typically 
there is a requirement that they can be present in the hospital within e.g. 30 
minutes of being requested to do so) and are typically cheaper than in-hospital 
teams. In general, A single nurse can complete exactly one case at a time but can 
complete any number of cases in series until the end of the shift. The decision re-
quired in this problem is to determine how many in-hospital and on-call nurses are 
necessary to meet the demand for emergency cases. Timeliness is of the essence 
here, as these emergency cases may be very urgent. 

When the first emergency case presents for surgery during a night shift, 
in-house nurses respond. Depending on the hospital policy and the total number of 
in-house nurses, an on-call nurse may be called in. In other words, some hospitals 
may wait until 1, 2, … or all in-house nurses are busy before calling in a nurse 
from home, while other hospitals may wait until all in-house nurses are busy and 
an emergency case is present. For each subsequent emergency case this process is 
repeated. Note that nurses are available to complete multiple surgeries per night 
and are available again after completing a surgery. Finally surgeries cannot be 
preempted. In this subsection we assume the hospital’s policy for calling an on-
call nurse is fixed, although determining this policy is, in and of itself, and inter-
esting research question. 

There are generally two types of emergency cases: those that need to be 
started immediately and those that can be delayed before being started. The former 
we refer to as emergent cases and the latter as urgent cases. The acceptable delay, 
or safety interval, for starting an urgent case varies: “for example a facility may 
consider it imperative for a patient with a ruptured abdominal aortic aneurysm to 
be operated on within 30 min of arrival, while a patient with an amputated finger 
should be operated on within 90 min of arrival, and a patient with a perforated 
gastric ulcer should be operated on within 3 h of arrival” (Oostrum et al. 2008). 

By incorporating the acceptable delays for urgent cases it is possible to 
postpone urgent case demand to a later cheaper shift, and/or postpone the case un-
til busy in-house nurses are free. To examine these possibilities in detail, Oostrum 
et al. (2008) use a discrete-event simulation and a case study at Erasmus Medical 
Center Rotterdam (Erasmus MC). To illustrate the benefits of postponing surger-
ies, the authors compare results with surgery postponements with the approach of 
Dexter and O’Neill (2001) where surgery postponements are not used. In the fol-
lowing subsection we provide an overview of the results. 
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5.4.2 General results 

Current practice at Erasmus MC had a team composition of 9 in-house nurses and 
2 on-call nurses. Using the approach of Dexter and O’Neill, a team of 8 in-house 
nurses and 2 on-call nurses was determined to be appropriate. A number of other 
team compositions were considered, ranging from a total of 11 nurses to a total of 
6. Each team composition represented a what-if scenario in the simulation model. 
The simulation model was used to determine the number of surgeries cases start-
ing later than required.  

To compute the cost of each team composition, observe that – since the 
number of working hours does not depend on the team composition – we only 
need to look at the cost of idle staff. Under Dutch law, the costs for nurses who 
wait during the night shift are 107.5% of the regular hourly daytime wage for in-
house nurses, and 106% for nurses on call. We thus compute the cost of waiting 
nurses in each team composition as follows: 

 
	 	 number	of	in‐house	nurses 1.075  
number	of	on‐call	nurses 1.06 hourly	wage 

 
Figure 5.3 displays the cost of waiting and percentage of surgeries starting late for 
the considered team compositions, where we assumed for simplicity that a regular 
hour’s wage is 1. It shows that current practice of 9 in-house and 2 on-call nurses 
performs the best. However, the waiting cost can be decreased by approximately 
18.5% by switching to a team composition of 5 in-house and 4 on-call nurses, at 
the expense of a 2% increase of late starts. 

 

Fig. 5.3 Cost of waiting and late surgery starts for various team compositions 
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For policy making, managers can use results like these to see the relative perfor-
mance cost associated with each staff assignment. The decision autonomy remains 
with the policy makers and they are left to determine if cheaper staffing levels jus-
tify the a decrease in performance.  

For more extensive results, we refer to (Oostrum et al. 2008),where the 
authors present the distribution of cases starting later than required, surgical spe-
cialty specific results, results for multiple nurse types, and an extensive sensitivity 
analyses. The sensitivity analyses showed that the approach can be generalized for 
use in other centers. 
 Oostrum et al. (2008) report that heavy involvement of clinical staff in 
this project was essential for the following reasons. Staff assessed the safety inter-
vals for urgent patients to ensure changes did not negatively affect patient’s safety. 
They validated the discrete event simulation model, and suggested various scenar-
ios for sensitivity analyses. The visualizations provided by the computer simula-
tion aided to convince them of the final conclusions. As a result, despite the nega-
tive impact on their salary, the staff accepted the adjustment of the team 
composition to 5 in-house and 4 on-call nurses. For Erasmus MC this intervention 
resulted in an annual cost saving of 275,000 Euro. 

5.5 Strategic: Emergency operating theatres or not? 

During regular working hours, most hospitals either perform emergency opera-
tions in dedicated emergency OTs, or in regular elective patient OTs. For the se-
cond option a certain amount of slack is scheduled in order to fit in emergency 
cases without causing excessive cancellations of elective cases. The choice to use 
Policy 1 (reserving capacity in dedicated emergency OTs) or Policy 2 (reserving 
capacity in multiple regular emergency OTs) is the strategic decision addressed in 
this section. The difference between these two policies is illustrated graphically in 
Figure 5.4. 
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Fig. 5.4 Cost of waiting and late surgery starts for various team compositions 

The flow of patients is summarized as follows: “Emergency patients arriving at a 
hospital that has adopted the first policy, will be operated immediately if the dedi-
cated OT is empty and will have to queue otherwise, whereas patients arriving at a 
hospital that has adopted the second policy can be operated once one of the ongo-
ing elective cases has ended. Other planned cases will then be postponed to allow 
the emergency operation” (Wullink et al. 2007). 

Policy 1 has the advantage that the first emergency case of the day can 
begin without delay, but all following cases may be subject to delay. Furthermore 
this policy means only the emergency OTs needed to be equipped to deal with 
emergency cases. Finally, as a result of emergency surgeries elective surgeries 
will experience no delay (Bhattacharyya et al. 2006, Ferrand et al. 2010) and elec-
tive OTs will experience no overtime (Wixted et al. 2008). 

Policy 2 cannot guarantee any emergency case will begin without delay, 
but since emergency cases can be completed in more OTs, an opening (i.e. a case 
finishing) for the subsequent cases may a happen sooner than in policy 1. The 
benefits from this policy essentially result from flexibility. To ensure this flexibil-
ity (and the corresponding benefits) multiple (or all) of the OTs must be equipped 
to deal with emergency cases. 

5.5.1 General problem description 

The decision that is required is to determine how to reserve OT capacity for emer-
gency cases, i.e. according to policy 1 or policy 2. There are advantages and dis-
advantages of both policies introduced above. Due to the stochastic nature of 
emergency cases (arrivals and surgery durations) choosing the best policy is not 
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immediately obvious. To compare the policies we suggest evaluating the follow-
ing metrics: 

- emergency surgery waiting time: the total delay, or the delay past what is 
allowed to receive emergency surgery. 

- elective surgery waiting time: the difference between the planned and ac-
tual starting time of an elective surgery. 

- OT overtime: the time used for surgical procedures after the regular block 
time has ended. 

- OT utilization: the ratio between the total used operating time for elective 
procedures and the available regular time. 

The following instance parameters are taken into account: elective surgery volume 
and duration characteristics, emergency surgery arrival and duration characteris-
tics. 

5.5.2 General results 

We summarize a case study (presented in detail in Wullink et al. 2007) where dis-
crete event simulation was used to prospectively evaluate both policies. The case 
study was used to support decision making at Erasmus MC. When applying Policy 
2, the hospital decided that all of their 12 OTs would be equipped to handle emer-
gency cases. In policy 1, with emergency capacity allocated to 1 dedicated emer-
gency OT, the remaining free OT time is allocated exclusively to elective OTs. In 
policy 2, with emergency time allocated to each elective OT, the reserved OT time 
is distributed evenly over all elective OTs. Figure 5.5 and Table 5.1 summarize the 
results from the discrete event simulation. 

Table 5.1 Summary of simulation results for policy 1 and 2 

 Policy 1 Policy 2 

Total overtime per day 10.6 8.4 

Mean number of OTs with overtime per day 3.6 3.8 

Mean emergency patient’s waiting time 74 (±4.4) 8 (±0.5) 

OT utilization 74% 77% 

 
From Table 5.1 it is clear that policy 2 outperforms policy 1 on all given out-
comes.  
 Under Policy 1, all emergency patients were operated on within 7 hours 
with a mean waiting time of 74 (±4.4) min. Under Policy 2, all emergency patients 
were operated upon within 80 min with a mean waiting time of 8 (±0.5) min. OT 
utilization for policy 1 was 74% and 77% for policy 2. Policy 1 resulted in 10.6 
hours of overtime on average per day and policy 2 resulted in 8.4. Policy 2, with 
emergency capacity allocated to all elective OTs, thus substantially outperforms 
policy 1, on all outcomes measured.  
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Fig. 5.5 Cumulative percentage of emergency patients in policy 1 and 2 (simulation results) 

Table 5.2 summarizes the results of additional simulation experiments in which 
we vary the number of emergency OTs (0, 1, 2, or 3) as well as the number of 
elective OTs used for emergency surgeries (0, 5, 10, or 15). We use the case mix 
of the previous experiment, but resize the problem to 15 elective OTs (instead of 
12). Furthermore, approximately 10% of the surgeries are emergency surgeries. 
The results show that policy 2 (dealing with emergencies in (some) elective OTs) 
results in improved emergency waiting performances, at the expense of increased 
waiting time of the elective surgeries. A mixed policy combines the advantages of 
both policies – the table can be used as a guideline to make a trade-off. 
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94.2 76.3 63.8 50.2 

4.2% 2.6% 1.3% 0.6% 

22.2 16.0 12.1 10.3 

15 

0.3 0.2 0.1 0.0 

60.3 52.3 43.3 36.0 

4.0% 2.5% 1.2% 0.5% 

18.6 14.9 11.6 10.0 

5.6 Tactical: designing a master surgical schedule to level ward 
usage  

Managers are inclined to solve problems at the moment they occur (i.e., on the op-
erational level). In Hans et al. (2011) we refer to this phenomenon as the “real-
time hype” of managers. For healthcare managers, while inundated with opera-
tional problems, the universal panacea for all productivity related problems is 
“more capacity”. It is thereby often overlooked to tactically allocate and reorgan-
ize the available resources, which may turn out to be even more effective, and will 
certainly be cheaper. However, due to its longer (intermediate) planning horizon, 
tactical planning is less tangible and inherently more abstract than operational 
planning. In the majority of our healthcare process optimization research projects 
we find that the tactical planning level is typically not formalized and overlooked. 
Tactical planning decisions are rather a result of historical development (“This 
year’s tactical plan is last year’s tactical plan”), than a result of periodic planning. 
We also find they have often evolved to hard constraints for operational planning 
(“We don’t do orthopedic patients on Wednesday afternoons. Why? Well, we just 
don’t!”).  

This is also typical for the tactical planning of OTs, the block planning or 
Master Surgical Scheduling (MSS) problem, which concerns the weekly allocation 
of OT-days to surgical specialties (or surgeons). To a surgeon: “operating theatre 
6 on Monday is her/his OT”. Re-allocating OT-days may however lead to a more 
stable workload in subsequent departments (wards, ICU), and even reduce the re-
quired capacity of these departments. In this section we present a model to analyze 
and improve the impact of the MSS on the resource usage in subsequent depart-
ments. 

5.6.1 General problem description 

Tactical OT planning, typically involves the assignment of OT capacity to aggre-
gate patient groups (i.e. patient cohorts) for a fixed planning horizon. This as-
signment should reflect the strategic goals of the hospital. For example, consider a 
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the probability that a patient, who is still in the ward on day n, is to be discharged 
that day ( 0,1, … , , where  denotes the maximum LOS for specialty j). 
 Using  and  as model inputs, for a given MSS the probability distri-
bution for the number of recovering patients on each day q can be computed. The 
required number of beds is computed with the following three steps. Step 1 com-
putes the distribution of recovering patients from a single OT block of a specialty 
j; i.e. we essentially pre-calculate the distribution of recovering patients expected 
from an OT block of a specialty. In Step 2, we consider a given MSS and use the 
result from Step 1 to compute the distribution of recovering patients given a single 
cycle of the MSS. Finally in Step 3 we incorporate recurring MSSs and compute 
the probability distribution of recovering patients on each day q.  
 
Step 1: For each specialty j we use the binomial distribution to compute the num-
ber of beds required from the day of surgery 1 until . Since we know 
the probability distribution for the number of patients having surgery ( ), which 
equates to the number of beds needed on day 0, we can use the binomial dis-
tribution to iteratively compute the probability of needing beds on all days 0. 
Formally, the distribution for the number of recovering patients on day n is recur-
sively computed by: 
 

																																																																										 	 0

1 											 .
 

 
Step 2: We calculate for each OT block  the impact this OT block has on the 
number of recovering patients in the hospital on days q, q+1, …. If j denotes the 
specialty assigned to OT block , then let ,  be the distribution for the number 
of recovering patients of OT block  on day 1,2, … , , 1, …. It follows 
that: 

, 							 	
																														

 

 
where 0 means , 0 1. Let  be a discrete distribution for the total number 
of recovering patients on day m resulting from a single MSS cycle. Since recover-
ing patients do not interfere with each other we can simply iteratively add the dis-
tributions of all the OT blocks corresponding to the day m to get . Adding two 
independent discrete distributions is done by discrete convolutions which we indi-
cated by “∗”. For example, let A and B be two independent discrete distributions. 
Then ∗ , which is computed by: 
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where τ is equal to the largest x value with a positive probability that can result 
from ∗  (e.g. if the maximum value of A is 3 and the maximum value of B is 4, 
then when convoluted the maximum value of the resulting distribution is 7, there-
fore in this example 7). Using this notation,  is computed by: 
 

, ∗ , ∗ … ∗ , ∗ , ∗ … ∗ ,  
 
Step 3: We now consider a series of MSSs to compute the steady-state probability 
distribution of recovering patients. The cyclic structure of the MSS implies that 
patients receiving surgery during one cycle may overlap with patients from the 
next cycle. In the case of a small Q patients from many different cycles may over-
lap.  
 
In Step 2 we have computed  for a single MSS in isolation. Let M be the last 
day where there is still a positive probability that a recovering patient is present in 

. To calculate the overall distribution of recovering patients when the MSS is 
repeatedly executed we must take into account /  consecutive MSSs. Let  
denote the probability distribution of recovering patients on day q of the MSS cy-
cle, resulting from the consecutive MSSs. Since the MSS does not change from 
cycle to cycle,  is the same for all MSS cycles. Such a result, where the proba-
bilities of various states remain constant over time, is referred to as a steady-state 
result. Using discrete convolutions,  is computed by: 
 

∗ ∗ ∗ …∗ /  
 
From this result a number of workload metrics can be derived. To determine the 
demand for ward beds from the variable  consider the following example. Let 
the staffing policy of the hospital be such that they staff for the 90th percentile of 
demand and let  denote the 90th percentile of demand on day q. It follows that 

 is also the number of staffed beds needed on day q, and is computed from  
as follows: 

| 0.9  
 

In practice, patients tend to be segregated into different wards depending 
on the type of surgery they received. To incorporate this segregation into the mod-
el and to consequently have recovering patient distributions for each ward, a mi-
nor modification needs to be made to the model. Let  be the set of specialties j 
whose patients are admitted to ward k. Then in Step 2 we only have to consider 
those OT blocks assigned to a specialty in  and continue with the calculations. 

Ward occupancy alone does not fully account for the workload associated 
with caring for recovering patients. During patient admissions and discharges the 
nursing workload can increase. From the model the probability distribution for 
daily admissions and discharges can be computed. To compute the admission rate, 
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set 1 for all j and repeat the steps above. The resulting  will denote the 
admissions on day q.  

The discharge rate is the rate at which patients leave the ward and can be 
computed by adding an additional calculation in Step 1. Let  be a discrete dis-
tribution for the number of discharges from specialty j on day n which is comput-
ed as follows: 

ℙ 1 ℙ  

  
Finally, after computing , one can set  and continue with Step 2. By 
doing so, the resulting  will denote the distribution for daily discharges for 
each day q of the MSS. 
 The inherent assumption of the described method is that all patients with 
a patient cohort have equal probability of being discharged and that it is independ-
ent of other patients, i.e. it is assumed that patients are identically distributed and 
independent. The independence assumption implies that the amount of time one 
patient is in the hospital does not influence the amount of time another patient is in 
the hospital. This seems like a natural assumption in most cases and appropriate so 
long as surgeries are rarely cancelled due to a bed shortage (cancellations due to 
bed shortages creates a dependency). The identically distributed requirement 
means that we must compute the number of beds needed tomorrow (and the num-
ber of case completed in one OT block), for all identically distributed cohorts of 
patients separately. In other words, the parameters of the binomial distribution 
must reflect all of the patients in a given cohort. 

5.6.2 General results 

The model was applied at the Netherlands Cancer Institute - Antoni van Leeuwen-
hoek Hospital (NKI-AVL) to support the design of a new MSS. Selected results 
from Vanberkel et al. (2011-2) are summarized in this subsection. 

Management at NKI-AVL strive to staff enough beds such that for 90% 
of the week days there is sufficient coverage. This implies that on 10% of the days 
they will be required to call in additional staff. Using the model a number of MSS 
proposals were evaluated and eventually staff choose an MSS that the model pre-
dicted would lead to a balanced ward occupancy. 

An unbalanced ward occupancy makes staff scheduling, and ward opera-
tions, difficult. Early in the week, beds would be underutilized whereas later in the 
week, beds would become highly utilized and the risk of a shortage would in-
crease. Such peaks and valleys represent variation in the system which possibly 
could be eliminated with a different MSS. This variation leads to significant prob-
lems, particularly as the wards approach peak capacity. For example, when inpa-
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cupancy could have been achieved if these restrictions were relaxed. In this way 
the model can be used to illustrate the benefits of buying an extra piece of equip-
ment or of changing physicians’ schedules. An additional restriction, which if re-
laxed may have allowed further improvements, is the assignment of wards to sur-
gical specialties. In other words, in addition to changing when a specialty 
operates, it may prove advantageous to change which ward the patients are admit-
ted to after surgery. Finally, we chose the best MSS from those created through 
swapping OR block and surgical specialty assignments. It is possible that a search 
heuristic may have found a better MSS, although it would have required the many 
surgical department restrictions to be modeled and the more complex model may 
not have garnered the same level of staff understanding and support. 

Oostrum et al. (2008-2) propose another approach, where the MSS is 
planned in more detail: here it comprises of a cyclical schedule of frequently oc-
curring elective surgery types. The resulting combinatorial optimization problem 
is to determine a MSS that balances OT utilization and ward occupancy. By 
scheduling surgery types, the surgeon/surgical specialty can assign a patient’s 
name at a later time, without affecting the performance of the MSS. The model 
considers stochastic OT capacity constraints and empirical LOS distributions. As 
the resulting problem is NP-hard, heuristics are provided. For a review on the suit-
ability and managerial implication of this particular MSS approach see Oostrum et 
al. (2010). 

5.7 Operational: elective surgery scheduling and sequencing 

Operational planning and scheduling of operating theatres is arguably one of the 
most popular topics in the healthcare operations research literature. The literature 
reviews of Cardoen et al. (2010) and Guerriero and Guido (2011) outline many 
contributions regarding the elective surgery scheduling and sequencing literature. 
Cardoen et al. (2010-2) also propose a classification scheme for operating theatre 
planning and scheduling problems, which contains four descriptive fields 
| | | . Here,  holds the patient characteristics,  the delineation of the deci-

sion,  the extent to which uncertainty is incorporated, and  the performance 
measures. 
 In previous work (Hans et al. 2008) we demonstrated that by combining 
advanced optimization techniques with extensive historical statistical records on 
surgery durations, the OT department utilization can be improved significantly. 
We demonstrated that, if slack time is reserved in OTs according to the method 
described in Section 5.3.1 (particularly equation 5.6), the portfolio effect can be 
exploited in a local search meta-heuristic as follows. By swapping surgeries be-
tween OTs (1-swap or 2-swap), the total slack time of both involved OTs is af-
fected. By clustering surgeries with similar duration variability characteristics, the 
total slack time is reduced due to the portfolio effect. This principle can be used in 
a local search heuristic to minimize the total slack time, and thus free OT time. A 
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result of the portfolio optimization is that the fragmentation of the free OT time is 
minimized. In fact, OTs in resulting solutions are either filled to a great extent 
with surgery and slack time, or are empty. As a result, OTs can be closed, or time 
is freed to perform more surgeries. 
 In this section we discuss the optimization of the elective surgery sched-
ule, in order to minimize emergency surgery waiting time. This problem follows 
from policy 2 outlined in Section 5.5 (i.e., emergency surgeries are dealt with in 
elective OTs). 

5.7.1 General problem description 

Emergency surgery waiting time increases a patient’s risk of postopera-
tive complications and morbidity. When dealing with emergency patients accord-
ing to policy 2 (Section 5.5), waiting time will occur when all elective OTs are 
busy. Typically, at the beginning of the regular working day all OTs will be busy 
with long procedures, as surgeries are often scheduled according to the LPT rule. 
As a result, emergency surgeries that arrive just after the start of the elective pro-
gram may have to wait a long time, as surgeries cannot be preempted. This pleads 
for scheduling a short surgery at the beginning of the day, to obtain a so-called 
“Break-in-Moment” (BIM), at an early time for emergency surgeries. Extending 
on this idea, we may sequence the elective surgeries within their assigned OTs in 
such a way, that their expected completion times, which are BIMs for emergency 
surgery, are spread as evenly as possible. We do not re-assign surgeries to other 
OTs, but instead only re-sequence elective surgeries within their assigned OT. 
This is illustrated in Figure 5.9: the BIMs are clearly spread more evenly after re-
sequencing the surgeries.  

 

OT1 OT2 OT3 OT1 OT2 OT3

Initial solution After BIM optimization

BIMs

 

Fig. 5.9 Example BIM optimization 
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The problem of sequencing elective surgeries in such a way that the BIMs are 
spread as evenly as possible (or, alternatively, the break-in-intervals/BIIs are min-
imized) is in fact a new type of scheduling problem. This innovative idea was a re-
sult of a MSc thesis project at Erasmus MC (Lans et al. 2006), where it was prov-
en that the problem is NP-hard by reduction from 3-partition. 

We assume, as illustrated in Figure 5.9, that surgeries are executed direct-
ly after another, i.e., there is no planned slack between surgeries. The planning 
horizon is within a day, and starts on the first moment when all OTs are scheduled 
to have elective surgeries. If all OTs start at the same time, then this time marks 
the start of the planning horizon. It ends on the first moment when there is an OT 
without a scheduled surgery, since after this moment there are infinitely many 
BIMs. The objective is to lexicographically minimize the largest break-in-intervals 
(BIIs). In other words, we minimize the largest BII, then the second largest (with-
out affecting the largest), etc. The reason that we do not only minimize the largest 
BII is that the expected duration of the shortest surgery is a lower bound to the 
longest BII. This can be seen as follows: assuming all OTs start at the same time, 
placing the shortest surgery at the beginning of its OT gives a BII that cannot be 
shortened. 

In forthcoming work we will propose various exact and heuristic ap-
proaches for the BIM/BII optimization problem. Here we give the results of a 
Simulated Annealing (SA) local search heuristic, which iteratively swaps surgeries 
within their sequence. The SA method uses the following parameters: start tem-
perature 0.2, final temperature 0.0001, Markov chain length 150, decrease factor 
0.8. We fix the shortest surgery at the beginning of its OT. 

5.7.2 General results 

We generate instances with the case mix of Section 5.5 (academic hospital Eras-
mus MC), scaled to fill 4, 8 or 12 OTs. Surgeries are scheduled “First Fit” (Hans 
et al. 2008). First Fit assigns surgeries from the top of the list to the first available 
OT plus an amount of slack (Section 5.3.1, equation 5.6) to achieve a 30% proba-
bility of overtime caused by surgery duration variability, until no surgery can be 
found anymore that fits in the remaining OT capacity. Each instance has two vari-
ants: with full flexibility (all surgery sequences are allowed), and with reduced 

flexibility (randomly,  of the first surgeries are fixed on this position in their 

OT, and  of the last surgeries are fixed on this position in their OT). For exam-

ple, surgeries on children are typically done first, and surgeries after which exten-
sive OT cleaning is required are typically done last. 
 Table 5.3 presents the results for the SA algorithm. It compares the solu-
tions found by SA to the initial First Fit solution (which does not aim to optimize 
BIM/BIIs). Particularly, it shows the frequency of the BIIs of size >15, >30, …, 
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>90 minutes. Each number is an average over 260 instances (52 weeks of 5 work-
ing days). SA solves each instance in less than 2 seconds. Clearly, the large inter-
vals are eliminated to a great extent, the more so when there are more OTs (and 
thus more BIMs). 
 
Table 5.3 Avg. frequency of break-in-interval size (initial solution  SA solu-

tion; 260 instances per parameter setting) 
# 

OTs 
Reduced 
flexibility 

>90 min. >75 min. >60 min. >45 min. >30 min. >15 min. 

4 No 
1.010.29 1.510.67 2.011.50 2.722.84 4.095.52 5.517.11 

-71.3% -55.6% -25.4% 4.4% 35% 29% 

4 Yes 
1.010.30 1.510.74 2.001.59 2.722.85 4.105.47 5.557.01 

-70.3% -51% -20.5% 4.8% 33.4% 26.3% 

8 No 
0.480.00 0.820.01 1.210.09 1.970.46 3.843.75 6.8910.22 

-100% -98.8% -92.6% -76.6% -2.3% 48.3% 

8 Yes 
0.470.00 0.820.02 1.230.11 1.940.56 3.823.91 6.8810.02 

-100% -97.6% -91.1% -71.1% 2.4% 45.6% 

12 No 
0.330.00 0.690.00 0.950.02 1.470.11 3.141.35 6.9710.49 

-100% -100% -97.9% -92.5% -57% 50.5% 

12 Yes 
0.360.00 0.700.00 0.950.02 1.460.13 3.151.58 6.9210.26 

-100% -100% -97.9% -91.1% -49.8% 48.3% 

 
The question now is what impact these optimized BIMs/BIIs have on emergency 
surgery waiting time, particularly given the fact that elective surgery durations are 
stochastic, and the BIMs are expected surgery completion times. Table 5.4 pre-
sents the results of a Monte Carlo simulation of 260 instances with 12 OTs and 
reduced sequencing flexibility. The elective surgeries are assumed to have a 
lognormal distribution. The emergency surgeries arrive according to a Poisson 
process (on average 5.1 arrivals per day), and are served on a FCFS basis. Elective 
surgeries are not preempted. 
 
Table 5.4 Waiting time for the 1st, 2nd and 3rd arriving emergency patients (12 

OTs, run length 780 days, max. relative error 10%, min. confidence level 
90%) 

 
1st emergency 

surgery 
2nd emergency 

surgery 
3rd emergency 

surgery 

Waiting 
time 

(minutes) 

Initial 
solution 

SA 
solution 

Initial 
solution 

SA 
solution 

Initial 
solution 

SA 
solu-
tion 

< 10 28.8% 48.6% 34.9% 44.9% 40.4% 46.2% 

< 20 53.0% 75.8% 56.9% 73.6% 63.0% 69.8% 

< 30 70.5% 90.9% 71.8% 87.2% 76.3% 86.7% 
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We observe that the BIM/BII optimization by SA, despite the reduced flexibility, 
has a significant impact on emergency surgery waiting. For example, the relative 
number of first emergency patients that wait at most 10 minutes increases by 69% 
from 28.8% to 48.6%. The improvement decreases with every next arriving emer-
gency patient of the day. This may be expected, as these emergency patients in-
creasingly distort the original schedule.  

5.7.3 Discussion 

BIM/BII optimization has a big impact on emergency surgery waiting. More re-
search is required into exact solution approaches, and perhaps applications of 
BII/BIM optimization in other sectors. For healthcare, it is easy to implement: it 
only requires re-sequencing of elective surgeries. As a first step, managers are ad-
vised to plan the shortest surgery at the beginning of the regular working day. 

5.8 Future Directions  

The operating theatre department offers challenging planning and control prob-
lems on all hierarchical levels of control. While operational planning and control 
has received a lot of attention from the OR/OM in healthcare research community, 
tactical planning is less exposed, and research has had less of an impact in practice 
due to its inherent complexity. In our experience, decision support software tools 
mostly focus on the operational planning level, whereas tools for the tactical plan-
ning level are scarce and are too simplified or limited in scope to deal with tactical 
decision making. Future research therefore has to focus on the tactical level, to a 
greater extent. This raises opportunities to expand the scope beyond the operating 
theatre department. From our survey of healthcare models that encompass multi-
ple departments we concluded that researchers often model hospitals in a way that 
reflects the limited/departmental view of healthcare managers (Vanberkel et al. 
2010). The research scope should particularly include the polyclinics, where new 
patients are taken in, and the wards, which are typically managed to follow the OT 
department but whose workloads may be leveled significantly by tactically opti-
mizing the OT’s master surgery schedule. Ultimately, we should aim to optimize 
the entire patient care pathway. 
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