
Affective Dialogue Management Using Factored
POMDPs

Trung H. Bui, Job Zwiers, Mannes Poel, and Anton Nijholt

Abstract. Partially Observable Markov Decision Processes (POMDPs) have been
demonstrated empirically to be good models for robust spoken dialogue design.
This chapter shows that such models are also very appropriate for designing affec-
tive dialogue systems. We describe how to model affective dialogue systems using
POMDPs and propose a novel approach to develop an affective dialogue model
using factored POMDPs. We apply this model for a single-slot route navigation di-
alogue problem as a proof of concept. The experimental results demonstrate that
integrating user’s affect into a POMDP-based dialogue manager is not only a nice
idea but is also helpful for improving the dialogue manager performance given that
the user’s affect influences their behavior. Further, our practical findings and exper-
iments on the model tractability are expected to be helpful for designers and re-
searchers who are interested in practical implementation of dialogue systems using
the state-of-the-art POMDP techniques.

1 Introduction

The HAL 9000 computer character is popular in the speech and language technology
research field since his capabilities can be linked to different research topics of the
field such as speech recognition, natural language understanding, lip reading, natural
language generation, and speech synthesis [20, chap. 1]. This artificial agent is often
referred to as a dialogue system, a computer system that is able to talk with humans
in a way more or less similar to the way in which humans converse with each other.

Trung H. Bui
Center for the Study of Language and Information, Stanford University,
210 Panama St, Stanford, CA 94305, USA
e-mail: thbui@stanford.edu

Job Zwiers, Mannes Poel, and Anton Nijholt
Human Media Interaction Group, University of Twente, Postbus 217,
7500 AE Enschede, The Netherlands
e-mail: zwiers,mpoel,anijholt@cs.utwente.nl

R. Babuška & F.C.A. Groen (Eds.): Interactive Collaborative Information Systems, SCI 281, pp. 207–236.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

thbui@stanford.edu
{zwiers,mpoel,anijholt}@cs.utwente.nl

208 T.H. Bui et al.

Furthermore, HAL is affective1. He is able to recognize the affective states of the
crew members through their voice and facial expressions and to adapt his behavior
accordingly. HAL can also express emotions, which is explained by Dave Bowman,
a crewman in the movie:

Well, he acts like he has genuine emotions. Of course, he’s programmed that way to
make it easier for us to talk with him.

Precisely, HAL is an “ideally” Affective Dialogue System (ADS), a dialogue sys-
tem that has specific abilities relating to, arising from, and deliberately influencing
people’s emotions [30].

Designing and developing ADSs has recently received much interest from the
dialogue research community [2]. A distinctive feature of these systems is affect
modeling. Previous work mainly focused on showing the system’s emotions to the
user in order to achieve the designer’s goal such as helping the student to practice
nursing tasks [17] or persuading the user to change their dietary behavior [33]. A
different and more challenging problem is to infer the interlocutor’s affective state
(hereafter called “user”) and to adapt the system’s behavior accordingly*.

Solving this problem could enhance the adaptivity of a dialogue system in many
application domains. For example, in the information seeking dialogue domain, if
a dialogue system is able to detect the critical phase of the conversation which is
indicated by the user’s vocal expressions of anger or irritation, it could determine
whether it is better to keep the dialogue or to pass it over to a human operator [5].
Similarly, many communicative breakdowns in a training system and a telephone-
based information system could be avoided if the computer was able to recognize
the affective state of the user and to respond to it appropriately [25]. In the intel-
ligent spoken tutoring dialogue domain, the ability to detect and adapt to student
emotions is expected to narrow the performance gap between human and computer
tutors [6].

This chapter addresses this problem (see *, this page) by introducing a dialogue
management system which is able to act appropriately by taking into account some
aspects of the user’s affective state. The computational model used to implement this
system is called the affective dialogue model . Concretely, our system processes two
main inputs, namely the observation of the user’s action (e.g., dialogue act) and the
observation of the user’s affective state. It then selects the most appropriate action
based on these inputs and the context. In human–computer dialogue, building this
sort of system is difficult because the recognition results of the user’s action and
affective state are ambiguous and uncertain. Furthermore, the user’s affective state
cannot be directly observed and usually changes over time. Therefore, an affective
dialogue model should take into account basic dialogue principles, such as turn-
taking and grounding, as well as dynamic aspects of the user’s affect.

An intuitive solution is to extend conventional methods for developing spoken di-
alogue systems such as the Rapid Dialogue Prototyping Methodology (RDPM) [12]
by integrating an Affect Recognition (AR) module and define a set of rules for the

1 We use the terms “emotional” and “affective” interchangeably as adjectives describing
either physical or cognitive components of the interlocutor’s emotion [30, p. 24].

Affective Dialogue Management Using Factored POMDPs 209

system to act given the observation of the user’s affective state (e.g., using the rules
defined by Ortony et al. [28]). However, it is nontrivial to handle uncertainty using
a pure rule-based approach such as the RDPM.

From recent literature [11, 49] it follows that Partially Observable Markov Deci-
sion Processes (POMDPs) are suitable for use in designing these affective dialogue
models for three main reasons. First, the POMDP model allows for realistic mod-
eling of the user’s affective state, the user’s intention, and other user’s hidden state
components by incorporating them into the state space. Second, recent results in
dialogue management research [49] show that the POMDP-based dialogue manager
is able to cope well with uncertainty that can occur at many levels inside a dialogue
system from the automatic speech recognition (ASR) and natural language under-
standing (NLU) to the dialogue management. Third, the POMDP environment can
be used to create a simulated user which is useful for learning and evaluation of
competing dialogue strategies [37].

In this chapter, we first introduce the basic components of an ADS. Second, we
give an overview of the Partially Observable Markov Decision Process (POMDP)
techniques and their applications to the dialogue management problem. Third,
we describe our factored POMDP approach to affective dialogue modeling. Fi-
nally, we address various technical issues when using a state-of-the-art approximate
POMDP solver to compute a near-optimal policy for a single slot route navigation
application.

2 Components of an Affective Dialogue System

An ADS is a multimodal dialogue system where the user’s affective state might be
recognized from speech, facial expression, physiological sensors, or combined mul-
timodal input channels. The system expresses emotions through multimodal output
channels such as a talking head or a virtual human. Figure 1 shows an architecture of
a speech-based ADS. The speech input is first processed by the Automatic Speech
Recognition (ASR) module and the semantic meaning is then derived by the Natural
Language Understanding (NLU) module. Similarly, the user’s affect is interpreted
by the AR module and the result is sent to the Dialogue Manager (DM). The DM
processes both inputs from the NLU module and the AR module and produces the
system action and the system’s affective state which are processed by the natural
language generation module and the speech synthesis module before sending to
the user.

Based on a general statistical Dialogue System (DS) framework presented in [50]
and our prototype DSs [12, 14], the interaction between the system and the user is
described by the following cycle. The user has a goal gu in mind before starting
a dialogue session with the system. The user’s goal gu might change during the
system–user interaction process. At the beginning, the DM sends an action as (e.g.,
informing that the system is ready or greeting the user) and optionally an affective
state es (whether it is appropriate to show the system’s affective state depends on
each particular application). Action as usually represents the system’s intent and is

210 T.H. Bui et al.

uw~ ua~

ue~

saswsx

ux

sx~

ux~

ux~

un

sn

se

Fig. 1 Components of an affective speech-based dialogue system. Bold arrows show the main
flow of the interaction process.

formulated as a sequence of dialogue acts and their associated semantic content.
The natural language generation module processes the tuple < as,es > and realizes
a sequence of utterances ws. The tuple < ws,es > is then processed by the speech
synthesis module and the outcome is an audio signal xs. The signal xs might be cor-
rupted by the environment noise ns and the user perceives an audio signal x̃s. Based
on the perceived signal x̃s, the user infers the system’s intent ãs and the affective
state ẽs. The tuple < ãs,ẽs > might be different from its counterpart < as,es > due
to a misunderstanding by the user or the corrupted noise ns from the environment or
both. Based on the user’s goal gu, the user forms a communicative action (i.e., in-
tent) au. Action au might also be influenced by the user’s affective state eu. The user
then formulates a sequence of words wu and articulates a speech signal xu (see Lev-
elt [22] for further details of the transition from intention to articulation performed
by the user). The acoustic signal xu is processed by both the ASR module and the
AR module (the actual input of these modules is, x̃u, a corrupted signal of xu caused
by the environment noise nu). The output of the ASR module is a string of words
w̃s. This is then processed by the NLU module and the result is the observation of
the user’s action ãu. The output from the AR module (ẽu) and NLU module (ãu) is
sent to the DM. The DM selects a next system’s action based on these inputs and the
current system’s belief bs. The process is then repeated until either the system or the
user terminates the interaction (e.g., the user hangs up the call in a telephone-based
dialogue system or the system exits after providing a solution to the user).

The DM is a critical component in the dialogue system, and recent research has
shown the advantages of modeling the DM as a POMDP (see Section 1). In the
following, we will describe in detail the theory of POMDPs in the dialogue man-
agement context.

Affective Dialogue Management Using Factored POMDPs 211

3 Theory of POMDPs

A POMDP is a generalization of a Markov Decision Process (MDP) which per-
mits uncertainty regarding the state of the environment. Howard [19] described a
transition in an MDP as a frog in a pond jumping from lily pad to lily pad. In a
POMDP environment, the lily pond is covered by the mist, therefore the frog is no
longer certain about the pad it is currently on [27]. Before jumping, the frog can ob-
serve information about its current location. This intuitive view is very appropriate
to model the affective dialogue management problem as illustrated in Section 3.2.

In a dialogue management context, the agent is the dialogue manager, loosely
called the system (Fig. 2). A part of the POMDP environment represents the user’s
state and user’s action. Depending on the design for a particular dialogue applica-
tion, the rest of the POMDP environment might be used to represent other modules
such as the speech recognition and the emotion recognition [10, chap. 1]. Because
the user’s state cannot be directly observed, the agent uses a state estimator to com-
pute its internal belief (called belief state) about the user’s current state and an action
selector where the policy, called π , is implemented to select actions. The state esti-
mator takes as its input the previous belief state, the most recent system action and
the most recent observation, and returns an updated belief state. The action selector
takes as its input the agent’s current belief state and returns an action that will be
sent to the user.

In the following sections, we first describe a basic framework of POMDPs. Then,
we present a simple empathic dialogue agent example for the tutoring domain. Two
main tasks of the agent, belief updating and finding an optimal policy, are briefly
described. Further details can be found in [10, chap. 2].

State
Estimator

Action
Selector

At=aZt+1=z’

Agent (SYSTEM)

Bt=b

Environment (USER)
St=s, St+1=s’

Rt=r

Fig. 2 Modularized view of the interaction between the dialogue manager and the user in a
dialogue management context

212 T.H. Bui et al.

3.1 Basic Framework

A POMDP [21] is defined as a tuple 〈S,A,Z,T,O,R〉, where S is a set of states of
the environment (usually called state space), A is a set of the agent’s actions, Z is
a set of observations the agent can experience of its environment, T is a transition
function, O is an observation function, and R is a reward function. We assume that
S,A,Z are finite and that the interaction between the agent and environment follows
a sequence of discrete time steps.

Let St ,At ,Zt+1, and Rt be random variables taking their values from the sets S,A,Z,
and R (the set of real numbers), respectively. At each time step t, the environment’s
state is St . The agent selects an action At and sends it to the environment. The en-
vironment’s state changes to St+1. The agent receives an observation Zt+1 and a
reward value Rt . Following this interaction description, the transition function T ,
observation function O, and reward function R are formally defined as follows.

• The transition function is defined as T : S×A×S→ [0,1]. Given any state s and
action a, the probability of the next possible state s′ is

Pa
ss′ = T (s,a,s′) = P{St+1 = s′|St = s,At = a}, for all t. (1)

These quantities are called transition probabilities. Transition function T is
time-invariant and the sum of transition probabilities over the state space
∑s′∈S Pa

ss′ = 1, for all (s,a).
• The observation function is defined as O : S×A×Z→ [0,1]. Given any action

a and next state s′, the probability of the next observation z′ is

Pa
s′z′ = O(s′,a,z′) = P{Zt+1 = z′|At = a,St+1 = s′}, for all t. (2)

These quantities are called observation probabilities. Observation function O is
also time-invariant and the sum of observation probabilities over the observation
space ∑z′∈Z Pa

s′z′ = 1, for all (a,s′).
• The reward function2 is defined as R : S×A→ R. Given any current state s

and action a, the expected immediate reward that the agent receives from the
environment is

Ra
s = R(s,a) (3)

Given the POMDP model, we want to design a framework in which the agent’s
goal is to maximize the expected cumulative reward over time

V = E

(
T −1

∑
t=0

γtRt

)

(4)

2 We can also define the reward function as (R : S→ R) or (R : S× A× S→ R) or (R :
S× A× S× Z → R). However, the first definition is sufficient and does not change the
fundamental properties of the framework.

Affective Dialogue Management Using Factored POMDPs 213

where E(.) is the mathematical expectation, T is the planning horizon (T ≥ 1), γ is
a discount factor (0≤ γ ≤ 1). The closer γ to 1, the more effect future rewards have
on current agent action selection. This framework is called finite-horizon optimality.
When T → ∞ and γ < 1, the framework is called infinite-horizon optimality. It is
necessary to set the value of discount factor γ smaller than one in the infinite-horizon
case to guarantee that the expected cumulative reward is bounded.

The state space might also contain some special absorbing state that only tran-
sitions to itself and the reward gained when the agent takes any action is 0. The
absorbing state is useful for modeling finite-horizon POMDPs where the number
of horizons cannot be determined in advance. Suppose s is an absorbing state, the
transition function from s is as follows:

T (s,a,s′) =

{
1 if s′ = s

0 otherwise
and R(s,a) = 0, for all a.

Let Rmin and Rmax be the lower bound and upper bound of the reward function,
that is to say

Rmin < R(s,a) < Rmax, for all (s,a). (5)

From (4) and (5), we have for γ < 1 that:

E

(
∞

∑
t=0

γtRmin

)

< V < E

(
∞

∑
t=0

γtRmax

)

⇒ Rmin

1− γ < V <
Rmax

1− γ . (6)

3.2 Empathic Dialogue Agent Example

To illustrate the main principle of a POMDP-based dialogue management, we use
a simple empathic dialogue agent example for the tutoring domain, which is de-
scribed as follows. A student (“the user”) is interacting with the agent to learn a
subject matter. The agent tries to infer the user’s affective state to give an appro-
priate empathic feedback which aims to enhance the student’s learning. Suppose
that the user’s affective state is either s1 = pos (positive) or s2 = neg (negative). The
agent’s goal is to select the most appropriate action from the following three actions:
a1 = comfort,a2 = check, and a3 = encourage. The comfort action is expressed by
saying “I am sorry that you feel bad about the last question”. The check action is the
agent action to infer the user’s affective state from outcome of an affect recognition
module assumed to be available. The encourage action is expressed in the verbal
form such as “Very good!” or “Well done!”. If the agent knows exactly the user’s
true affective state, the action selection problem is trivial. The agent just selects
the encourage action when the user’s affective state is positive and the comfort ac-
tion otherwise. Unfortunately, the user’s affective state cannot be directly observed.
Therefore, the agent must sometimes execute the check action to infer the user’s
affective state.

214 T.H. Bui et al.

A POMDP model for this problem is represented by: (i) S = {s1,s2}= {pos,neg},
(ii) A = {a1,a2,a3} = {comfort,check, encourage}, and (iii) Z = {z1,z2} =
{ ˜pos, ˜neg}. The transition function, observation function, and reward function are
shown in Table 1. All transition and observation probabilities are handcrafted based
on the common sense knowledge from the tutoring domain and affect recognition
literature.

Table 1 Transition function, observation function, and reward function for the empathic dia-
logue agent

P(s′|a,s) P(z′|a,s′) R(s,a)
a s s′ = pos s′ = neg s′ z′ = ˜pos z′ = ˜neg s r
comfort pos 0.80 0.20 pos 0.5 0.5 pos -10

neg 0.30 0.70 neg 0.5 0.5 neg 10
check pos 0.90 0.10 pos 0.9 0.1 pos -1

neg 0.10 0.90 neg 0.1 0.9 neg -1
encourage pos 0.95 0.05 pos 0.5 0.5 pos 5

neg 0.05 0.95 neg 0.5 0.5 neg -10

The transition probability distribution in Table 1 is based on the following intu-
ition. The user’s affective state is dynamic and might change even without direct
intervention from the agent. Therefore, when the agent selects the check action,
which does not directly influence the user, the user’s affective state might change
from positive to negative or vice versa with probability 0.1. If the user is in a pos
state and the agent selects the encourage action which is the right one, the user,
therefore, remains in a positive state with a high probability (0.95). Vice versa, if
the user is in a neg state, the encourage is not appropriate and therefore the chance
that the negative state remains is high (0.95). Similarly, if the user’s affective state is
negative, the comfort action is appropriate and therefore the probability of changing
to the positive state is higher than the check action.

When the agent selects the check action, it can infer the user’s affective state
with a 90% correctness (Table 1). The correctness rate here is interpreted as the
classification accuracy of the affect recognition module. When the agent selects
encourage or comfort action, the observation probabilities are equally distributed.

Reward values are specified by the designer. They represent what the designer
wants the agent to achieve, not how the designer wants it achieved [42, pg. 57].
In this example, we want the agent to select an appropriate action given uncer-
tainty about the user’s affective state. When the user’s affective state is positive,
the encourage action is appropriate and therefore receives a positive reward. When
the user’s state is negative, the comfort action is appropriate and a positive reward
is assigned for this action. When the agent selects check action, it incurs a small
negative reward and in return the agent is more certain about the user’s current
affective state.

Affective Dialogue Management Using Factored POMDPs 215

3.3 Computing Belief States

The state of the user cannot be directly observed. Therefore, in order to select good
actions, the agent needs to maintain a complete trace of all the observations and
actions that have happened so far. This trace is known as a history3. It is formally
defined as:

Ht+1 := {A0,Z1,...,Zt ,At ,Zt+1}, (7)

Astrom [3] showed that history Ht+1 can be summarized via a belief distribution. A
belief distribution is exactly the belief state of the agent.

Bt+1(s′) = P{St+1 = s′|B0,Ht+1}, (8)

Assuming the Markov property and using Bayes’ rule, Equation 8 is transformed
to the following equation (see the proof in [39, Appendix A]):

Bt+1(s′) = P{St+1 = s′|Zt+1 = z′,Zt = a,Bt = b} (9)

Formally, let the belief space B be an infinite set of belief states. A belief state
b ∈ B is encoded as a |S|-dimensional column vector (b1,b2,...,b|S|)T , where each
element bi = b(si) is the probability that the current state of the environment is si.
Geometrically, a belief state is a point (called belief point) in a (|S|−1)-dimensional
belief simplex.

Concretely, the agent starts with an initial belief state B0 = b0. At time t, the
agent’s belief is Bt = b, it selects action At = a and sends this to the environment.
The state changes to St+1 = s′. State St+1 cannot be directly observed and the agent
only gets observation Zt+1 = z. The agent also receives a reward Rt = r, the value
of which depends on the actual values of state s and agent’s action a. At this mo-
ment, the agent needs to update its belief state Bt+1 = b′ given known values for
b,a,z. Starting from Equation 9, b′(s′) is computed using the basic laws from the
probability theory as follows (see [10, chap. 2] for further details):

b′(s′) = P(s′|z,a,b) = ηPa
s′zT

a
s′ b, (10)

where T a
s′ is a |S|-dimensional row vector:

T a
s′ =
(
Pa

s1s′ ,...,P
a
s|S|s′
)

, |S| is the number of elements of S.

η = 1/P(z|a,b) is a normalizing constant, independent of state s′.
The belief state b′ is represented as

b′ = ηW a
z b (11)

where W a
z is a |S|× |S|matrix,

3 In a dialogue management context, this trace is the dialogue history.

216 T.H. Bui et al.

W a
z =

⎡

⎢
⎢
⎢
⎣

Pa
s1zP

a
s1s1

Pa
s1zP

a
s2s1

... Pa
s1zP

a
s|S|s1

Pa
s2zP

a
s1s2

Pa
s2zP

a
s2s2

... Pa
s2zP

a
s|S|s2

...
Pa

s|S|zP
a
s1s|S| Pa

s|S|zP
a
s2s|S| ... Pa

s|S|zP
a
s|S|s|S|

⎤

⎥
⎥
⎥
⎦

(12)

Given the current belief state the agent has to execute the optimal action, i.e.
determining a policy that optimizes the rewards received. How an optimal policy is
computed will be described in the next section.

3.4 Finding an Optimal Policy

A policy is a function:
π(b)−→ a, (13)

where b is a belief state and a is the action chosen by the policy π .
An optimal policy π∗ is a policy that maximizes the expected cumulative reward:

π∗ = argmaxπE

[
∞

∑
t=0

γtRt

]

, (14)

where Rt is the reward when the agent follows policy π .
We define value functions Vi : B→R. Vn(b) is the maximum expected cumulative

reward when the agent has n remaining steps to go. Its associated policy is denoted
by πn. When the agent has only one remaining step to go (i.e. n = 1), all it can do is
to select an action and send it to the environment, we have:

V1(b) = max
a∈A
∑
s∈S

R(s,a)b(s)

= max
a∈A

rab,
(15)

where ra is a row vector, ra =
(

Ra
s1

,...,Ra
s|S|

)
.

When the agent has n remaining steps to go (n > 1), the value function Vn is
defined inductively as [39]:

Vn(b) = max
a∈A

[

rab + γ ∑
z∈Z

P(z|a,b)Vn−1(bz
a)

]

(16)

where bz
a is the belief state of the agent after selecting action a, and the observation

of the environment changes to z.
When n→ ∞, the optimal value function for the infinite-horizon case is denoted

by V ∗. Puterman [32, Theorem 6.9] proved that Vn converges to V ∗ when n goes to
infinity. Therefore, from Equation 16 we have:

Affective Dialogue Management Using Factored POMDPs 217

V ∗(b) = max
a∈A

[

rab + γ ∑
z∈Z

P(z|a,b)V ∗(bz
a)

]

(17)

For any positive number ε , the policy πn is ε-optimal if

V ∗(b)−Vn(b)≤ ε for all b ∈ B. (18)

Equation 16 is used to develop an important type of algorithm called Value Iter-
ation (VI), which is an algorithm for finding ε-optimal policies. The approximation
terminates when:

sup
b
|Vn(b)−Vn−1(b)| ≤ ε(1− γ)

2γ
, (19)

where sup |X | stands for supremum norm of set X [32]. The left part of Equation 19
is called the Bellman residual.

Because there are an infinite number of belief states, we cannot compute Vn−1

directly for each belief state b. Sondik [40] proved that Vn−1 can be represented
through a finite set of α-vectorsΓn−1 = {α1,...,α|Γn−1|}, where each vector α ∈Γn−1

is a |S|-dimensional row vector (also called a hyperplane, hereafter it is called an
α-vector), and

Vn−1(b) = max
α∈Γn−1

αb (20)

Therefore, from Equations 11 and 20 we can rewrite Equation 16 as

Vn(b) = max
a∈A

[

rab + γ ∑
z∈Z

P(z|a,b) max
α∈Γn−1

αbz
a

]

= max
a∈A

[

rab + γ ∑
z∈Z

P(z|a,b) max
α∈Γn−1

α
W a

z b

P(z|a,b)

]

= max
a∈A

[

rab + γ ∑
z∈Z

max
α∈Γn−1

αW a
z b

]

= max
a∈A

[

rab + γ(max
l1

αl1 .W
a
z1

b + ...+ max
l|Z|

αl|Z|W
a
z|Z|b)

]

= max
a∈A

[

rab + γmax
l1

...max
l|Z|

(αl1W
a
z1

b + ...+αl|Z|W
a
z|Z|b)

]

= max
a∈A

[

rab + γmax
l1

...max
l|Z|

|Z|
∑
k=1

αlkW
a
zk

b

]

= max
a∈A

max
l1

...max
l|Z|

[

ra + γ
|Z|
∑
k=1

αlkW
a
zk

]

b,

(21)

where l1,l2,...,l|Z| ∈ [1,|Γn−1|].

218 T.H. Bui et al.

The set Γn can now be generated from set Γn−1 by the following update:

Γn← α ′ = ra + γ
|Z|
∑
k=1

αlk .W
a
k ,∀a ∈ A,αlk ∈ Γn−1, (22)

where n≥ 1 and Γ1 = {ra1 ,ra2 ,...,ra|A| }.
Finding the optimal policy (for planning horizon T = n) is now considered as

solving a set of |A||Γn−1||Z| linear constraints derived from Equation 21. To gain the
computational tractability, it is necessary to keep only the vectors that contribute to
the optimal value function because the number of α-vectors generated from Equa-
tion 22 is very large. We distinguish two types of α-vectors: useful vectors and
extraneous vectors [54]. A vector α ∈ Γn is useful4 if:

∃b ∈ B : αb > α ′b, for all α ′ ∈ Γn−α (23)

A vector α ′ ∈ Γn that does not satisfy Equation 23 is an extraneous vector. A set Γn

that is composed of useful vectors is called a parsimonious set [53]. From Equa-
tion 20 it is obvious that we can safely remove all the extraneous vectors from the
set Γn. Monahan [27] proposed a procedure to remove extraneous vectors by solving
the following linear program for each α ∈ Γn:

variables: x,bi,∀i ∈ [1,|S|]
maximize x

subject to constraints: b(α−α ′)≥ x;∀α ′ ∈ Γn &
|S|
∑
i=1

bi = 1

(24)

If x < 0, remove α from Γn.
When the set of useful α-vectors Γn is found. The agent’s action â is determined

as â← α̂5, where
α̂ = argmax

α∈Γn

αb (25)

4 Review of the POMDP-Based Dialogue Management

In this section, we focus on describing the POMDP-based dialogue management ap-
proaches. Reviews of other dialogue management approaches for spoken and mul-
timodal dialogue systems are reviewed in McTear [26] and Bui [9], respectively.

Section 3 explained the basic activity of a POMDP-based dialogue management
system. Young et al. [51] have argued that nearly all existing dialogue management
systems, especially those based upon the information state approach [43], can be
considered as direct implementations of the POMDP-based model with a determin-
istic (i.e., handcrafted) dialogue policy. These systems have a number of “severe

4 Assume that the identical vectors in Γn are merged.
5 Because each α-vector is associated with only one action, see Equation 22.

Affective Dialogue Management Using Factored POMDPs 219

weaknesses” such as using unreliable confidence measures, having difficulty cop-
ing with the dynamic changing of the user’s goal and intention. Moreover, tuning the
dialogue policy is labor extensive, based on off-line analysis of the system logs [51].

The first work that applies the POMDP for the dialogue management problem
was proposed by Roy et al. [34] for building a nursing home robot application. In
this application, a flat POMDP model is used where the states represent the user’s
intentions; the observations are the user’s speech utterances; and the actions are
the system responses. They showed that the POMDP-based DM copes well with
noisy speech utterances, for example their POMDP-based DM makes fewer mis-
takes than an MDP-based DM and it automatically adjusts the dialogue policy when
the quality of the speech recognition degrades. Zhang et al. [52] extended the Roy
model in several dimensions: (1) a factored POMDP [7] is deployed for the state
and observation sets, (2) the states are composed of the user’s intentions and “hid-
den system states”, (3) the observations are the user’s utterances and other observa-
tions being inferred from lower-level information of the speech recognizer, robust
parser, and from other input modalities. Williams et al. [47, 48] further extended the
Zhang model by adding the state of the dialogue from the perspective of the user
which is hidden from the system’s view (called user’s dialogue state) to the state set
and adding the confidence score into the observation set. All these approaches have
shown that POMDP-based dialogue strategies outperform MDP counterparts (e.g.,
Pietquin [31]). Furthermore, these strategies cope well with different types of errors
in a Spoken Dialogue System (SDS), especially with ASR errors. Table 2 describes
characteristics of these POMDP-based DMs.

Table 2 Characteristics of some POMDP-based dialogue managers (n is the number of slots)

Application n,|S|,|A|,|Z| Algorithm Reward function
Nursing home 4, 13, 20, 16 AMDP [35] If the system action is labeled as

robot [34] correct : 100, ok : -1, wrong: -100.
Tour guide [52] 3, 40, 18, 25 QMDP [24], If the answer matches user’s request,

FIB [16] the reward is positive. Otherwise, the
reward is negative.

Travel booking [45] 2, 36, 5, 5 Perseus [41] If the system action & dialogue state
is ask & not stated : -1, ask & stated :
-2, ask & confirmed: -3, confirmed &
not stated : -3, confirmed & stated : -1,

confirm & confirmed: -2. If the user’s goal
is determined correctly: 50, incorrectly: -50.

5 The Factored POMDP Approach

Extending the Williams model [47], we represent our affective dialogue model as
a factored POMDP [7]. Factored representation of the state set and observation set
allows for a natural and intuitive way to encode the information state of the di-
alogue domain. For example, a goal-oriented dialogue system needs to encode at

220 T.H. Bui et al.

least variables such as the user’s actions and the user’s goals. In our model, the
state set is composed of the user’s goal (Gu), the user’s affective state (Eu), the
user’s action (Au), and the user’s grounding state (Du) (similar to the user’s dia-
logue state described in [47]). The observation set is composed of the observations
of the user’s action (OAu) and the observations of the user’s affective state (OEu).
Depending on the complexity of the application’s domain, these features can be
represented by more specific features. For example, the user’s affective state can be
encoded by continuous variables such as valence and arousal and can be represented
using a continuous-state POMDP [8]. The observation of the user’s affective state
might be represented by a set of observable features such as response speech, speech
pitch, speech volume, posture, and gesture [4]. Similarly, a continuous-observation
POMDP [44] can be used to incorporate the continuous-valued features into the
observation space.

Figure 3b shows the structure of our affective dialogue model. The features of the
state set, action set, observation set, and their dependencies form a two time-slice
Dynamic Decision Network (2TDN). Technically, a factored POMDP is equiva-
lent to a 2TDN. Implicitly, some assumptions are made in this model: the user’s
goal only depends on the user’s goal in the previous slice and the system action
from the previous slice only influences the user’s emotion, the user’s action, and the
grounding state. We can easily modify this model for representing other dependen-
cies, for example the dependency between the user’s emotion and the observation
of the user’s action. Parameters pgc, pae, pec, pe, poa, and poe are used to produce
handcrafted transition and observation models in case no real data is available (e.g.,

R

S

A

S

Z Z

Gu

Eu

Au

Du

Gu

Eu

Au

Du

A

OAu OEu OAu OEu

pec

pgc

poa

poe

pe

time t-1 time t time t-1 time t

(a) (b)

R

A

RR

A

pae

pae

Fig. 3 (a) Standard POMDP and (b) Two time-slice of factored POMDP for the dialogue
manager

Affective Dialogue Management Using Factored POMDPs 221

at the initial phase of the system development), where pgc is the probability of the
user goal change; pae is the probability of the user’s emotional change because of
the influence of the system action such as when the system confirms an incorrect
user’s goal (represented by two causal links from the system action and user’s goal
to the user’s affective state); pec is the probability that the user emotion change is
due to the emotion decay and other causes; pe is the probability of an error in the
user’s action being induced by emotion; poa and poe are the probabilities of the ob-
servation error of the user’s action and the observation error of the user’s affective
state, respectively. The reward function is in principle different for each particular
application. Therefore, it is not specified in our general affective dialogue model.

Suppose the set of user’s goals has m values which are represented by Gu =
{v1,v2, ...,vm}. The features of S and Z and the action set A are formulated as
follows:

• Eu = {neutral,stress, frustration,anger,happiness, ...}.
Note that we can extend the representation of the user’s emotion by adding
more relevant features into the state space. For example, if the user’s emotion
is described by two dimensions valence and arousal. Eu then becomes a sub-
network with two continuous variables.

• Au = {answer(v),yes,no, ...}, where v ∈ Gu.
The abstract format of Au is userSpeechAct(v), where userSpeechAct is an ele-
ment of the set of the user’s speech acts.

• Du = {notstated,stated,confirmed, ...}.
• OAu = {answer(v),yes,no, ...}, where v ∈ Gu.

The value y ∈ OAu depends on the level of abstraction of the observation of the
user’s action. For example, if the observation of the user’s action is sent by the
ASR module, y is the word-graph or N-best hypotheses of the user’s utterance.
In our model, we assume a high level of abstraction for the observation of the
user’s action such as the output from a dialogue act recognition module or the
intention level in the simulated user model [15]. In the latter case, OAu has the
same set of values as Au.

• OEu = {neutral,stress, frustration,anger,happiness, ...}.
Similar to the observation of the user’s action, the observation of the user’s
affective state can be represented by a set of observable effects such as response
speed, speech pitch, speech volume, posture, and gesture features [4]. In our
current model, we assume that the observations of the user’s affective states are
the output of an AR module and therefore OEu has the same set of values as Eu.

• A = {ask,confirm(v), ...}, where v ∈ Gu.
The abstract format of A is systemSpeechAct(v), where systemSpeechAct is an
element of the set of the system speech acts.

For a random variable X , we denote x and x′ as the values of X at time t−1 and
t, respectively. Based on the network structure shown in Figure 3b, the transition
function is represented compactly as follows:

Pa
ss′ = P(g′u|gu)P(e′u|a,eu,g

′
u)P(a′u|a,g′u,e

′
u)P(d′u|a,du,a

′
u). (26)

222 T.H. Bui et al.

P(g′u|gu) is called the user’s goal model, P(e′u|a,eu,g′u) is called the user’s emotion
model, P(a′u|a,g′u,e′u) is called the user’s action model, and P(d′u|a,du,a′u) is called
the user’s grounding state model. The observation function is as follows:

Pa
s′z′ = P(ã′u|a′u)P(ẽ′u|e′u), (27)

where ã′u ∈OAu and ẽ′u ∈OEu. P(ã′u|a′u) is called the observation model of the user’s
actions and P(ẽ′u|e′u) is called the observation model of the user’s emotions.

6 User Simulation

The DM that we have described is a statistical DM. Dialogue corpora are usually
used to train this type of DMs. However, the (PO)MDP-based DM has a huge num-
ber of states, therefore it is almost impossible to learn an optimal policy directly
from a fixed corpus, regardless of its size [37]. To solve this problem, user simula-
tion techniques have been used [15, 23, 31, 36, 38]. The main idea is a two-phase

Simulated user

Gu

Eu

Au

Du

Gu

Eu

Au

Du

A

OAu OEu OAu OEu

time t-1 time t

RR

A

Dialogue
manager

at-1
oaut

oeut

rt-1

Fig. 4 Simulated user model using the Dynamic Decision Network (DDN). The user’s state,
action at each time-step are generated from the DDN. Only the observation of the user’s
action, affective state, and the reward are sent to the dialogue manager.

Affective Dialogue Management Using Factored POMDPs 223

approach. A simulated user is first trained on a small human–computer dialogue cor-
pus to learn responses of a real user given the dialogue context. The learning DM
then interacts with this simulated user in a trial and error manner to learn an optimal
dialogue strategy. Experimental results show that a competitive dialogue strategy
can be learnt even with handcrafted user model parameters [51]. Recent work also
demonstrated that user simulation can be used for testing dialogue systems in early
phases of the iterative development cycle [1].

Our simulated user model, constructed based on the POMDP environment, is
shown in Figure 4. The structure of this model is similar to the structure of the
POMDP model (Fig. 3b), except that the state feature nodes (i.e., Gu,Eu,Au, and
Du) in the simulated user model are observable from the user’s perspective. If a
corpus is available, we can use it to train the model structure and the parameters.

The process to generate observations of the user’s actions and of the user’s af-
fective states is as follows: First, the value at−1 from the DM is updated on node A
of the time-slice t−1, the reward rt−1 is identified from node A of time-slice t−1.
Second, the user’s goal, affective state, action, and dialogue state are randomly gen-
erated based on the probability distributions of the nodes Gu,Eu,Au, and Du (of
time-slice t), respectively. Third, the network is updated and the observation of the
user’s action oaut and affective state oeut are randomly selected based on the prob-
ability distribution of nodes OAu and OEu. The tuple < rt−1,oaut ,oeut > is sent
back to the DM.

7 Example: Single-Slot Route Navigation Example

We illustrate our affective dialogue model described in Section 5 by a simulated toy
route navigation example: “A rescue worker (denoted by “the user”) needs to get a
route description to evacuate victims from an unsafe tunnel. To achieve this goal, he
communicates his current location (one of m locations) to the system. The system
can infer the user’s stressed state and uses this information to adapt its dialogue
policy.”

In this simple example, the system can ask the user about their current location,
confirm a location provided by the user, show the route description (ok) of a given
location, and stop the dialogue (i.e., execute the fail action) by connecting the user to
a human operator. The factored POMDP model for this example is represented by:

• S = 〈Gu×Au×Eu×Du〉∪ end, where end is an absorbing state.

1. Gu = {v1,v2,...,vm}
2. Au = {answer(v1),answer(v2),...,answer(vm),yes,no}
3. Eu = {e1,e2}= {nostress,stress}
4. Du = {d1,d2}= {notstated,stated}

• A = {ask,confirm(v1),...,confirm(vm),ok(v1),ok(v2),...,ok(vm),fail},
• Z = 〈OAu×OEu〉.

224 T.H. Bui et al.

1. OAu = {answer(v1),answer(v2),...,answer(vm),yes,no}
2. OEu = {nostress,stress}

The full flat-POMDP model is composed of 4m2 + 8m + 1 states, 2m + 2 actions,
and 2m+ 4 observations, where m is the number of locations in the tunnel.

The reward model is specified in such a way that an (near) optimal policy helps
the user obtain the correct route description as soon as possible and maintains the
dialogue appropriateness [47]. Concretely, if the system confirms when the user’s
grounding state is notstated, the reward is −2, the reward is −3 for action fail, the
reward is 10 when the system gives a correct solution (i.e., the system action is
ok(x) where x is the user’s goal), otherwise the reward is −10. The reward for any
action taken in the absorbing end state is 0. The reward for any other actions is −1.
Designing a reward model that leads to a good dialogue policy is a challenging task.
It requires both expert knowledge and practical debugging [13].

The probability distributions of the transition function and observation function
are generated using the parameters pgc, pac, pec, pe, poa, poe defined in Section 5 and
two other parameters Kask and Kconfirm, where Kask and Kconfirm are the coefficients
associated with the ask and confirm actions. We assume that when the user is stress-
ful, he will make more errors in response to the system ask action than the system
confirm action because in our current model, the number of possible user actions
in response to ask (m possible actions: answer(v1),answer(v2),...,answer(vm)) is
greater than to confirm (2 actions: yes,no).

Concretely, the handcrafted models of the transition, observation and reward
function are described as follows. The user’s goal model is represented by:

P(g′u|gu) =

{
1− pgc if g′u = gu,

pgc
|Gu|−1 otherwise,

(28)

where gu is the user’s goal at time t− 1, g′u is the user’s goal at time t, |Gu| is the
number of the user’s goals. This model assumes that the user does not change their
goal at the next time step with the probability 1− pgc.

The user’s stress model:

P(e′u|a,eu,g
′
u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− pec if e′u = eu and a ∈ X ,

pec if e′u
= eu and a ∈ X ,

1− pec− pae if eu = e′u = e1 and a /∈ X ,

pec + pae if eu = e1 and e′u = e2 and a /∈ X ,

pec− pae if eu = e2 and e′u = e1 and a /∈ X ,

1− pec + pae if eu = e′u = e2 and a /∈ X ,

(29)

where pec≥ pae≥ 0, (pec + pae)≤ 1 and X = {ask,confirm(g′u),ok(g′u)}. This model
assumes that system mistakes (such as confirming the wrong item) would elevate the
user’s stress level.

Affective Dialogue Management Using Factored POMDPs 225

The user’s action model:

P(a′u|a,g′u,e
′
u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a = a1, e′u = e1, and a′u = a2,

1− p1 if a = a1, e′u = e2, and a′u = a2,
p1

|Au|−1 if a = a1, e′u = e2, and a′u
= a2,

1 if a = a3, e′u = e1, and a′u = a4,

1− p2 if a = a3, e′u = e2, and a′u = a4,
p2

|Au|−1 if a = a3, e′u = e2, and a′u
= a4,

1 if a = a5, e′u = e1, and a′u = a6,

1− p2 if a = a5, e′u = e2, and a′u = a6,
p2

|Au|−1 if a = a5, e′u = e2, and a′u
= a6,
1
|Au| if a = ok(y) or a = fail,

0 otherwise,

(30)

where a1 = ask, a2 = answer(g′u), a3 = confirm(g′u), a4 = yes, a5 = confirm(x),
a6 = no, p1 = pe/Kask, p2 = pe/Kconfirm, x & y ∈Gu, and x
= g′u.

The main idea behind this handcrafted user’s action model is explained as fol-
lows. When the user is not stressed, no communicative errors are made. When the
user is under stress, they might make errors. The probability that the user makes no
communicative errors when the system asks is 1− p1 and when the system confirms
is 1− p2.

The user’s grounding state model is handcrafted. It is represented by

P(d′u|a,du,a
′
u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a = ask, du = d1, a′u = answer(x), and d′u = d2,

1 if a = ask, du = d1, a′u ∈ {yes,no}, and d′u = d1,

1 if a = confirm(x), du = d1, a′u = no, and d′u = d1,

1 if a = confirm(x), du = d1, a′u
= no, and d′u = d2,

1 if a ∈ {ask,confirm(x)}, du = d2 and d′u = d2,

1 if a ∈ {ok(x),fail} and d′u = d1,

0 otherwise.

(31)

The observation model of the user’s actions:

P(ãu|au) =

{
1− poa if ã′u = au,

poa
|Au|−1 otherwise,

(32)

where au and ã′u are the user’s action and the observation of the user’s action, re-
spectively. |Au| is the number of the user’s actions. Parameter poa can be considered
as the recognition error rate of the NLU module (see Section 2).

The observation model of the user’s stress:

P(ẽu|eu) =

{
1− poe if ẽu = eu,

poe
|Eu|−1 otherwise,

(33)

226 T.H. Bui et al.

where eu and ẽu are the user’s stress state and the observation of the user’s stress
state, respectively. |Eu| is the number of the user’s stress states. Parameter poe can
be considered as the recognition error rate of an affect recognition module used for
the user’s stress detection.

The reward function:

R(s,a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s = end,

−2 if a = ask and gu = stated,

−2 if a = confirm(x) and gu = notstated,

10 if a = ok(x) and gu = x,

−10 if a = ok(x) and gu
= x,

−3 if a = fail,

−1 otherwise.

(34)

8 Evaluation

To compute a near-optimal policy for the route navigation example presented in Sec-
tion 7, we use the Perseus solver6 which is one of the state-of-the-art approximate
POMDP solvers7. All experiments were conducted on a Linux server using a 3 GHz
Intel Xeon CPU and a 24 GB RAM.

The performance of the computed policy is then evaluated using the simulated
user presented in Section 6. The simulated user is implemented using the SMILE
library8. The discount factor is only used for the planning phase. In the evaluation
phase, the total reward for each dialogue session is the sum of all the rewards the
system receives at each turn during the system–user interaction process (i.e., γ = 1).
There are two reasons for this decision. First, in the dialogue domain, the number
of turns in a dialogue session between the system and the user is finite. Second,
the intuitive meaning of the discount factor (γ < 1) is reasonable for positive reward
values but is not appropriate for negative reward values. For example, it is less likely
that the second confirm action bears a smaller cost than the first one on a given piece
of information provided by the user.

Note that when the discount factor γ is not used in the evaluation, it would be
rational to set γ = 1 during the planning phase (our problem is guaranteed to termi-
nate in a finite number of steps). However, Perseus requires that γ is smaller than 1.
The planning time also increases when γ approaches 1. We argue that it does make
sense to hand-tune the discount factor because it is not just a part of the problem
description. As γ approaches 1, the agent becomes more farsighted [42].

6 http://staff.science.uva.nl/ mtjspaan/pomdp/[accessed 2009-06-22]

7 Although Perseus is made for flat POMDPs, this solver does exploit the factor representa-
tion of the state and observation space for computing near optimal policies. Alternatively,
we can use the Symbolic Perseus solver. The advantage of this solver is mentioned in
Section 8.4.

8 http://genie.sis.pitt.edu[accessed 2009-06-24]

Affective Dialogue Management Using Factored POMDPs 227

A dialogue session between the system and the user is defined as an episode. Each
episode in the route navigation application starts with the system’s action. Following
the turn-taking mechanism, the system and the user exchange turns9 until the system
selects an ok or fail action (Table 3). The episode is then terminated10.

The interaction between the DM and the simulated user is as follows. Both the
dialogue manager (that uses the POMDP policy) and the simulated user exchange
text messages through the iROS middleware11. Every time the dialogue manager
performs ok or f ail action, the current episode is finished and a new episode is
started. The interaction ends when it reaches the number of episodes predefined by
the experimenter.

Formally, the reward of each episode is calculated from the user side as follows:

Re =
n

∑
t=0

Rt(St ,At), (35)

where n is the number of turns of the episode, the reward at turn t Rt(St ,At) is equal
to Ra

s (see Section 3) if the user’s state and action at turn t is St = s and the system
action at turn t is a. Note that each turn is composed of a pair of system and user’s
actions except the last turn. Table 3 shows an example of a 3-turns episode of the
single-slot route navigation application.

Table 3 An episode of the interaction between the system and the user

Turn Utterance Action Reward
1 S1 : Please provide the location of the victims? ask -1

U1 : Building 1. answer(v1)
2 S2 : The victims are in the Building 1. Is that correct? confirm(v1) -1

U2 : Yes. yes
3 S3 : Ok, the route description is shown on your PDA. ok(v1) 10

Reward of the episode: 8

The average return of N episodes is defined as follows:

RN =
1
N

N

∑
e=1

Re (36)

In the following sections, we first present the experiments for tuning three impor-
tant parameters: the discount factor, the number of belief points (i.e., belief states)
and the planning time. Second, we show the influence of the stress to the perfor-
mance of computed policies. Third, we compare the performance of the approximate
POMDP policies versus three handcrafted policies and the greedy action selection
policy. We then conduct experiments to address tractable issues.

9 Each time step in a formal POMDP definition is now considered as a turn.
10 A telephone-based dialogue example in [13] shows that the episode ends when the user

hangs up.
11 http://sourceforge.net/projects/iros/[accessed 2009-06-24]

228 T.H. Bui et al.

8.1 Parameter Tuning

Figures 5, 6, and 7 show the average returns of the simplest instance of the route
navigation problem (three locations) where the near-optimal policy is computed
based on different values of the discount factor, the number of belief points, and
the run-time for the planning phase.

Based on the result shown in Figure 5, the discount factor value γ = 0.99 is
selected for subsequent experiments that will be presented in this chapter. Inter-
estingly, it turns out that the de facto discount factor value (γ = 0.95) that is usu-
ally used for POMDP-based dialogue problems from the literature (e.g., Williams
et al. [49]) is not an optimal solution, at least for this example. It is worth noting
that the off-line planning time to get an ε-optimal policy increases monotonically
with the value of the discount factor especially when the convergence threshold ε
is small. For example, the time to get a similar policy for γ is equal to 0.9, 0.95,
and 0.99 is 7, 17, and 98 seconds, respectively. However, the time-bounded solution
(Fig. 5) performs well when we conduct the test with our simulated user.

Figure 6 shows that a reasonable solution is achieved with the number of belief
points starting from 200. Given a fixed threshold of the planning time, the number
of iterations decreases when the number of belief points increases. That is why
the average return of the case of 10000 belief points is low when the planning

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999

Discount factor used for the planning phase
(3 values, Pgc=Pae=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=1.5)

A
ve

ra
ge

 re
tu

rn
 (1

00
00

0
ep

is
od

es
)

Fig. 5 Average return vs. the discount factor used for the planning phase. Error bars show
the 95% confidence level. The threshold of the planning time is 60 seconds. Policies with
γ ≤ 0.95 converge (ε = 0.001) before this threshold.

Affective Dialogue Management Using Factored POMDPs 229

7.4

7.42

7.44

7.46

7.48

7.5

7.52

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

10
00

0

Number of belief points
(3 values, Pgc=Pae=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=1.5, discount=0.99)

A
ve

ra
ge

 re
tu

rn
 (1

 m
ill

io
n

ep
is

od
es

)
60s 180s

Fig. 6 Average return vs. number of belief points. Error bars show the 95% confidence level.

time is limited to 60 seconds. A default number of belief points for all subsequent
experiments is set to 1000 (this value is a reasonable choice for the case that the
number of locations is greater than 3).

Figure 7 shows that a stable solution is achieved when the planning time threshold
is 60 seconds. For all the subsequent experiments for the 3-locations case, the default
threshold for the planning time is set to 60 seconds. When the number of locations
increases, the solver need a longer time to get a good solution. For example, the
minimum time for the 10 locations case is 30 minutes.

8.2 Influence of Stress to the Performance

Figure 8 shows the influence of stress to the performance of two distinctive policies:
the non-affective policy (SDS-POMDP) and the affective policy (ADS-POMDP).
The SDS-POMDP does not incorporate the stress variable in the state and the ob-
servations set12 (similar to the SDS-POMDP policy described in [49]). The ADS-
POMDP is our affective dialogue model described in Section 5. The probability of
the user’s action error being induced by stress pe changes from 0 (stress has no
influence to the user’s action selection) to 0.8 (the user is highly stressed and acts
almost randomly). The average returns of both policies decreases when pe increases.
When stress has no influence on the user’s action error, the average returns of the

12 The SDS-POMDP policy is equivalent to the ADS-POMDP policy computed for the case
pe = 0.

230 T.H. Bui et al.

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

15 30 60 120 180 240 300 360 420 480 540 600

Planning time in seconds
(3 values, Pgc=Pac=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=1.5, discount=0.99)

A
ve

ra
ge

 re
tu

rn
 (1

 m
ill

io
n

ep
is

od
es

)

Fig. 7 Average return vs. planning time in seconds. Error bars show the 95% confidence level.

two policies are equal. When pe ≥ 0.1, the ADS-POMDP policy outperforms the
SDS-POMDP counterpart13.

Note that the affective POMDP policy performs better than its non-affective
counterpart because it exploits the user’s stress model. In reality, it is very challeng-
ing to obtain a reliable model of the user’s stress. Therefore, it would be interesting
to compare these two policies in an experiment with real users.

8.3 Comparison with Other Techniques

In this section, we evaluate the performance of the POMDP DM by comparing the
performance of the approximate POMDP policy (ADS-POMDP) and four other di-
alogue strategies: HC1, HC2, HC3 (Fig. 9), and the greedy action selection strategy.
HC1 is the optimal dialogue policy when pgc = pe = poa = 0 (the user’s goal does
not change; stress has no influence on the user’s action and there is no error in
observing the user’s action, i.e., the speech recognition and spoken language under-
standing errors are equal to 0). HC1 and HC2 are considered as the non-affective
dialogue strategies since they ignore the user’s stress state. HC3 uses commonsense
rules to generate the system behavior. The greedy policy is a special case of the
POMDP-based dialogue with the discount factor γ = 0 (this strategy is similar to
the one used in two real-world dialogue systems [29, 51]).

13 We then assume that the ADS-POMDP policy is better than the non-affective MDP pol-
icy since Williams [46] demonstrated that the SDS-POMDP policy outperforms its MDP
counterpart.

Affective Dialogue Management Using Factored POMDPs 231

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of the user's action error being induced by stress Pe
(m=3, Pgc=Pae=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=1.5)

A
ve

ra
ge

 re
tu

rn
 (1

00
k

ep
is

od
es

)
ADS-POMDP SDS-POMDP

Fig. 8 Average returns of the affective policy and non-affective policy vs. the probability of
the user’s action error induced by stress pe

As expected, the ADS-POMDP policy outperforms all other strategies (Fig. 10).
HC3 outperforms its handcrafted counterparts.

8.4 Tractability

The ε-optimal policy presented in Sections 8.1, 8.2, and 8.3 is computed for the
simplest instance of the single-slot route navigation example which is composed of
only three locations (m = 3). In reality, even with a single-slot dialogue problem, the
number of slot values m is usually large. Section 7 presents a connection between
m and the size of the POMDP problem (state, action, and observation sets). For the
single-slot route navigation example, the number of states is a quadric function of
m. The number of actions and observations is also a linear function of m. In this
section, we address the POMDP tractable issues by increasing the number of slot
values gradually and trying to compute the ε-optimal policy for each case.

Perseus can only handle problems with m≤ 15. This is because although the ap-
proximate PBVI algorithms such as Perseus are able to handle the curse of history
problem, the curse of dimensionality (i.e., the dimensionality of α-vectors grows
exponentially with the number of states) remains (see [10, chap. 2] for further dis-
cussions about the POMDP tractability). Another practical issue is that the size of
the optimized POMDP parameter file also increases exponentially in the dimension
of m. A recently implemented POMDP solver, Symbolic Perseus, allows for a com-
pact representation of the POMDP parameter files. Symbolic Perseus can help to

232 T.H. Bui et al.

Fig. 9 Three handcrafted dialogue strategies for the single-slot route navigation problem (x is
the observed location): (a) first ask and then select ok action if the observation of the user’s
action ãu is answer (otherwise ask), (b) first ask, then confirm if ãu = answer (otherwise ask)
and then select ok action if ãu = yes (otherwise ask), (c) first ask, then confirm if ãu = answer
& ẽu = stress and select ok action if ãu = yes

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe
(m=3, Pgc=Pae=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=1.5)

A
ve

ra
ge

 re
tu

rn
 (1

00
k

ep
is

od
es

)

ADS-POMDP HC1 HC2 HC3 Greedy

Fig. 10 Average return of the POMDP policy vs. other policies

scale the range of solvable problems to two orders of magnitude compared with the
Perseus solver. As described in [18], it was demonstrated to solve a hand-washing
problem with the size of 50 million states, 20 actions, and 12 observations. Although
this is one of the most complex problems in the POMDP research community, it is

Affective Dialogue Management Using Factored POMDPs 233

only a toy problem compared with real-world dialogue problems. For example, the
affective dialogue model for the RestInfo problem presented in [10, chap. 1] is com-
posed of more than 600 million states and its spoken counterpart is composed of
more than 300 million states. In [11], we proposed a solution to handle these com-
plex problems by decomposing the dialogue model into two levels: global dialogue
manger level and slot level dialogue manager level. The first is modeled using a set
of simple rules. The second is first modeled as a factored POMDP similar to the
one presented in this paper and then approximated as a set of Dynamic Decision
Networks. More detailed information about this solution is presented in [11].

9 Conclusions

This chapter argues that POMDPs are appropriate for affective dialogue manage-
ment. To support this argument, we have described the interaction process of a gen-
eral affective dialogue system and illustrated how to specify the POMDP model for
a simple empathic dialogue agent.

Extending from the previous POMDP-based dialogue management work, we
have presented a factored POMDP approach for affective dialogue model design
with a potential use for a wide range of applications. The 2TBN representation al-
lows integration of the features of states, actions, and observations in a flexible way.
The approach is illustrated through a route navigation example as a proof of concept.
The experimental results showed that the affective POMDP policy outperformed its
spoken counterpart and the handcrafted and greedy action selection strategies given
the user’s stress influences their behavior. We also conducted experiments to deter-
mine a best set of parameters (discount factor, number of belief points, and planning
time). The results could be a good indicator for computing POMDP policy for other
dialogue problems.

A key limitation of the current POMDP-based dialogue models is tractability.
Given the mathematical soundness of the POMDP framework and recent efforts to
resolve this limitation [11, 51], it would be worth to follow this direction for building
robust dialogue systems.

References

1. Ai, H., Weng, F.: User simulation as testing for spoken dialog systems. In: Schlangen,
D., Hockey, B.A. (eds.) Proceedings of the 9th SIGDial Workshop on Discourse and
Dialogue (SIGdial 2008), Columbus, Ohio, USA, pp. 164–171 (2008)

2. André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.): ADS 2004. LNCS (LNAI),
vol. 3068. Springer, Heidelberg (2004)

3. Astrom, K.J.: Optimal control of Markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications 10, 174–205 (1965)

4. Ball, E.: A Bayesian heart: Computer recognition and simulation of emotion. In: Robert
Trappl, P.P., Payr, S. (eds.) Emotions in Humans and Artifacts, vol. 11, pp. 303–332. The
MIT Press, Cambridge (2003)

234 T.H. Bui et al.

5. Batliner, A., Fischer, K., Huber, R., Spilker, J., Nöth, E.: How to find trouble in commu-
nication. Speech Communication 40(1-2), 117–143 (2003)

6. Bhatt, K., Argamon, S., Evens, M.: Hedged responses and expressions of affect in
human/human and human/computer tutorial interactions. In: Forbus, K., Gentner, D.,
Regier, T. (eds.) Proceedings of the 26th Annual Conference of the Cognitive Science
Society (CogSci 2004), Chicago, Illinois, USA, pp. 114–119 (2004)

7. Boutilier, C., Poole, D.: Computing optimal policies for partially observable decision
processes using compact representations. In: Proceedings of the 13th National Confer-
ence on Artificial Intelligence (AAAI 1996), Portland, Oregon, USA, vol. 2, pp. 1168–
1175 (1996)

8. Brooks, A., Makarenkoa, A., Williamsa, S., Durrant-Whytea, H.: Parametric POMDPs
for planning in continuous state spaces. Robotics and Autonomous Systems 54(11), 887–
897 (2006)

9. Bui, T.H.: Multimodal dialogue management - State of the art. Tech. rep., University of
Twente (2006)

10. Bui, T.H.: Toward affective dialogue management using partially observable markov
decision processes. Ph.D. thesis, University of Twente (2008)

11. Bui, T.H., Poel, M., Nijholt, A., Zwiers, J.: A tractable hybrid DDN-POMDP approach
to affective dialogue modeling for probabilistic frame-based dialogue systems. Natural
Language Engineering 15(2), 273–307 (2009)

12. Bui, T.H., Rajman, M., Melichar, M.: Rapid dialogue prototyping methodology. In: So-
jka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS (LNAI), vol. 3206, pp. 579–586.
Springer, Heidelberg (2004)

13. Bui, T.H., van Schooten, B., Hofs, D.: Practical dialogue manager development using
POMDPs. In: Keizer, S., Bunt, H., Paek, T. (eds.) Proceedings of the 8th SIGdial Work-
shop on Discourse and Dialogue (SIGdial 2007), Antwerp, Belgium, pp. 215–218 (2007)

14. Bui, T.H., Zwiers, J., Nijholt, A., Poel, M.: Generic dialogue modeling for multi-
application dialogue systems. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS,
vol. 3869, pp. 174–186. Springer, Heidelberg (2006)

15. Eckert, W., Levin, E., Pieraccini, R.: User modelling for spoken dialogue system evalu-
ation. In: Prococeedings of the IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU 1997), pp. 80–87. IEEE, Santa Barbara (1997)

16. Hauskrecht, M.: Value-function approximations for partially observable Markov deci-
sion processes. Journal of Artificial Intelligence Research (JAIR) 13, 33–94 (2000)

17. Heylen, D., Nijholt, A., op den Akker, R.: Affect in tutoring dialogues. Applied Artificial
Intelligence 19, 287–311 (2005)

18. Hoey, J., von Bertoldi, A., Poupart, P., Mihailidis, A.: Assisting persons with dementia
during handwashing using a partially observable markov decision process. In: Proceed-
ings of the 5th International Conference on Vision Systems (ICVS 2007), Bielefeld,
Germany (2007)

19. Howard, R.A.: Dynamic Programming and Markov Process. The MIT Press, Cambridge
(1960)

20. Jurafsky, D., Martin, J.: Speech and Language Processing: An Introduction to Natural
Language Processing. Prentice Hall, Englewood Cliffs (2000)

21. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

22. Levelt, W.J.: Speaking: From Intention to Articulation. The MIT Press, Cambridge
(1989)

Affective Dialogue Management Using Factored POMDPs 235

23. Levin, E., Pieraccini, R., Eckert, W.: A stochastic model of human-machine interac-
tion for learning dialogue strategies. IEEE Transactions on Speech and Audio Process-
ing 8(1), 11–23 (2000)

24. Littman, M.L., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially observ-
able environments: Scaling up. In: Prieditis, A., Russell, S.J. (eds.) Proceedings of the
12th International Conference on Machine Learning (ICML 1995), pp. 362–370. Mor-
gan Kaufmann, Tahoe City (1995)

25. Martinovsky, B., Traum, D.R.: The error is the clue: Breakdown in human-machine in-
teraction. In: Proceedings of the ISCA Tutorial and Research Workshop on Error han-
dling in Spoken Dialogue Systems (EHSD 2003), Château d’Oex, Vaud, Switzerland,
pp. 11–16 (2003)

26. McTear, M.: Spoken dialogue technology: Enabling the conversational user interface.
ACM Computing Survey 34(1) (2002)

27. Monahan, G.E.: A survey of partially observable markov decision processes: Theory,
models, and algorithms. Management Science 28-1, 1–16 (1982)

28. Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge
University Press, Cambridge (1988)

29. Paek, T., Horvitz, E.: Conversation as action under uncertainty. In: Proceedings of the
16th Conference on Uncertainty in Artificial Intelligence (UAI 2000), pp. 455–464. Mor-
gan Kaufmann, San Francisco (2000)

30. Picard, R.W.: Affective Computing. The MIT Press, Cambridge (1997)
31. Pietquin, O.: A framework for unsupervised learning of dialogue strategies. Ph.D. thesis,

Universitaires de Louvain (2004)
32. Puterman, M.L.: Markov decision processes. In: Heyman, D., Sobel, M. (eds.) Hand-

book in Operations Research and Management Science, vol. 2, pp. 331–434. Elsevier,
Amsterdam (1990)

33. de Rosis, F., Novielli, N., Carofiglio, V., Cavalluzzi, A., Carolis, B.D.: User model-
ing and adaptation in health promotion dialogs with an animated character. Journal of
Biomedical Informatics 39(5), 514–531 (2006)

34. Roy, N., Pineau, J., Thrun, S.: Spoken dialogue management using probabilistic reason-
ing. In: Proceedings of the 38th Annual Meeting of the Association for Computational
Linguistics (ACL 2000), pp. 93–100. ACL, Hong Kong (2000)

35. Roy, N., Thrun, S.: Coastal navigation with mobile robots. In: Solla, S.A., Leen, T.K.,
Müller, K.R. (eds.) Advances in Neural Information Processing Systems 12, [NIPS Con-
ference, Denver, Colorado, USA, November 29 - December 4, 1999], pp. 1043–1049.
The MIT Press, Denver (2000)

36. Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., Young, S.: Agenda-based user
simulation for bootstrapping a POMDP dialogue system. In: Human Language Tech-
nologies 2007: The Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL-HLT 2007), pp. 149–152. ACL, Rochester (2007)

37. Schatzmann, J., Weilhammer, K., Stuttle, M., Young, S.: A survey of statistical user
simulation techniques for reinforcement-learning of dialogue management strategies.
Knowledge Engineering Review 21(2), 97–126 (2006)

38. Scheffler, K., Young, S.J.: Automatic learning of dialogue strategy using dialogue simu-
lation and reinforcement learning. In: Marcus, M. (ed.) Proceedings of the 2nd Interna-
tional Conference on Human Language Technology Research (HLT 2002), pp. 12–18.
Morgan Kaufmann, San Francisco (2002)

39. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov pro-
cesses over a finite horizon. Operations Research 21-5, 1071–1088 (1973)

236 T.H. Bui et al.

40. Sondik, E.J.: The optimal control of partially observable markov decision processes.
Ph.D. thesis, Stanford University (1971)

41. Spaan, M.T.J., Vlassis, N.: Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research (JAIR) 24, 195–220 (2005)

42. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press,
Cambridge (1998)

43. Traum, D., Larsson, S.: The information state approach to dialogue management. In:
van Kuppevelt, J., Smith, R.W. (eds.) Current and New Directions in Discourse and
Dialogue, ch. 15, pp. 325–353. Kluwer Academic Publishers, Dordrecht (2003)

44. Williams, J., Poupart, P., Young, S.: Partially Observable Markov Decision Processes
with Continuous Observations for Dialog Management. In: Williams, J., Poupart, P.,
Young, S. (eds.) Recent Trends in Discourse and Dialogue, chap, pp. 191–217. Springer,
Heidelberg (2008)

45. Williams, J., Young, S.: Scaling up POMDPs for dialogue management: the summary
POMDP method. In: Proceedings of the IEEE workshop on Automatic Speech Recog-
nition and Understanding (ASRU 2005), Cancún, Mexico, pp. 250–255 (2005)

46. Williams, J.D.: Partially observable Markov decision processes for dialog management.
Ph.D. thesis, Cambridge University (2006)

47. Williams, J.D., Poupart, P., Young, S.: Factored partially observable Markov decision
processes for dialogue management. In: Zukerman, I., Alexandersson, J., Jönsson, A.
(eds.) Proceedings of the 4th Workshop on Knowledge and Reasoning in Practical Dia-
log Systems (KRPD 2005), Edinburgh, Scotland, pp. 76–82 (2005)

48. Williams, J.D., Poupart, P., Young, S.: Partially observable Markov decision processes
with continuous observations for dialogue management. In: Proceedings of the 6th Sig-
Dial Workshop on Discourse and Dialogue, SIGdial 2005 (2005)

49. Williams, J.D., Young, S.: Partially observable markov decision processes for spoken
dialog systems. Computer Speech and Language 21(2), 393–422 (2007)

50. Young, S.: Talking to machines (statistically speaking). In: Proceedings of the 7th Inter-
national Conference on Spoken Language Processing (ICSLP 2002), Denver, Colorado,
USA, pp. 9–16 (2002)

51. Young, S., Gasić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., Yu, K.:
The hidden information state model: A practical framework for pomdp-based spoken
dialogue management. Computer Speech and Language (2009)

52. Zhang, B., Cai, Q., Mao, J., Guo, B.: Spoken dialog management as planning and acting
under uncertainty. In: Proceedings of the 7th European Conference on Speech Com-
munication and Technology (EUROSPEECH 2001), Aalborg, Denmark, pp. 2169–2172
(2001)

53. Zhang, N.L.: Efficient planning in stochastic domains through exploiting problem char-
acteristics. Tech. Rep. HKUST-CS95-40, Hong Kong University of Science and Tech-
nology (1995)

54. Zhang, N.L., Zhang, W.: Speeding up the convergence of value iteration in par-
tially observable markov decision processes. Journal of Artificial Intelligence Research
(JAIR) 14, 29–51 (2001)

	Affective Dialogue Management Using Factored POMDPs
	Introduction
	Components of an Affective Dialogue System
	TheoryofPOMDPs
	Basic Framework
	Empathic Dialogue Agent Example
	Computing Belief States
	Finding an Optimal Policy

	Review of the POMDP-Based Dialogue Management
	The Factored POMDP Approach
	User Simulation
	Example: Single-Slot Route Navigation Example
	Evaluation
	Parameter Tuning
	Influence of Stress to the Performance
	Comparison with Other Techniques
	Tractability

	Conclusions
	References

