Chapter 16

Computational Matter: Evolving
Computational Functions in Nanoscale
Materials

Hajo Broersma, Julian F. Miller and Stefano Nichele

Abstract Natural evolution has been manipulating the properties of proteins for
billions of years. This ‘design process’ is completely different to conventional human
design which assembles well-understood smaller parts in a highly principled way. In
evolution-in-materio (EIM), researchers use evolutionary algorithms to define con-
figurations and magnitudes of physical variables (e.g. voltages) which are applied to
material systems so that they carry out useful computation. One of the advantages of
this is that artificial evolution can exploit physical effects that are either too complex
to understand or hitherto unknown. An EU funded project in Unconventional Com-
putation called NASCENCE: Nanoscale Engineering of Novel Computation using
Evolution, has the aim to model, understand and exploit the behaviour of evolved
configurations of nanosystems (e.g. networks of nanoparticles, carbon nanotubes,
liquid crystals) to solve computational problems. The project showed that it is possi-
ble to use materials to help find solutions to a number of well-known computational
problems (e.g. TSP, Bin-packing, Logic gates, etc.).

16.1 Introduction

Conventional or classical computation is based on an abstract model of a machine
called a Turing Machine [69]. Such a machine can write or erase symbols on a possi-
bly infinite one dimensional tape. Its actions are determined by a table of instructions
that determine what the machine will write on the tape (by moving one square left

H. Broersma (<)
University of Twente, Enschede, The Netherlands
e-mail: h.j.broersma@utwente.nl

J.E. Miller
University of York, YO10 5DD Heslington, York, England
e-mail: julian.miller@york.ac.uk

S. Nichele
Norwegian University of Science and Technology, Trondheim, Norway
e-mail: nichele @idi.ntnu.no

© Springer International Publishing Switzerland 2017 397
A. Adamatzky (ed.), Advances in Unconventional Computing,

Emergence, Complexity and Computation 23,

DOI 10.1007/978-3-319-33921-4_16

h.j.broersma@utwente.nl

398 H. Broersma et al.

or right) given its state (stored in a state register) and the symbol on the tape. Turing
showed that the calculations that could be performed on such a machine accord with
the notion of computation in mathematics. Von Neumann proposed a design for a
computer architecture based on the ideas of Turing that formed the foundation of
modern stored programs computers [52]. These are digital in operation. Although
they are made of physical devices (i.e. transistors), computations are made on the
basis of whether a voltage is above or below some threshold. Classical computers
are based on a symbolic notion of computation.

Unconventional computing looks at systems that carry out computation which
do not conform to the Turing model of computation. An obvious and highly plen-
tiful source of such unconventional computing systems are living organisms. These
carry out prodigious amounts of computation in their everyday tasks of survival and
reproduction. Unlike classical programs the computational instructions that underlie
living organisms have not been designed but rather have been evolved. Symbolic
notions of computation have a severe drawback compared with evolving physical
computational systems. The former has no obvious way of making use of the natural
computational power of physical systems. According to Conrad this leads us to pay
“The Price of Programmability” [12], whereby in conventional programming and
design we proceed by excluding many of the processes that may lead to us solving
the problem at hand. The question then emerges: Is there a way to use classical com-
putation to exploit rather than exclude, the properties of physical systems to solve
computational problems? This chapter describes work that answers this question by
attempting to use computer controlled evolution to ‘program’ useful devices. This
allows artificial evolution to directly manipulate a physical system. In this way it
is hoped to create novel and useful devices in physical systems whose operational
principles are not necessarily understood or are hitherto unknown.

Computer-controlled evolution is referred to by a variety of names: evolutionary
algorithms [14], genetic algorithms [23], genetic programming [27, 56]. It is part of
a wide research area known as bio-inspired computation. The main elements of an
evolutionary algorithm are:

Generate initial population of size p. Set number of generations, g = 0
REPEAT
Calculate the fitness of each member of the population
Select a number of parents according to quality of fitness
Recombine some, if not all, parents to create offspring genotypes
Mutate some parents and offspring
Form a new population from mutated parents and offspring
Optional: promote a number of unaltered parents from step 4 to the new
population
Increment the number of generations g <— g + 1
UNTIL(g equals the number of generations required) OR (the fitness is
acceptable)

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 399

In evolutionary computing, the term genotype (or chromosome) is used to refer
to the string of numbers that defines a solution to a search problem. The individual
elements of the genotype are commonly referred to as genes. To solve a computa-
tional problem requires an assessment of how well a particular genotype represents
a solution to the computational search problem. This is called a fitness function. The
“survival-of-the-fittest” principle of Darwinian evolution is implemented by using a
form of fitness-based selection that is more likely to choose solutions for the next
generation that are fitter rather than poorer. Mutation is an operation that changes a
genotype by making random alterations to some genes, with a certain probability.
Recombination is a process of generating one or more new genotypes by recombin-
ing genes from two or more genotypes. Sometimes, genotypes from one generation
are promoted directly to the next generation, this is referred to as elitism (see the
optional step in the above Algorithm).

Evolution-in-materio (EIM) is a term coined by Miller and Downing [38] that
refers to the manipulation of physical systems using computer controlled evolution
(CCE) [19-21, 38, 41]. It is a type of unconstrained evolution in which, through
the application of physical signals, various intrinsic properties of a material can
be heightened or configured so that a useful computational function is achieved.
Yoshihito discussed a closely related concept of “material processors” which he
describes as material systems that can process information by using the properties
of the material [75]. Zauner describes a related term which he refers to as “informed
matter” [76]. It is interesting that inspection of much earlier research publications
reveals that ideas similar to evolution-in-materio, albeit without computers, were
conceived in the late 1950s (particularly by Gordon Pask, see [6, 55]).

The concept of EIM grew out of work that arose in a sub-field of evolutionary
computation called evolvable hardware [16, 22, 61, 77], particularly through the
work of Adrian Thompson [66, 68]. In 1996, Thompson famously demonstrated that
unconstrained evolution on a silicon chip called a Field Programmable Gate Array
(FPGA) could utilise the physical properties of the chip to solve computational
problems [65].

In 2002, Miller and Downing discussed the concept of evolution-in-materio and
suggested that liquid crystal might be a suitable material for attempting to evolve
computation in materials [38]. They also discussed many other materials whose
properties can be affected reversibly via physical signals. Utilising the evolvable
motherboard concept of Layzell [32], Harding constructed a liquid crystal analogue
processor (LCAP) that utilises the physical properties of liquid crystal for compu-
tation [18]. The experimental setup used by Harding was similar in concept to that
used by Thompson [65, 67].

The work described in this chapter was carried out as part of an EU funded research
project called NASCENCE (Nanoscale Engineering of Novel Computation Using
Evolution) [5] in which various computational problems were investigated using
evolution-in-materio using micro-electrode arrays.

The plan of the chapter is as follows. Section 16.2 explains the central concept of
evolution-in-materio. Section 16.3 describes the used configurable nano-materials,
and in Sect.16.4 an overview of the EIM hardware control system is given. A

h.j.broersma@utwente.nl

400 H. Broersma et al.

brief introduction of the computational problems under investigation is presented
in Sect. 16.5, and Sect. 16.6 gives a detailed summary of the experimental results for
the solved computational problems, together with an explanation of possible emer-
gent behaviours of carbon nanotube materials and gold nanoparticle materials. In
Sect. 16.7 different models and simulation tools for nano-materials are introduced,
each at a different abstraction level. Finally, Sect. 16.8 concludes the chapter and
outlines directions for further work.

16.2 Conceptual Overview

The central idea of evolution-in-materio is that the application of some physical
signals to a material (configuration variables) can cause it to alter how it responds to
an applied physical input signal and how it generates a measurable physical output
(see Fig. 16.1) [38]. Physical outputs from the material are converted to output data
and a numerical fitness score is assigned based on how close the output is to a desired
response. This fitness is assigned to the member of the population that supplied the
configuration variables. Ideally, the material would be able to be reset before the
application of new configuration instructions. This is likely to be important as without
the ability to reset the material, it may retain a memory from past configurations.
This could lead to the same configuration having different fitness values depending
on the history of interactions with the material.

Mappings need to be devised which convert problem domain data into suitable
signals to apply to the material. An input-mapping needs to be devised to map problem
domain inputs (if any) to physical input signals. An output-mapping is required to
convert measured variables from the material into a numerical value which can be
used to solve a computational problem. Finally, a configuration-mapping is required
to convert numerical values held on a computer into physical variables that are used
to “program or configure” the material. In the course of this chapter we will see
examples of a number of mappings.

A difficult question which to some extent can only be answered by experiments,
concerns which types of physical variables should be manipulated to obtain the best
response from the material. As will be seen, generally in the NASCENCE project,
only electrical stimuli to the materials have been investigated. This was largely chosen
because it is relatively straightforward to manipulate such signals.

There are two main ways that computational problems can be solved using EIM.
In the first, a material is used in the mapping of genotype to a fitness value. In this
approach the material is seen as an assistant in an evolutionary search process. It
provides a “black-box” mapping from genotype to output data (from which fitness
is assessed). The thinking behind this is that the material may provide a more evolv-
able genotype-to-phenotype mapping, since physical variables can be exploited that
could not be exploited if a purely algorithmic mapping was used (as is standard in
evolutionary computation). In this type of hybrid system, much of the data required
for solving a particular problem would remain on a computer. The role of the material

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 401

physical
domain

) configurable
material

physical input |

(optional)

physical output

physical
configuration

map input data map genotype to map physical
to physical input <@ physical configuration output to
(optional) output data

A

generate population of
genotypes subject
to search algorithm

A

Apply test data

and measure fitness (

computer
domain

Fig. 16.1 Concept of evolution-in-materio. There are two domains: physical and computer. In the
physical domain there is a material to which physical signals can be applied or measured. These
signals are either input signals, output signals or configuration signals. A computer controls the
application of physical inputs applied to the material, the reading of physical signals from the
material and the application to the material of other physical inputs known as configurations. A
genotype of numerical data is held on the computer and is transformed into configuration variables
that physically affect the material. The genotypes are subject to an evolutionary algorithm. Physical
output signals are read from the material and converted to output data in the computer. A fitness
value is obtained from the output data and supplied as a fitness of a genotype to the evolutionary
algorithm

would be to improve the search process itself. Thus in this case the material does
not necessarily require any input data. Examples of computational problems that can
be tackled using this approach are: Travelling Salesman Problem (TSP). Function
Optimisation and Bin-packing. The TSP is the well known problem of determining
the shortest tour through a number of cities. Function optimisation is the problem of
determining a vector of numbers which minimises a complex function. Bin-packing
is the problem of packing a number of items into as few bins as possible, assuming
that each bin has a fixed weight capacity. To obtain solutions to such problems using
EIM requires that a set of configuration signals are determined that cause the material
to output a suitable vector of measured values.

h.j.broersma@utwente.nl

402 H. Broersma et al.

In the second approach, the evolutionary algorithm determines a configuration
which allows the material to act as a stand alone computational device. This is a
device which provided with the evolved configuration signals, carries out the desired
computational mapping. A number of such problems have been considered: digi-
tal logic gates, data classification, robot control and graph colouring. For example,
suppose that one desired to carry out data classification using a material. Assuming
that a stand alone device could be built that used the material and some circuitry to
provide the evolved set of configuration signals, one could potentially feed data into
the material at a very fast rate and obtain data classification at very high speed and
low power consumption. Similarly, evolved logic gates may be able to operate at high
speeds and low power etc. We will see examples of both approaches being used in this
chapter. The term configuration of a material can have a number of meanings. It can
merely be the application of physical signals to the material so that some underlying
physical properties change, e.g. conductance or resistance. As a result, the material is
put into a state that allows the desired computation to take place. Or alternatively, it
may be that when the physical signals are applied the material physically changes in
some way. For instance, the underlying (electrical) network might be rearranged, or
the molecules at the nano-scale could self-organise to a desired state so that the target
computational function takes place. An example of the latter is provided by the work
with liquid crystal of Harding and Miller [18]. In this case, applied configuration
signals caused liquid crystal molecules to twist, thus there was a physical change in
the material when configuration signals were applied. Finally, both these effects may
happen at the same time.

16.3 Configurable Materials and Micro-electrode Arrays

Although computational materials may be configured by different kinds of stim-
uli, e.g. electrical signals, magnetic fields, temperature variations, light, etc., it was
decided to only manipulate electrical signals within the NASCENCE project. Two
types of evolvable material systems were constructed. Both are based on electrode
arrays. A material is deposited in the vicinity of the electrodes. Some of the elec-
trodes are chosen as inputs (if the computational problem demands inputs), some
are chosen as outputs, and a number of electrodes are chosen as configuration elec-
trodes. In one system, the material deposited was a mixture of single-walled car-
bon nanotubes (SWCNT) randomly mixed in an insulating material. This is shown
in Fig.16.2. The insulating material was either PMMA/PBMA (Polymethy/butyl
methacralate) [49]. Carbon nanotubes are conducting or semi-conducting and the
role of the PMMA/PBMA is to introduce insulating regions within the nanotube
network, to create non-linear current versus voltage characteristics.

In the other system, shown in Fig. 16.3, a disordered network of gold nanoparticles
interconnected by insulating molecules (1-octanethiols) is trapped in a small region
surrounded by electrodes [4].

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 403

Fig. 16.2 Circular twelve electrode array. The material in the centre is a mixture of SWCNT and
PMMA. The concentration of SWCNT is 0.05 % by weight. SWCNTs are mixed with PMMA or
PBMA and dissolved in anisole (methoxybenzene). 20 LL of material is drop dispensed onto the
electrode array. This is dried at 100°C for 30 min to leave a film over the electrodes [49]

Fig. 16.3 Circular eight electrode array. The material is a disordered network of 20nm Au NPs
interconnected by insulating molecules (1-octanethiols). The NPs are trapped in a circular region
(200nm in diameter) between radial metal (Ti/Au) electrodes on top of a highly doped Si/SiO;
substrate, which functions as a back gate. The device operates at temperatures below 1°K [4]

At low temperatures, a nanoparticle with capacitance C has a charging energy
E = ¢?/C which is larger than the thermal energy.! In this case nanoparticles exhibit
Coulomb blockade and act as a single electron transistor (SET). One electron at a
time can tunnel when sufficient energy is available (ON state), either by applying a
voltage across the SET or by electrostatically shifting its potential. Otherwise, the
transport is blocked because of the Coulomb blockade (OFF state).

L is the charge on an electron.

h.j.broersma@utwente.nl

404 H. Broersma et al.

16.4 EIM Hardware Control Systems

In order to be able to apply an evolutionary algorithm to determine a set of signals that
should be applied to the electrode arrays, one requires a hardware interface system
between a computer and the material. The hardware system needs to allow a variety
of signals to be applied to the electrodes. In the NASCENCE project the signals used
were one of the following:

e Digital voltages, 0 and 3.5V
e Analogue voltages in some range
e Square-wave signals

One also needs to be able to sample and record voltages detected on electrodes,
since from these measurements a fitness value is determined. Thus one needs equip-
ment that allows the user to choose a sampling frequency and store the values (in a
buffer). Since it is not known in advance to which electrodes input signals should be
applied, generally one needs a way of allowing the evolutionary algorithm to choose
which electrodes will receive inputs (if the computational problem requires inputs)
and which electrodes will be designated as outputs, and finally which electrodes
will be the configuration inputs. A variety of different hardware systems have been
explored for doing this.

e Digital acquisition cards together with programmable switch arrays [9]
e Mbed microcontrollers with digital to analogue converters [37]
e Purpose built platforms [4, 34]

16.5 Computational Problems

The NASCENCE consortium investigated a diverse range of computational prob-
lems. The list of problems is given below.

1. Logic gates

a. Two-input single output Boolean functions (e.g. (N)AND, (N)OR, XOR) [4,
26, 34]

b. Three/Four input single output Boolean functions (e.g. even-3 and 4 par-
ity) [43]

c. Two-input two-output Boolean functions (e.g. half adder) [4, 26, 37]

d. Three-input, two-output Boolean functions (e.g. full-adder)

2. Travelling Salesman

This has no inputs and as many outputs as there are cities [9]

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 405

3. Classification

a. Standard machine learning benchmarks (Iris, Lens, banknote): number of
inputs equals the number of attributes, number of outputs is equal to the
number of classes [8, 44]

b. Frequency classification: this requires one input for carrying the source
signal whose frequency is to be classified and two outputs which are used
to decide the class of the frequency (high or low) [45, 49]

c. Tone discriminator: this has the same number of inputs and outputs as the
frequency classifier [49]

4. Function Optimisation

a. This has no inputs and as many outputs as there are dimensions in the
function to be optimised [47, 49]

5. Bin-Packing

a. This has no inputs and as many outputs as there are items to be placed into
bins [46]

6. Robot control

a. This has as many inputs as robot sensors and as many outputs as robot
actuators (e.g. motors) [42]

7. Graph colouring

a. This has been looked at with a single input (graph select) and as many
outputs as there are nodes to be coloured. Each output selects the colour of
the node [33]

The seven classes of problems cover many types of problems involving markedly
different numbers of inputs, outputs and number of instances. Some problems like
TSP, Function Optimisation and Bin-packing have no inputs. The material acts like
a form of genetic programming and via evolved configurations generates a solution
from its outputs. This is standard practice in genetic programming. In this type of
approach a material is used in the genotype-phenotype mapping. However, one must
be careful that in problems that have no inputs, evolution is not merely evolving
configuration signals to produce outputs that are desired. In other words, that it is
not directly wiring configuration signals to outputs, thus effectively ignoring the
material.

In the work on evolving logic gates various functions present much greater dif-
ficulty due to their inherent non-linearity. It is well known that parity functions are
difficult to evolve non-linear functions. Indeed, they have been used as benchmark
problems in genetic programming for some time.

h.j.broersma@utwente.nl

406 H. Broersma et al.

16.6 Experimental Investigations

Below we give more details on some of the computational tasks that have been used
in our experimental work.

16.6.1 Travelling Salesman Problem

Solutions to TSP problems were evolved using twelve electrodes (3 x 4) and sixteen
electrodes (4 x 4) [9]. Figure 16.4 shows results using a 3 x 4 electrode array for

Final configuration voltages are circled with Voltages on output electrodes using
values. Output electrode numbering starts configuration voltages:
bottom left and goes anti-clockwise. -0.8209 -1.0913 -2.9854

Voltage

1 2 3 4 5 6 7 8 9
Output electrode

Path visited for this configuration:

765432198 Original fitness scores for this run

1100 o+ 1200

1080 09" a2

1060 ; 1100

1040 . 1000

1020 g 93 2

1000 g _GC_’ 900

980 i

960 800

07 o4

940 200

920))

900 L, O 6 L o5 L 600 L L L L L

900 950 1000 1050 1100 0 5 10 15 20 25 30

Path cost = 615.5041 Generations

Fig. 16.4 Top left shows the CNT dispersal over an earlier prototype 3 x 4 grid electrodes array
(x200). Note unevenness of material over electrodes and the mask fault on the third electrode
does not appear to affect the evolutionary search when finding the shortest tour of the TSP (the
evolutionary history is shown by the best performing genotype for each generation, bottom right).
In this final configuration, voltages are applied to the circled electrodes and the remaining electrodes
provide the floating point values into the TSP. Top right recorded voltages which when sorted
determine the order to visit cities. Bottom left Optimum tour solution of the TSP [9]

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 407

a nine-city TSP problem. The particular TSP instances were generated by placing
cities on a circle so that they were equidistant from one another. The genotype defined
a number of real-values voltages and to which electrodes these configuration volt-
ages would be applied. The latter was accomplished by using digitally configurable
analogue cross point switches. A DAQ card first digitally configures the switch con-
nections and then inputs analogue configuration voltages to the material and records
the corresponding analogue outputs. The number of configuration voltages deployed
depends on the problem being tackled and the availability of spare electrodes on the
array. The configuration voltages and electrodes to which they connect were decided
by a 1+4 evolutionary algorithm. The range of voltages values was restricted to £3 V
and all connections are one to one (i.e. one configuration voltage can only go to one
electrode). Configuration voltages were applied for 1s and a mean value of sampled
voltages from the output electrodes was calculated from the last 0.2s of sampled
values. This was done to exclude any “settling periods” within the material. The
time required to configure the analogue switch and set up channels on the DAQ card
means that testing a configuration takes several seconds. Actually further investiga-
tions revealed that signals from the SWCNT-PMMA materials have negligible noise
levels after the initial 50ms so that sampling times could be substantially reduced.

The method of obtaining a tour of cities (i.e. a permutation) is as follows. A vector
of voltage values with as many elements as cities is read from the electrode array.
The ith element represents city i. The vector is sorted and the city indexes form a
permutation, thus defining a tour (see [9] for details). The graphic at the top right
of Fig. 16.4 shows a set of voltages read from a 3 x 4 array. Choosing the lowest
voltages (y-axis) in sequence and observing which electrode corresponds to that,
one obtains the permutation: 765432 198.

To assess the effectiveness of the technique, results using the electrode array were
compared with a software-based evolutionary technique called Cartesian Genetic
Programming [40] in which a graph of mathematical operations is evolved that takes
a number of random real-valued inputs to produce a real-valued vector with as many
elements as cities. It was found that results using the electrode array were comparable
with the CGP method. It remains for future experiments to determine whether the
material system scales well as the number of cities increases.

16.6.2 Classification

Using the purpose-built evolutionary platform Mecobo 3.0 and subsequently Mecobo
3.5, experiments were carried out to investigate whether well-known classification
problems could be solved [44, 48]. Two relatively small problems were selected from
the UCI Machine Learning repository [2]. The problems are known as Lens and Iris.
We only report here on the results with the Iris dataset (see [48] for results with
the Lens dataset). The Iris dataset is a list of measurements taken from one of three
types of Iris flowers. It has four attributes which are classified into one of the three
classes. The dataset contains 150 instances with real-valued attributes. The first fifty

h.j.broersma@utwente.nl

408 H. Broersma et al.

Fig. 16.5 Organisation of inputs, outputs and configuration inputs for a randomly chosen genotype
example for Iris data classification

instances are class 1, the second fifty class two and the third set of fifty are class 3.
The dataset was divided into two groups (training and test set) of 75 instances each.
Each set contained exactly 25 instances of each class.

All of these experiments were performed with electrode arrays having 12 elec-
trodes. The data inputs, outputs and configuration signals applied to the electrode
array are shown in Fig. 16.5. Four electrodes were used to input data mapped from the
attribute data, three electrodes were used as outputs (i.e. to define the class) and five
electrodes were used as configuration inputs (shown in grey). Each output electrode
was used for each output class. Each genotype defined which electrodes were out-
puts, inputs or received the configuration inputs. Class was decided by the leftmost
output with the largest value (e.g. if the leftmost output was the largest value, the
data would be designated as class one).

In the case of Mecobo 3.0, attribute information was converted by an input-
mapping to the frequency of a square wave input signal. This was done by creating a
linear mapping from two defined limiting square wave frequencies to the maximum
and minimum attribute values [44, 48]. The output-mapping looked at the numbers
of bits in the output buffers between transitions from zero to one. The length in
bits between these transitions was measured and the average transition gap was
used to determine the output classes. The configuration mapping took the allowed
gene values and using the Mecobo 3.0 hardware, these were converted into various
configuration signals. The genes defined:

e Which electrode would the signal be applied to (0—11)

Signal type (0 or 1) indicating either a constant voltage (0 or 3.5 V) or square wave
configuration signal

Amplitude (0 or 1) deciding whether the constant applied is 0 or 3.5V
Frequency of square wave (500 Hz—10 KHz)

Phase of square wave

Duty cycle of square wave (0—100)

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 409

Thus a genotype for a twelve electrode array requires 72 genes (6 for each elec-
trode). The first 24 genes were reserved for inputs, that is to say the first gene of each
group of six would decide to which electrode the input signals would be applied
to, the remaining five genes in each group are then redundant. The next 30 genes
decided what kind of configuration signal would be applied to which electrode. Of
the remaining three groups of six genes the first genes defined which electrode would
be an output. The remaining five in each group were redundant. Thus in this way,
a genotype of 72 genes could define which electrodes would receive input signals,
which would supply outputs and which would receive configuration signals (of var-
ious types).

In the case of Mecobo 3.5, the amplitude of the static analogue input signal
was used for input mapping by creating a linear mapping between maximum and
minimum attribute values and the maximum and minimum voltages that could be
applied to the electrodes. In this case, the output-mapping was simply the average of
the sample values of the output buffers.

Here, the genotype is much simpler and consists of 24 genes. The first gene in
each of the first four pairs defines where the inputs will be applied. The first gene in
each of the last three pairs of genes defines which electrode would be chosen as an
output. The remaining genes define the configuration electrodes and the voltage that
is applied to those electrodes.

Twenty 1+4-evolutionary algorithms were executed over 50 generations and the
two methods compared. The results are shown in Table 16.1.

The fitness calculation is based on the confusion matrix. This required counts
to be made of the number of true positives TP, true negatives TN, false positives
FP, and false negatives FN. The way this was done is as follows. If the predicted
p is correct, then it is a true positive, so TP should be incremented. It is also a true
negative for the other two classes, hence TN should be incremented by two. If the
predicted class is incorrect, then it is a false positive for the class predicted, so FP
should be incremented. It is also a false negative for the actual class of the instance,
so FN should be incremented. Finally, the remaining class is a true negative, so TN
should be incremented.

Once all instances had been classified, the fitness of a genotype was calculated
using Eq. 16.1.

TP.TN

fitness = (16.1)
(TP 4+ FP)(TN + FN)

Table 16.1 Performance results for Mecobo 3.0 and Mecobo 3.5

Accuracy Mecobo 3.5 analogue (%) Mecobo 3.0 digital (%)
Training 91.33 66.93
Test 86.6 60.73

Twenty evolutionary runs of 50 generations of 1+44-evolutionary algorithm were carried out using
the Iris data set. Accuracy is the percentage of the training or test set correctly predicted [44]

h.j.broersma@utwente.nl

410 H. Broersma et al.

Table 16.2 Comparative results of different percentages of SWCNT in PMMA

9% SWCNT (%) Average training accuracy (%) | Average test accuracy (%)
1.0 82.13 72.27

0.71 80.67 71.07

0.50 81.73 71.6

0.10 81.73 71.6

0.05 85.07 72.27

0.02 80.93 69.47

Ten 144 evolutionary runs of 500 generations were performed on the Iris dataset with Mecobo
3.0. The first column shows the weight percent fraction of SWCNT in PMMA. The second and
third columns show the average training accuracy and average test accuracy found. Accuracy is the
percentage of the training or test set correctly predicted. Note that no evolution was possible using
percentages (by weight) of SWCNT to PMMA polymer lower than 0.02 % since output buffers
contained only zeroes

So, if all instances are correctly predicted, the fitness is 1, since in this case
FP = 0and FN = 0. In the case that all instances are incorrectly predicted, TP = 0
and TN = 0, so the fitness is zero.

Statistical tests were carried out and they supported the hypothesis that solving the
Iris classification is easier when evolution manipulates analogue voltages rather than
more complex digital signals [44]. This also has relevance for creating a stand alone
system. It would be relatively straightforward to build a circuit that could supply
fixed configuration voltages to an electrode array. It would also be straightforward
to build a system to automatically map numerical attribute information into applied
voltages to be input to the device.

Experiments were performed to investigate how the classification results depended
on the concentration of carbon nanotubes. The findings are detailed in Table 16.2.

It was found that when the percentage by weight of SWCNT in the polymer was
above 0.02 % no statistical difference could be found in the results.

The classification results using Mecobo 3.5 were also compared with an imple-
mentation of CGP for classification under the same evolutionary conditions [44].
The implementation of CGP for this problem was similar to that used for the TSP
problem. That is to say, the function set was a set of arithmetic and mathematical
operators. The inputs were a fixed set of randomly chosen constants. There were as
many outputs as classes. The class was decided by the leftmost largest output and
fitness was calculated using (16.1). The results with the material turned out to be not
statistically significantly different from those obtained with CGP. This again shows
that evolving classifiers in materials is promising.

16.6.3 Logic Gates

A number of Boolean logic functions have been realised by applying evolution-in-
materio using various evolvable platforms and materials.

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 411

Using a twelve electrode array similar to that shown in Fig. 16.2 and the Mecobo
3.0 evolution-in-materio hardware platform [34] an exhaustive search was carried
out over the twelve electrodes. All possible combinations of choosing two input
electrodes, one output electrode and nine configuration electrodes were examined.
This experiment revealed that with the right configuration inputs any of the sixteen
possible two-input Boolean functions can be obtained.

In other experiments the MBed experimental platform was used [26, 37]. Exper-
iments were carried out to see if materials could implement threshold logic gates.
In these logic gates one assumes continuous variables are divided into ranges and
values in these ranges are designated logical one or zero based on whether the value
of the variable is above or below certain real-valued thresholds. To obtain logical
OR or AND requires just one threshold, however more complex gates such as XOR
may require two. Using the derivative-free search methods Nelder-Mead [51] and
Differential Evolution [63] it was shown to be possible to find thresholds that allowed
a number of logic functions to be implemented, for example XOR, half and full one
bit adders. On the more complex functions, Nelder-Mead proved to be less effec-
tive. In later work it was found that using concentrations of SWCNT to polymer (by
weight) greater than 0.11 % consistently produced poorer results which worsened
with increasing concentrations [37].

Using Mecobo 3.0 it was found to be possible to implement both even-3 and even-
4 parity functions [43]. Even parity functions output one when an even number of
inputs are one, and zero otherwise. It is well-known that such functions are extremely
hard to find using random search and as a consequence have been frequently used
as a benchmark for genetic programming methods [27]. A sixteen electrode array
was used and a genetic representation similar to that used in the classification work
(see Sect. 16.6.2). However, the phase of the applied square waves was not used in
the study, as previous work had shown that manipulating the phase of applied square
waves had no utility in problem solving. The parity problems were formulated as
classification problems, so that two outputs were assumed, the largest leftmost value
deciding whether the output was zero or one. Binary inputs were represented as
one of two different frequency square waves (500 Hz represented logical zero and
10 KHz represented logical one). As with previous work on classification an average
transition gap was calculated from the output buffers. In these experiments fitness
was measured by computing a confusion matrix and using the Matthews Correlation
Coefficient. Other experiments were performed where inputs and configuration sig-
nals were either O or 3.3V. It was found that using square waves inputs and evolving
configurations that choose different square wave frequencies performed better under
evolutionary search than using amplitudes [43].

We close this subsection with a brief description of recently published work [4]
in which the nanoparticle networks from Fig. 16.3 were used to evolve all Boolean
logic gates. In Fig. 16.6a we see an atomic force micrograph (AFM) image of a
real nanoparticle network, where the two input electrodes and the output electrode
are denoted by V;n1, Vin2 and Ipyr, respectively. Time dependent signals in the
order of a hundred mV are applied to the input electrodes as illustrated in Fig. 16.6b,
and a time dependent current in the order of a hundred pA is read from the output

h.j.broersma@utwente.nl

412 H. Broersma et al.

lour (PA)

t(s) o t(s)
150
100 (d)

AND
50 J
|

50 ' 50 ;
XOR XNOR
0.5 0.0 0.5 1.0
t(s) t(s)
Fig. 16.6 AFM image of a nanoparticle network (a), the input voltages in mV applied to V;y; and
Vin2 (b) and the different logic outputs in pA read from Ipyr (¢ and d)

electrode. The other five electrodes and the back gate can be used to apply different
sets of static configuration voltages. Using a genetic algorithm, suitable sets of con-
figuration voltages have been found to produce the output functions of Fig. 16.6¢c,
d. Red symbols are experimental data, solid black curves are expected output sig-
nals (matched to amplitude of experimental data). We observe two clear negators
(inverters) for the input functions P and Q in Fig. 16.6¢, and we observe a variety of

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 413

Boolean logic gates in Fig. 16.6d, including the universal NAND and NOR gate. All
these gates show a great stability and reproducibility. For the exclusive gates (XOR,
XNOR) spike-like features are observed at the rising and falling edges of the (1,1)
input, as expected for a finite slope in the input signals. More details can be found
in [4]. The remarkable thing here is not that we can produce logic gates using the
electrical and physical properties of charge transport in neighbouring nanoparticles.
It is remarkable that we can do this with one and the same sample of a disordered net-
work of nanoparticles in a circular region of about 200 nm in diameter, and by using
only six configuration voltages. A similar designed reconfigurable device based on
current transistor technology would require about the same space. This shows the
great potential for our approach.

16.6.4 Other Computational Problems

Below we briefly describe the results of other experimental investigations with the
carbon nanotube composites.

16.6.4.1 Function Optimisation

The evolution-in-materio technique was also used to help find the minima of com-
plex multi-dimensional mathematical functions [47, 49]. These kinds of problems
are well-known in the research field of evolutionary computation and indeed there
are extensive benchmark suites containing highly nonlinear multi-modal optimisa-
tion functions. Using the Mecobo 2.0 platform experiments were conducted on a
suite of 23 of these functions. A similar genotype representation to that used for
classification was employed in this work. However, function optimisation like TSP
requires no inputs. Instead one wants to generate a vector which optimises a function.
Unlike the classification work, outputs from the electrode arrays were calculated as
a scaled average number of ones in the output buffers (i.e. we did not use a calcula-
tion of average transition gap). Many of the suite of benchmark functions are thirty
dimensional, meaning that the vector that optimises the function in question has thirty
elements. This raises an immediate problem when using an electrode array with only
sixteen electrodes. In order to evolve solutions that could provide a large number
of outputs a multi-chromosomal genotype was devised in which each chromosome
applied configuration signals to the electrode array and an output was read. Then the
next chromosome was loaded, another evolved set of configuration signals applied
and the next output value was computed. Once again the results using the material
were compared with the CGP technique. As before the implementation of CGP uses
a small number of inputs which are random constants and the genotype represents
a network of mathematical operations. It generates as many real-valued outputs as
the dimension of the optimisation function. Inputs and internal node operations are
defined in the interval [—1, 1]. The outputs are then linearly mapped into the defined

h.j.broersma@utwente.nl

414 H. Broersma et al.

ranges of the dimensions of the optimisation functions. Using this technique CGP
has been compared with Differential Evolution (DE), Particle Swarm Optimization
(PSO), and a Standard Evolutionary Algorithm (SEA). Comparisons showed that in
15/20 benchmarks CGP is the same or better than DE, in 19/20 cases CGP is the
same or better than PSO or SEA [39].

The experiments show that in 7/23 functions the best results with the experimental
material are equal to optimum results and in case of 11/23 functions the best results are
very close to optimum results. In four cases the average results with the experimental
material are equal to optimum results and in thirteen cases average results are very
close to optimum results. In 10/23 functions the best results of experimental material
are better than or equal to the best results of CGP. Given the competitiveness of the
CGP technique, the results for the material are very encouraging.

16.6.4.2 Bin Packing

Bin-packing is a well-studied NP-hard problem [11]. In the bin packing problem, a
total number of n items, consisting of items with different weights (or sizes), have
to be placed in bins. Each bin however has a maximum weight (size) capacity c;.
The objective is to place all the items in the least number of bins such that no bin has
its weight (size) limit exceeded.

Scholl and Klein have collected bin-packing benchmarks [59]. The datasets are
divided into three classes, according to difficulty. The best result for each dataset has
been obtained by Scholl et al. [60] using an algorithm called BISON which combines
a successful heuristic meta-strategy tabu search and a branch and bound procedure.

Experiments were performed with an electrode array having twelve electrodes
[46]. The material consisted of PMMA and with a concentration of SWCNT equal
to 0.71 % (expressed as a weight % fraction of the PMMA).

Like TSP and function optimisation bin-packing problems require no inputs. The
total number of outputs required is equal to the number of items that need to be packed
into bins. Since bin-packing problems typically have 50 or more items multiple
chromosomes must be used. Each chromosome defines a number of configuration
signals to the electrode array and the remaining outputs supply recorded values in
output buffers. The number of chromosomes required is given by the number of
items to be packed into bins divided by the number of outputs chosen. For instance
for a problem with 50 items, if two outputs are chosen the genotype requires 25
chromosomes. Thus in this case, there will be 10 configuration signals applied for
each chromosome processed.

The genotype representation was similar to that used for classification experi-
ments. A series of output values (0 or 1) were read from a buffer of samples taken
from output electrode(s). The output values read from electrode(s) were linearly
mapped between values —1.0 and 1.0. These values were then used to define the
index of the bin (bin;) in which the object i of the bin packing problem would
be placed. So, the total number of outputs must be equal to the total number of
objects (n,).

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 415

The linearly mapped output values, x; corresponding to each chromosome were
used to decide the bin index, bin; which denotes which bin item, i will be placed in.
Assuming the number of items is 7,, the bin index is given by Eq. 16.2.

bin, — VMJ (162)
24+¢

The floor function | z | returns the nearest integer less than or equal to its argument,
z. Here epsilon is a very small positive quantity. Essentially, Eq. 16.2 divides the
interval [—1, 1] into n, equal intervals corresponding to bins, so that the mapped
output values decide which bin an item will be placed in. For instance, assuming the
number of items, n, = 50 if x; is —1.0, bin; is 0, and if x; is 1.0, bin; is 49.

The fitness was assessed in two stages. First the total bin overflow was subtracted
from the bin capacity. This results in a negative value when some bins overflow.
However, as soon as a solution is reached in which no bin is overfull, the fitness is
the number of unused bins.

Twenty evolutionary runs of 5000 generations were carried out using a 1+4 evo-
lutionary algorithm. This took more than two days to complete. On a suite of bin
packing benchmarks a range of results were obtained. In some cases (on easier
benchmarks) it was possible to find solutions that were near to the known minimum
number of bins. Some experiments were done over more generations (25,000) and
much better results were obtained. This indicates that the evolution was not stuck in
a local optimum and continued to improve with more generations.

16.6.4.3 Robot Control

Experiments were also undertaken to investigate both simulated and actual robot
control using a micro-electrode array [42]. Electrode arrays were used with either
12 or 16 electrodes and PMBA (polybutyl methacralate). The sample used in the
experiments consisted of 1.0 % carbon nanotubes by weight (99 % by PBMA).

Robots used either six or eight IR distance sensors. The distance values were
linearly mapped to determine the duty cycle of a square wave with frequency SKHz.
The duty cycle varies from 0 to 100, where a value O means a constant 0V signal is
applied and 100 means a constant 3.3V signal is applied. A duty cycle of 50 means
that a regular square wave of 5 KHz is applied. High values of duty cycle produce a
more separated series of 3.3V pulses.

Two outputs were taken from the electrode array corresponding to two robot
motors. The fraction of ones in two output buffers sampled from the electrode array
were linearly mapped to determine motor speeds.

The genotype representation was similar to classification except that applied signal
phase was not used.

Robot controllers were evolved that allowed both simulated and actual robots
to continuously explore mazes with as little obstacle collision as possible. In some
cases, the robot controllers showed good generalisation ability in that the evolved

h.j.broersma@utwente.nl

416 H. Broersma et al.

controller could control a robot placed in a maze not seen during training (evolution).
However, robot controllers transferred to real robots did not work as well as their
simulated counterparts. This is not surprising as real robots differ in a number of
ways. Direct evolution of control hardware with real robots was too computationally
expensive to be practicable.

16.6.4.4 Graph Colouring

Using the purpose-built Mecobo platform, solutions were evolved to the well known
graph colouring problem [33]. Graph colouring in our experiments was formulated
as follows: given 3 different colours, colour a graph such that no two neighbouring
nodes of the graph are assigned the same colour. The target device was the one
capable of producing two valid 3-colourings of a simple graph with 4 nodes. Two
such colourings are shown in Fig. 16.8. A Genetic Algorithm was used to construct
(evolve) a device that produced such colourings in the material connected to the
Mecobo board. A conceptual overview of the sought devices is depicted in Fig. 16.7.
Graph select was used as input, in order to define which instance ought to be evolved.
Eight configuration signals were used to configure the material and 4 outputs signals
were mapped to the four graph nodes. The output voltage range was divided in 3
intervals and the highest output voltage observed on each pin was defined as the
chosen colour.

The chosen problem instances are fairly simple. The goal of the experiments
described herein was to investigate which type of configuration signals produced
best results on the chosen problem rather than comparing the performances against
known benchmarks. As such, three different groups of configuration signals were
tested: only static analogue voltages as configuration signals, only square waves

Configuration / digital phenotype
YVVYVYVVVYY

——— Colour node 1

Graph Graph +——— Colour node 2
select > 3-colourer —— Colour node 3
in material —> Colour node 4

Fig. 16.7 The target device: the graph select input is used to select which of the two instances of
the problem, i.e. two different colourings in Fig. 16.8, should be solved in output [33]

0s3oel

Fig. 16.8 Two valid 3-colourings of the same graph. Both are valid solutions because there are no
two neighbours with the same colour. The numbers are node labels, which are mapped to outputs
from the device [33]

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 417

as configuration signals, mixed configuration signals, i.e. both the previous were
allowed. Each of the different signal forms produced working devices. However, the
most successful signal representation was square waves, both in terms of successful
working devices and number of generations required to obtain a working device.

16.6.5 Electrical Behaviour of Carbon Nanotubes

As mentioned earlier, carbon nanotube-based material may be configured by different
kinds of stimuli, e.g. electrical signals, magnetic fields, temperature variations, light,
etc. CNT materials have been investigated within the NASCENCE project by means
of different electric signals. In particular, the following electrical signals have been
considered and explored:

e Static voltages;
e Square waves;
e A mixture of the above.

In order to be able to produce any kind of computation within the underlying nan-
otubes network, the input data and the configuration data must allow the exploitation
and manipulation of underlying physical properties in the CNT-polymer material.
Moreover, such manipulated properties must be observable and give a measurable
response, i.e. output response. As such, the choice of the input signal and configura-
tion types play an important role and define which physical properties are available
and utilised. In [33], a comparison of different signals have been investigated for the
evolution of solutions to a well known computational problem, i.e. graph colouring
(see Sect. 16.6.4.4).

In the case of static voltages, the parameters under evolutionary control are typi-
cally the physical pin to which the signal is applied to, the starting time, the ending
time, and the voltage amplitude. In the experiments in [33], the range of amplitude
was limited to 0-3.3 V. In the case of square wave signals, the evolved parameters
are the physical pin to which the signal is applied to, the starting time, the ending
time, the frequency, and the duty cycle. In the experiments in [33], the square wave
amplitude was fixed at 0 and 3.3 V. The results show that it was possible to evolve
working solutions using all three types of signals (static voltages only, square waves
only, a mixture of static voltages and square waves). However, the choice of signal
types influenced the evolutionary results. Square wave signals showed promising
potential and the ability to produce rich dynamics [53].

One model of the CNT material suggested that if only static DC voltages are
applied it behaves as a network of resistors [35]. It was shown that TSP problems [9]
could be solved using a SPICE model of the material as a ‘cloud’ of resistors [50]. In
case of applied square wave signals, the CNT material could be seen as an RC circuit,
i.e. the CNT material holds capacitance. It is then possible to create macroscopic
pin-to-pin models for every pin couple and thus model the material as a whole.
Inspection of evolved solutions in [54] showed that the exploited physical properties

h.j.broersma@utwente.nl

418 H. Broersma et al.

are often unanticipated. In particular, it was observed that evolution was able to create
and exploit signal delays, signal inversions and signal canceling. All the mentioned
properties may provide a source of non-linearity and rich dynamics that may be
potentially exploited for physical implementations of reservoir computing [24, 36]
in CNT materials.

16.6.6 Behaviour of Gold Nanoparticles

Unlike the electrical properties and behaviour of the CNT materials we have been
using within the NASCENCE project, the electrical properties and physical effect of
Coulomb blockade behind the charge transport in the used gold nanoparticle networks

(a)
V., (mV)
(©) (d) "
200 200
100 - lour @ E1 100 - @
et
2 g '
g ° .' z "’
= | = Vv, @E3
;l —_—O0mV
-100 - i -100 - —2mV
: ——5mV
ll’ —10mV
=200 - 1 L 1 J =200 - i | ' i
-40 -20 0 20 40 -100 -50 0 50 100
V, (mV) v, (mV)

Fig. 16.9 AFM image of a nanoparticle network (a), the input voltages in m V applied to electrode
E4 and the output current in p A read at electrode Ej at different temperatures (b) the outputs in p A
read from E| for different input electrodes at 0.28 K (c), and the effect of a static voltage applied at
E5 on the I-V curves of a fixed pair at 0.28 K (d)

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 419

Fig. 16.10 NDR behaviour
of a gold nanoparticle

network: the output current
IoyT increases with an 150 |-
increasing input voltage V;y

in the interval —150 mV < <
Vin < =50mV, but the I-V o
curve bends down in the ‘é L
region of =50mV < V;y < -~
100 mV

20

: 1] | i
-200 -100 0 100 200
Vw (mV)

are pretty well understood. As described in Sect. 16.3, under suitable energy con-
ditions and restrictions, the charge transport is governed by the Coulomb block-
ade effect [25, 71]. The particles act as single electron transistors (SETs) with
a high ON/OFF ratio and strong non-linear behaviour. This makes them poten-
tially good candidates for interesting nontrivial functionalities. As an illustration,
in Fig. 16.9 we included some I-V characteristics of one of the nanoparticle network
we used in [4]. The nonlinear behaviour is very clear from the figures. We also
observed a special form of nonlinearity usually referred to as negative differential
resistance (NDR), as shown in Fig. 16.10: a gate that was evolved to be a negator
(inverter) for 0mV < V;y < 100 mV exhibits NDR within the considerably larger
range —50mV < V;y < 100mV.

This behaviour is interesting and plays a key role in the evolvability of more
complex functions. For instance, if we compare an XOR with an OR, then it can be
observed that the OR could in principle be based on simple linear behaviour, where
a high input signal gives rise to a high output signal, no matter whether both input
signals are high or just one of the input signals. In case of an XOR this is different:
we should only have a high output signal if precisely one of the input signals is high
and the other is low; two high input signals should yield a low output signal. This is
clearly possible if the evolvable system exhibits NDR behaviour.

16.7 Simulations

Apart from the experimental work and results, the NASCENCE consortium has also
worked on the theoretical underpinning of the experimental work and on simulations.
The latter are based on physical or mathematical models of the material systems. In
case of the nanoparticle networks the physics is pretty well understood, but for the
composites of nanotubes the situation is quite different and much more complex.

h.j.broersma@utwente.nl

420 H. Broersma et al.

We start this subsection by describing four different approaches to modeling the
nanotube composites, reflecting four different levels of abstraction. The subsection
will be completed by a short description of the physical model that underlies the
behaviour of jumping electrons in nanoparticle networks, as well as an alternative
approach to simulating these networks using neural networks.

16.7.1 Physical Models

16.7.1.1 Models of Carbon Nanotube Materials

Modeling of the physical nanoscale structures may be performed at several abstrac-
tion levels, ranging from the low level local interactions between neighboring par-
ticles to the high level “black box” behavioral models. Other intermediate levels
are also important, particularly for describing emergence of properties at different
intermediate scales. Four different models are described here:

1. Model of computation based on collective property of wave functions which
describe electrons moving within the material;

2. Model of electrical properties based on DC or AC circuits;

Model of conductivity based on dynamical hierarchies and cellular structure;

4. Model of abstract behavior and computational classes using cellular automata.

(O]

Model of Computation Based on Collective Electrodynamics
in Aggregates of Carbon Nanotubes

Information processing performed by the CNT material is described in [29] within
the framework of Ashby’s systems theory [1], as introduced in classical cybernetics.
Electrical properties exploited for computation arise as an emergent property of the
stimulated material. At the lower level of the hierarchy, the wave functions of elec-
trons are manifested as an electromagnetic field, which is one of the main physical
phenomena manipulated for computation in an EIM setting. Even if the computa-
tion happens at the nanoscale and quantum level, what is captured by the measuring
instrumentation is an approximation of the true physicality of computations in the
material. As such, the electric field in the nanocomposite can be considered as a man-
ifestation of a collective emergent property of electrons in the computing substrate.
In the proposed framework, a future research direction is proposed that may consider
the manipulation of quantum properties of electrons in the material so that the emerg-
ing electromagnetic properties can be used for computation. Another aspect of the
proposed framework is to allow the manipulation of parameters, e.g. temperature, in
the description of the system state. This may allow control of parameters during the
computation and the system may be described with a bigger choice of variables. This
is close to polymorphic electronics [62], where there may be different functionalities
for different operating temperatures.

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 421
Model of Electrical Properties Based on DC/AC Circuits

Observing the behavior of CNT materials under varying inputs, e.g. static voltages or
square wave signals, allows macroscopic modeling of pin-to-pin characteristics with
simple RC circuits. In [33], two SPICE models [50] are presented, one for describing
the electrical behavior of carbon nanotube materials when stimulated with static
voltages applied to input pins, and one for capturing the behavior when square waves
are used as manipulation signals. A simple SPICE model, consisting of a ‘cloud’ of
resistors and connectors between them, has been successfully used to replicate results
by Clegg et al. [9] for solving an instance of the traveling salesman problem. In this
case, using only DC voltages as configuration parameters, the material behaves as a
network of resistors. It must be noted that each sample of nanotube material contains
a wide variety of such networks and the different configuration signals allow the
selection of suitable networks to solve a wide variety of problems [9, 42, 46, 47].
Another model that captures the behavior of CNT materials under the influence
of square waves has been proposed in [33]. This model consists of simple circuit
elements such as capacitors and resistors. As such, each pin pair can be modeled by
a simple RC circuit and by using one such model for each pin pair, a complete model
of the material slide can be constructed.

Model of Conductivity Based on Dynamical Hierarchies and Cellular
Structure

The approach in [30] aims at modeling conductivity dependence on the concentration
of carbon nanotubes and varying electric potential in the material. The approach is
based on two main paradigms: dynamical hierarchies [57] and cellular computation
[10]. Each material sample is divided in a grid where each cell can represent a sub
area of the sample, with relative content, i.e. polymer molecules, nanotubes bundles,
electrodes. Each cell behaves according to the physics of the material it contains and
interactions with neighboring cells. Results show that higher concentration of CNTs
lead to more percolation paths and consequently more current flow. Different cell
shapes may be considered for future works, e.g. dodecahedron.

Model of Abstract Behavior Using Cellular Automata

The wide variety of problems solved in CNT materials does not give any direct
indication of the computational properties and computational power of the materials
used. However it is clear that the materials can be exploited at the computational level
required to solve the given task. Cellular automata (CA) offer a broader knowledge
of different complexity levels and computational classes, e.g. Wolfram classes [74].
As such, CA models of the material may allow a framework to be established that
relates measurable physical properties to abstract CA behaviors. In [15], cellular
automata transition tables of different complexities have been evolved in-materio.

h.j.broersma@utwente.nl

422 H. Broersma et al.

An interesting future direction is the possibility to evolve universal cellular automata
[3, 13] in the CNT material. In addition, ongoing work attempts to relate the evolved
in-materio cellular automata with CA parameters, e.g. lambda [31], and connect
material computation with the notion of edge of chaos.

16.7.1.2 Models of Nanoparticle Materials

As we explained earlier, the charge transport in the nanoparticle networks we have
been using in the experiments that have led to [4] is based on a physical phenomenon
that is known as the Coulomb blockade effect [25, 71]. The individual gold nanopar-
ticles act as single electron transistors (SETs). Electrons can jump between neigh-
bouring particles when the energy conditions are favourable. One electron at a time
can tunnel between two particles if sufficient energy is available (ON state), either
by applying a voltage across the particle or by electrostatically shifting its potential;
otherwise, the transport is blocked due to Coulomb blockade (OFF state). These dis-
ordered assemblies of nanoparticles therefore provide an almost random network of
interconnected robust, non-linear, periodic switches, as a result of the Coulomb oscil-
lations of the individual nanoparticles. We have observed experimentally that electron
transport below 5K is dominated by Coulomb blockade, and strongly depends on
the used input and output electrodes, as well as on the static voltages applied to the
remaining electrodes.

Due to the high costs and time consuming experiments involved in the experimen-
tal work, it was highly desirable to develop a simulation tool to explore the potential
functionalities of such nanoparticle networks without the burden of spending many
hours in the lab and wasting expensive resources to look for such functionalities
experimentally. In addition, the simulations can also inform us on the minimum
requirements that are needed for obtaining the targeted functionality if we were able
to produce these nanoparticle networks according to a predetermined design. This
could lead to new devices for the digital industry, possibly replacing purpose-built
assemblies of transistors. Moreover, simulations can provide us with evidence con-
cerning the scalability of our approach. Simulations can also give us new insights
into the dynamics of the charge transport that might lead to a better understanding
as to why and how the networks reveal the functionalities we observe. Furthermore,
there are many questions on the use of these networks that are difficult to answer
experimentally, because there are serious challenges in fabricating examples with
smaller central gaps or with more control electrodes using the same area.

The simulation tool we developed in [70] is an extension of existing tools for simu-
lating nanoparticle interactions, like SPICE [50] or SIMON [73]. Since the dynamics
of our nanoparticle networks is governed by stochastic processes: electrons on par-
ticles can tunnel through junctions with a certain probability, there are basically two
simulation methods to our disposal: Monte-Carlo Methods and the Master Equa-
tion Method [71, 72]. Since the number of particles is large, this rules out the second
approach, hence the Monte-Carlo Method is the only suitable candidate. This method
simulates the tunnelling times of electrons stochastically. To get meaningful results,

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 423

one needs to run the algorithm in the order of a million times. Doing so, the stochastic
process gives averaged values of the charges, currents, voltages, etc. More details on
the simulation tool can be found in [70].

We have validated our tool for designed systems with small numbers of particles
that are experimentally known from literature, and that have also been simulated
before [72]. We have also used our tool to examine other structures of nanoparticle
networks. Interestingly, we have shown through simulations that all Boolean logic
gates that we evolved experimentally in [4] can be evolved in a regular 4 x 4 grid
consisting of only 16 nanoparticles. We refer to [70] for more details. Currently, we
are not aware of any production techniques for constructing these regular grids of
nanoparticles.

Although our simulation tool can in principle handle arbitrary systems of any size,
scalability is a serious issue if we consider the computation time. Even a parallellized
CUDA code we have developed for a GPU does not really solve the problem if we
want to simulate networks consisting of hundreds of particles. Moreover, as the
networks in [4] cannot be produced according to a predefined specific design, it is
not possible to use an accurate physical model for such systems.

With these drawbacks in mind, in the next subsection we present an alternative
approach. This novel approach is based on training artificial neural networks in order
to model and investigate the nanoparticle networks.

16.7.1.3 Neural Network Simulation Model

To support future experimental work on our evolvable systems, we developed simu-
lation tools for predicting candidate functionalities. One of these tools that we have
briefly described in the previous subsection is based on a physical model, but the one
we present here is based on a neural network model.

Neural networks have proven to be powerful function approximators and have
been successfully applied in a wide variety of domains [7, 28, 58, 64]. Being essen-
tially black-boxes themselves, neural networks do not facilitate a better understand-
ing of the underlying quantum-mechanical processes. For that purpose the physical
models we described before are more appropriate. But in contrast to physical models,
neural networks provide differentiable models and thus offer interesting possibilities
to explore the computational capabilities of the nano-material.

Before this exploration can take place, a neural network must first be trained,
using data collected from the material. In our case, since we already have a physical
model and an associated validated simulation tool for the nanoparticle networks, to
show that this approach is useful we can restrict ourselves in the first instance to train-
ing data obtained from the simulated material. This gives us the opportunity to pre-
dict functionalities in small nanoparticle networks, also networks that have not been
fabricated yet, like the 4 x 4 grid structure we mentioned above. This in turn can
inform electrical engineers on the minimum requirements necessary for obtaining
such functionalities without the burden of costly and time-consuming fabrication and
experimentation.

h.j.broersma@utwente.nl

424 H. Broersma et al.

One of the advantages of the neural network approach is that we do not need to have
any detailed information on the structure or physical properties of the material. We
only need as many input-output data combinations as we can get from the simulation
tool or from measurements on a particular material sample, in order to train a neural
network that models this specific sample. The more independent data we use, the
more accurate the trained neural network is expected to model the sample.

Another advantage of the neural network approach is that one can optimise the
input configuration through gradient descent instead of performing a black-box opti-
misation. In other words, as soon as we have trained the neural network with suf-
ficiently many input-output combinations, searching for arbitrary functions is very
fast and can happen independently of the material or the physical model.

To show that this approach is worthwhile, in [17] we used data obtained from
the physical-model-based simulations of the previous subsection to train a neural
network. We show there that the neural network can model the simulated nano-
material quite accurately. The differentiable neural network model of the evolvable
nanoparticle network is then used to find logic gates, as a proof of principle.

This shows that the new approach has great potential for partly replacing costly and
time-consuming experiments. We are currently using the neural network approach
on real data collected from samples of the nanoparticle networks and the carbon
nanotube composites. It is too early to report on the results of this approach here.

16.8 Conclusions

Evolution-in-materio is a bottom-up approach where the intrinsic underlying physics
of materials is exploited as a computational medium. In contrast to a traditional
design process where a computational substrate, e.g. silicon, is precisely engineered,
EIM uses a bottom-up approach to manipulate materials with the aim of producing
computation. This idea is rather old. Gordon Pask pioneered this work in the late
1950s, by growing neural structures (dendritic wires) in ferrous sulphate materials
by electrical stimulation without computers. The EIM ideas became popular again
with the work of Adrian Thompson in 1996. Thompson demonstrated that artificial
evolution could utilize physical properties of an FPGA chip to solve computational
problems. Miller and Downing suggested that many materials could be exploited
and coined the term “evolution-in-materio” [38]. The work described in this chapter
was carried out within the EU funded project NASCENCE. The goal of the project
was to demonstrate that computer-controlled evolution could exploit the physical
properties of carbon nanotubes / polymer nano-composites and networks of gold
nanoparticles for solving difficult computational problems. Experimental results have
shown that EIM is a plausible, competitive and efficient method for solving compu-
tational functions. Proof of concept has been given on several instances of problems
within various complexities, and different number of inputs and outputs. In particu-
lar, solutions have been evolved in-materio for logic gates, travelling salesman prob-
lem, machine learning classification, frequency classification, tone discrimination,

h.j.broersma@utwente.nl

16 Computational Matter: Evolving Computational Functions ... 425

function optimization, bin-packing, robot control, and graph colouring. The results
outlined herein are very promising and lay the foundation for further work. Future
work includes the investigation of novel materials and bigger instances of the solved
problems. Being able to scale-up the instances of problems tackled may allow real
world applications to be targeted. The long term goal of the EIM research commu-
nity is to build information processing devices by exploiting bottom-up architectures
without reproducing individual components. We envision that such devices will be
potentially very fast, energy efficient and rather cheap compared to traditional von
Neumann-based computers.

Acknowledgments The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number
317662.

References

1. Ashby, W.R.: Design for a Brain, the origin of adaptive behaviour. Chapman & Hall Ltd., New
York (1960)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

3. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays, vol.
4. AMC 10, p. 12 (2003)

4. Bose, S.K., Lawrence, C.P.,, Liu, Z., Makarenko, K.S., van Damme, R.M.J., Broersma, H.J.,
van der Wiel, W.G.: Evolution of a designless nanoparticle network into reconfigurable boolean
logic. Nat. Nanotechnol. (2015). doi:10.1038/NNANO.2015.207

5. Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: Nascence project: nanoscale engi-
neering for novel computation using evolution. Int. J. Unconv. Comput. 8(4), 313-317 (2012)

6. Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s electrochemical
devices. Syst. Res. 3, 19-33 (1993)

7. Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for
traffic sign classification. In: International Joint Conference on Neural Networks (IJICNN), pp.
1918-1921 (2011)

8. Clegg, K., Miller, J., Massey, M., Petty, M.: Practical issues for configuring carbon nanotube
composite materials for computation. In: Proceedings of the 2014 IEEE International Confer-
ence on Evolvable Systems (ICES), pp. 61-68 (2014)

9. Clegg, K.D., Miller, J.E,, Massey, M.K., Petty, M.C.: Travelling salesman problem solved
‘in materio’ by evolved carbon nanotube device. In: Proceedings of bthe 13th International
Conference on Parallel Problem Solving from Nature - PPSN XIII. LNCS, vol. 8672, pp.
692-701. Springer (2014)

10. Codd, E.F.: Cellular Automata. Academic Press, New York (1968)

11. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: a
survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 46-93.
PWS Publishing Co., Boston (1997)

12. Conrad, M.: The price of programmability. In: Herken, R. (ed.) The Universal Turing Machine
A Half-Century Survey, pp. 285-307. Oxford University Press, Oxford (1988)

13. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1-40 (2004)

14. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York (2003)

15. Farstad, S.: Evolving cellular automata in-materio. In: Master Thesis Semester Project, Nor-
wegian University of Science and Technology, Supervisor: Stefano Nichele, Gunnar Tufte.
NTNU (2015)

h.j.broersma@utwente.nl

426

16.

17.

18.

19.

20.

21.

22.
23.
24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

H. Broersma et al.

Greenwood, G., Tyrrell, A.M.: Introduction to Evolvable Hardware. IEEE Press, New Jersy
(2007)

Greff, K., van Damme, R., Koutnik, J., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel, W.,
Schmidhuber, J.: Unconventional computing using evolution-in-nanomaterio: neural networks
meet nanoparticle networks. Preprint (2015)

Harding, S., Miller, J.F.: Evolution in materio: a tone discriminator in liquid crystal. In: Proceed-
ings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, pp. 1800-1807
(2004)

Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J.
Unconv. Comput. 3(4), 243-257 (2007)

Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: exploiting the physics of
materials for computation. Int. J. Unconv. Comput. 4(2), 155-194 (2008)

Harding, S., Miller, J.F.: Evolution in materio. In: Meyers, R.A. (ed.) Encyclopedia of Com-
plexity and Systems Science, pp. 3220-3233. Springer, Berlin (2009)

Higuchi, T., Liu, Y., Yao, X.: Evolvable hardware. Springer, New York (2006)

Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)
Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD. Technical Report 148, 34 (2001)

Korotkov, A.: Coulomb Blockade and Digital Single-Electron Devices, pp. 157-189. Black-
well, Oxford (1997)

Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D.A., Pearson, C., Petty, M.C.: Logic gate and
circuit training on randomly dispersed carbon nanotubes. Int. J. Unconv. Comput. 10, 473-497
(2014)

Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT
Press, Cambridge (1992)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems (NIPS 2012), p. 4
(2012)

Laketi¢, D., Tufte, G., Lykkebg, O.R., Nichele, S.: An explanation of computation - collec-
tive electrodynamics in blobs of carbon nanotubes. In: Proceedings of 9th EAI International
Conference on Bio-inspired Information and Communications Technologies (BIONETICS),
IN PRESS. ACM (2015)

Laketi¢, D., Tufte, G., Nichele, S., Lykkebg, O.R.: Bringing colours to the black box - a novel
approach to explaining materials for evolution-in-materio. In: Proceedings of 7th International
Conference on Future Computational Technologies and Applications. XPS Press (2015)
Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation.
Phys. D: Nonlinear Phenom. 42(1), 12-37 (1990)

Layzell, P.: A new research tool for intrinsic hardware evolution. In: Proceedings of The Second
International Conference on Evolvable Systems: From Biology to Hardware. LNCS, vol. 1478,
pp. 47-56 (1998)

Lykkebg, O., Tufte, G.: Comparison and evaluation of signal representations for a carbon nan-
otube computational device. In: Proceedings 2014 IEEE International Conference on Evolvable
Systems (ICES), pp. 54-60 (2014)

Lykkebg, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: A hardware and software platform
for in materio evolution. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) Unconventional Compu-
tation and Natural Computation. LNCS, pp. 267-279. Springer International Publishing, Cham
(2014)

Lykkebg, O., Nichele, S., Tufte, G.: An investigation of square waves for evolution in car-
bon nanotubes material. In: Proceedings of the 13th European Conference on Artificial Life
(ECAL2015), pp. 503-510. MIT Press (2015)

Maass, W., Natschldger, T., Markram, H.: Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Comput. 14(11), 2531-2560
(2002)

h.j.broersma@utwente.nl

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Computational Matter: Evolving Computational Functions ... 427

Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D., Bowen, L., Petty,
M.C.: Computing with carbon nanotubes: optimization of threshold logic gates using disordered
nanotube/polymer composites. J. Appl. Phys. 117(13), 134903 (2015)

Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceedings
of NASA/DoD Evolvable Hardware Workshop, pp. 167-176 (2002)

Miller, J.F., Mohid, M.: Function optimization using Cartesian genetic programming. In:
Genetic and Evolutionary Computation Conference(GECCO) Companion, pp. 147-148 (2013)
Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Langdon W.B., et al.
(eds.) Proceedings of EuroGP 2000. LNCS, vol. 1802, pp. 121-132. Springer (2000)

Miller, J.F.,, Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials.
Evol. Intell. 7, 49-67 (2014)

Mohid, M., Miller, J.: Evolving robot controllers using carbon nanotubes. In: Proceedings of
the 13th European Conference on Artificial Life (ECAL2015), pp. 106—113. MIT Press (2015)
Mohid, M., Miller, J.: Solving even parity problems using carbon nanotubes. In: 2015 15th UK
‘Workshop on Computational Intelligence (UKCI). IEEE Press (2015, in press)

Mohid, M., Miller, J.: Evolving solution to computational problems using carbon nanotubes.
Int. J. Unconv. Comput. (2016, in press)

Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebg, O., Massey, M., Petty, M.: Evolution-in-
materio: a frequency classifier using materials. In: Proceedings of the 2014 IEEE International
Conference on Evolvable Systems (ICES): From Biology to Hardware, pp. 46—-53. IEEE Press
(2014)

Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebg, O., Massey, M., Petty, M.: Evolution-
in-materio: solving bin packing problems using materials. In: Proceedings of the 2014 IEEE
International Conference on Evolvable Systems (ICES): From Biology to Hardware, pp. 38—45.
IEEE Press (2014)

Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebg, O., Massey, M., Petty, M.: Evolution-in-
materio: solving function optimization problems using materials. In: 2014 14th UK Workshop
on Computational Intelligence (UKCI), pp. 1-8. IEEE Press (2014)

Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Lykkebg, O.R., Massey, M.K., Petty, M.C.:
Evolution-in-materio: solving machine learning classification problems using materials. In:
Proceedings of the 13th International Conference on Parallel Problem Solving from Nature -
PPSN XIII. LNCS, vol. 8672, pp. 721-730. Springer (2014)

Mohid, M., Miller, J., Harding, S., Tufte, G., Massey, M., Petty, M.: Evolution-in-materio:
Solving computational problems using carbon nanotube-polymer composites. Soft Comput.
(2016, in press)

Nagel, L., Pederson, D.: Simulation program with integrated circuit emphasis. Memorandum
ERL-M382, University of California, Berkeley (1973)

Nelder, A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308-313
(1965)

Neumann, J.v.: First draft of a report on the EDVAC. Technical report, University of Pennsyl-
vania (1945)

Nichele, S., Laketi¢, D., Lykkebg, O.R., Tufte, G.: Is there chaos in blobs of carbon nanotubes
used to perform computation? In: Proceedings of 7th International Conference on Future Com-
putational Technologies and Applications. XPS Press (2015)

Nichele, S., Lykkebg, O.R., Tufte, G.: An investigation of underlying physical properties
exploited by evolution in nanotubes materials. In: Proceedings of 2015 IEEE International
Conference on Evolvable Systems. IEEE Symposium Series on Computational Intelligence,
IN PRESS. IEEE (2015)

Pask, G.: Physical analogues to the growth of a concept. Mechanisation of Thought Processes,
no. 10 in National Physical Laboratory Symposium, pp. 877-922. Her Majesty’s Stationery
Office, London, UK (1958)

Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enter-
prises, UK Ltd (2008)

h.j.broersma@utwente.nl

428

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

75.

76.

7.

H. Broersma et al.

Rasmussen, S., Baas, N.A., Mayer, B., Nilsson, M., Olesen, M.W.: Ansatz for dynamical
hierarchies. Artif. Life 7(4), 329-353 (2001)

Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory based recurrent neural network
architectures for large vocabulary speech recognition. CoRR abs/1402.1128 (2014). http://
arxiv.org/abs/1402.1128

Scholl, A., Klein, R.: Bin packing. http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.
htm

Scholl, A., Klein, R., Jiirgens, C.: Bison: a fast hybrid procedure for exactly solving the one-
dimensional bin packing problem. Comput. Oper. Res. 24(7), 627-645 (1997)

Sekanina, L.: Evolvable components: From Theory to Hardware Implementations. Natural
Computing. Springer (2004)

Sekanina, L.: Design methods for polymorphic digital circuits. In: Proc. of the 8th IEEE Design
and Diagnostics of Electronic Circuits and Systems Workshop DDECS, pp. 145-150 (2005)
Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global opti-
mization over continuous spaces. J. Glob. Opt. 11(4), 341-359 (1997)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information Process-
ing Systems 2014, 8—13 December 2014, Montreal, Quebec, Canada, pp. 3104-3112 (2014).
http://papers.nips.cc/paper/5346- sequence- to-sequence-learning- with-neural-networks
Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: T. Higuchi,
M. Iwata, L. Weixin (eds.) Proceedings of the 1st International Conference on Evolvable
Systems (ICES’96). LNCS, vol. 1259, pp. 390-405. Springer (1997)

Thompson, A.: Hardware evolution: automatic design of electronic circuits in reconfigurable
hardware by artificial evolution. Distinguished dissertation series. Springer (1998)
Thompson, A., Harvey, 1., Husbands, P.: Unconstrained evolution and hard consequences. In:
Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware: The Evolutionary Engineering
Approach. LNCS, vol. 1062, pp. 136-165. Springer (1996)

Thompson, A., Layzell, P., Zebulum, R.S.: Explorations in design space: unconventional elec-
tronics design through artificial evolution. IEEE Trans. Evol. Comput. 3(3), 167-196 (1999)
Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc.
Lond. Math. Soc. 42(2), 230-265 (1936)

van Damme, R., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel, W.: A simulation tool
for evolving functionalities in disordered nanoparticle networks. Preprint (2015)

Wasshuber, C.: Computational Single-Electronics. Springer, Berlin (2001)

Wasshuber, C.: Single-Electronics — How it works. How it’s used. How it’s simulated. In:
Proceedings of the International Symposium on Quality Electronic Design, pp. 502-507 (2012)
Wasshuber, C., Kosina, H., Selberherr, S.: A simulator for single-electron tunnel devices and
circuits. IEEE Trans. Computer-Aided Des. Integr. Circuits Syst. 16, 937-944 (1997)
Wolfram, S.: Universality and complexity in cellular automata. Phys. D: Nonlinear Phenom.
10(1), 1-35 (1984)

Yoshihito, A.: Information processing using intelligent materials - information-processing
architectures for material processors. Intell. Mater. Syst. Struct. 5, 418-423 (1994)

Zauner, K.P.: From prescriptive programming of solid-state devices to orchestrated self-
organisation of informed matter. In: Banatre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.)
Unconventional Programming Paradigms: International Workshop UPP 2004, vol. 3566, pp.
47-55. Springer (2004)

Zebulum, R., Pacheco, M., Vellasco, M.: Evolutionary Electronics — Automatic Design of
Electronic Circuits and Systems by Genetic Algorithms. The CRC Press International Series
on Computational Intelligence (2002)

h.j.broersma@utwente.nl

	Preface
	Contents
	1 Implementing Molecular Logic Gates, Circuits, and Cascades Using DNAzymes
	1.1 Introduction
	1.2 Developing DNAzyme-Based Logic Gates and Circuits
	1.3 Towards Wide Circuits Via Parallel Gate Arrays
	1.4 Towards Deep Circuits Via Signaling Cascades
	1.5 Towards Applications in Biodetection
	1.6 Conclusions
	References

	2 Enzyme-Based Reversible Logic Gates Operated in Flow Cells
	2.1 Introduction
	2.2 Results and Discussion
	2.2.1 Feynman Gate---Controlled NOT (CNOT) Gate
	2.2.2 Double Feynman Gate (DFG) Operation
	2.2.3 Toffoli Gate Operation
	2.2.4 Peres Gate Operation

	2.3 Advantages and Disadvantages of the Developed Approach
	2.3.1 Advantages
	2.3.2 Disadvantages

	2.4 Conclusions and Perspectives
	References

	3 Modeling and Modifying Response of Biochemical Processes for Biocomputing and Biosensing Signal Processing
	3.1 Introduction
	3.2 Sigmoid Response and Its Numerical Rate-Equation Modeling
	3.2.1 Sigmoid Response for Noise Reduction in Binary Gate Functioning
	3.2.2 Sigmoid Response Achieved by Neutralizing a Fraction of the Input
	3.2.3 Sigmoid Response Optimization

	3.3 Threshold Response in an Enzymatic System
	3.3.1 Modifications of Response Functions of Biomolecular Processes
	3.3.2 Signal Transduction Combined with Fast Reversible Deactivation of the Output
	3.3.3 MDH Kinetics with Inhibition

	3.4 Summary
	References

	4 Sensing Parameters of a Time Dependent Inflow with an Enzymatic Reaction
	4.1 Introduction
	4.2 Determination of Inflow Properties with Enzymatic Reactions
	4.2.1 Enzyme Activation with a Single Control Molecule
	4.2.2 Enzyme Activation with Two Control Molecules
	4.2.3 Enzyme Activation with Three Control Molecules

	4.3 Conclusions
	References

	5 Combinational Logic Circuit Based on BZ Reaction
	5.1 Introduction
	5.2 The RZ Model of BZ Reaction
	5.3 Basic Chemical Signal Processors Based on BZ Reaction
	5.3.1 T-Shaped Coincidence Detector
	5.3.2 Chemical Diode
	5.3.3 Time Delay Unit
	5.3.4 Crossover Structure

	5.4 Classic Combinational Logic Circuits
	5.4.1 Logic Gates
	5.4.2 Binary Adder
	5.4.3 Binary Comparator
	5.4.4 Binary Encoder
	5.4.5 Binary Decoder

	5.5 Universal Combinational Logic Circuits
	5.5.1 Universal Structure of Sum-of-Products Expression
	5.5.2 Multi-input Multi-output Connection Structure
	5.5.3 Universal Structure of Combinational Logic Circuits

	5.6 Conclusion
	References

	6 Associative Memory in Reaction-Diffusion Chemistry
	6.1 Introduction
	6.2 Diffusive Computation and Reaction-Diffusion Chemistry
	6.2.1 Belousov--Zhabotinsky Reaction
	6.2.2 Applications

	6.3 Associative Memory
	6.3.1 Correlation Matrix Memories

	6.4 Methods
	6.4.1 Simulation
	6.4.2 Extracting Results

	6.5 Isolated CMM Neuron
	6.5.1 Requirements
	6.5.2 Design
	6.5.3 Testing
	6.5.4 Results

	6.6 CMM Thresholding
	6.6.1 Requirements
	6.6.2 Design
	6.6.3 Testing

	6.7 CMM Training
	6.8 Full CMM Networks
	6.9 Conclusions and Future Work
	References

	7 Calculating Voronoi Diagrams Using Chemical Reactions
	7.1 Introduction
	7.2 Construction of Voronoi Diagrams in Stable Systems
	7.2.1 Potassium Ferricyanide or Ferrocyanide Loaded Gels
	7.2.2 Palladium Chloride Loaded Gels
	7.2.3 Generalised Voronoi Diagram Construction
	7.2.4 Skeletonisation of a Planar Shape
	7.2.5 Mixed Cell Voronoi Diagrams
	7.2.6 Tessellations Formed by Combining Two Exclusive Chemical Couples
	7.2.7 Sequential Voronoi Diagram Calculation
	7.2.8 Speed of Computation

	7.3 Formation of Voronoi Diagrams in Unstable Systems
	7.3.1 Failure to Compute a Voronoi Diagram
	7.3.2 Spontaneous Voronoi Diagram Formation in Cupric Chloride Potassium Ferro/Ferricyanide Systems
	7.3.3 Controlled Voronoi Diagram Formation in Cupric Chloride Potassium Ferro/Ferricyanide Systems
	7.3.4 Controlling Wave Generation in the Aluminium Chloride Sodium Hydroxide Reaction

	7.4 Discussion
	7.4.1 Stable Versus Unstable Systems
	7.4.2 Computational Limitations
	7.4.3 Precipitating Systems Versus Other Unconventional Parallel Processors for Computation of Voronoi Diagrams

	7.5 Conclusions
	References

	8 Light-Sensitive Belousov--Zhabotinsky Computing Through Simulated Evolution
	8.1 Introduction
	8.2 Simulated Media
	8.2.1 Cellular Automata
	8.2.2 Controller

	8.3 Simulated Experiments
	8.4 Laboratory Experiments
	8.5 Conclusion
	References

	9 On Synthesis and Solutions of Nonlinear Differential Equations---A Bio-Inspired Approach
	9.1 Introduction
	9.1.1 Genetic Programming
	9.1.2 Grammatical Evolution
	9.1.3 Analytic Programming

	9.2 Selected Applications
	9.2.1 Chemical Reactor---Predictive Control and Design
	9.2.2 Symbolic Solution of the Nonlinear ODEs

	9.3 Conclusion
	References

	10 Marangoni Flow Driven Maze Solving
	10.1 Introduction
	10.2 Experimental
	10.3 Results and Discussion
	10.4 Conclusions
	References

	11 Chemotaxis and Chemokinesis of Living and Non-living Objects
	11.1 Cellular Movement in Biological Systems
	11.2 Sensing in Biology
	11.3 Importance of Chemotaxis in Multicellular Organisms
	11.4 Chemotaxis Versus Chemokinesis
	11.5 Artificial Chemotaxis and Chemokinesis
	11.6 Motile Systems in Mazes
	11.7 Chemotactic Decanol Droplets as `Chemo-Taxi'
	11.8 Chemotactic Technology with Design Applications
	11.9 Conclusion
	References

	12 Computing with Classical Soliton Collisions
	12.1 Introduction
	12.2 Computation in Cellular Automata
	12.3 Particle Machines (PMs)
	12.3.1 Characteristics of PMs
	12.3.2 The PM Model
	12.3.3 Simple Computation with PMs
	12.3.4 Algorithms
	12.3.5 Comment on VLSI Implementation
	12.3.6 Particles in Other Automata

	12.4 Solitons and Computation
	12.4.1 Scalar Envelope Solitons
	12.4.2 Integrable and Nonintegrable Systems
	12.4.3 The Cubic NLS
	12.4.4 Oblivious and Transactive Collisions
	12.4.5 The Saturable NLS

	12.5 Computation in the Manakov System
	12.5.1 The Manakov System and Its Solutions
	12.5.2 State in the Manakov System
	12.5.3 Particle Design for Computation

	12.6 Time-Gated Spatial Manakov Solitons Are Universal
	12.6.1 The General Plan
	12.6.2 The COPY and FANOUT Gates
	12.6.3 NOT and ONE Gates
	12.6.4 Output/Input Converters and a NAND Gate
	12.6.5 Time Gating
	12.6.6 Wiring
	12.6.7 Universality
	12.6.8 Some Comments on the Universality Result

	12.7 Multistable Collision Cycles
	12.7.1 The Basic Three-Cycle and Computational Experiments
	12.7.2 Proposed Physical Arrangement
	12.7.3 State Restoration
	12.7.4 Controlling a Bistable Cycle
	12.7.5 NAND and FANOUT Gates

	12.8 Conclusion
	References

	13 Soliton-Guided Quantum Information Processing
	13.1 Photon Trapping
	13.2 Photon Transfer
	13.3 Beam Splitters
	13.4 Manipulating Photon Phase
	13.5 General Quantum Computing
	13.6 Using Dark Solitons
	13.7 Conclusion and Open Problems
	References

	14 Models of Computing on Actin Filaments
	14.1 Introduction
	14.2 Quantum Actin Automata
	14.2.1 Quantum Cellular Automata
	14.2.2 Application to Actin-Like Structures
	14.2.3 Implementation
	14.2.4 Gates
	14.2.5 Adders

	14.3 Multi-valued Logic on Quantum Actin Automata
	14.3.1 Reading Automata Output, Concatenating Automata and Interpreting Superposition
	14.3.2 Realizations of Logic Operators

	14.4 Actin Filaments as Nonlinear RLC Transmission Lines
	14.4.1 Gates with Unforced Pulses
	14.4.2 Gates with Forced Pulses
	14.4.3 RLC Networks

	14.5 Solitons in Actin Networks
	14.5.1 and gate
	14.5.2 or and not gates
	14.5.3 Cascading Gates

	14.6 Discussion
	References

	15 Modeling DNA Nanodevices Using Graph Rewrite Systems
	15.1 Introduction
	15.1.1 Motivation
	15.1.2 Prior and Related Work
	15.1.3 Overall Organization

	15.2 Definitions
	15.2.1 Pseudo-DNA Nanostructures
	15.2.2 DNA Graph Notation
	15.2.3 Well-Formed DNA Graphs
	15.2.4 Graph Rewriting Systems
	15.2.5 Our DNA Graph Rewriting Systems

	15.3 Non-enzymatic DNA Graph Rewriting Rules
	15.3.1 Distal Toehold Mediated Strand Displacement

	15.4 Correctness of Our DNA Graph Rewriting Systems
	15.5 Example: Yurke et al. DNA Tweezer
	15.6 Brief Description of Our Prototype Software System
	15.7 Examples of Non-enzymic Devices
	15.7.1 Catalytic Hairpin-Based Triggered Branched Junction
	15.7.2 Qian and Winfree's Seesaw Gate
	15.7.3 Hybridization Chain Reaction

	15.8 Enzymatic DNA Graph Rewriting Rules
	15.9 Example Condensed Reaction Graph of Tweezer
	15.10 An Explanation of Constraint 3
	15.11 Software Output for Yurke et. al Tweezer Example
	15.12 Conclusion
	References

	16 Computational Matter: Evolving Computational Functions in Nanoscale Materials
	16.1 Introduction
	16.2 Conceptual Overview
	16.3 Configurable Materials and Micro-electrode Arrays
	16.4 EIM Hardware Control Systems
	16.5 Computational Problems
	16.6 Experimental Investigations
	16.6.1 Travelling Salesman Problem
	16.6.2 Classification
	16.6.3 Logic Gates
	16.6.4 Other Computational Problems
	16.6.5 Electrical Behaviour of Carbon Nanotubes
	16.6.6 Behaviour of Gold Nanoparticles

	16.7 Simulations
	16.7.1 Physical Models

	16.8 Conclusions
	References

	17 Unconventional Computing Realized with Hybrid Materials Exhibiting the PhotoElectrochemical Photocurrent Switching (PEPS) Effect
	17.1 Introduction
	17.2 Semiconductor-Electrolyte Interfaces
	17.3 The PEPS Effect in Unmodified Semiconductors
	17.4 The PEPS Effect in Hybrid Materials
	17.5 Boolean Logic Devices Based on the PEPS Effect
	17.6 Application of PEPS Effect in Ternary Logic
	17.7 Towards Fuzzy Logic�
	17.8 �and Neuromimetic Computing
	References

	18 Organic Memristor Based Elements for Bio-inspired Computing
	18.1 Introduction
	18.2 Organic Memristive Device
	18.3 Bioinspired Elements of Unconventional Computers
	18.3.1 Boolean Logic Versus Memristive Logic
	18.3.2 M-AND Gate
	18.3.3 Perceptron

	18.4 Hybrid Systems with Biological Molecules
	18.4.1 Interface with Neurons
	18.4.2 Heterostructures with Slime Mold

	18.5 Conclusions
	References

	19 Memristors in Unconventional Computing: How a Biomimetic Circuit Element Can be Used to Do Bioinspired Computation
	19.1 What Are Memristors?
	19.2 Chemical Mechanisms of Operation
	19.2.1 Ionic
	19.2.2 Thermal
	19.2.3 Other Mechanisms
	19.2.4 Uses of Memristors

	19.3 Memristor Theory
	19.3.1 Short Term Memory

	19.4 Memristors Acting Like Neurons
	19.4.1 Re-Creation of Biological Experiment Using a Memristor

	19.5 Emergent Spike Dynamics in a Network
	19.5.1 `Ideal' Dynamics
	19.5.2 Emergent Spiking Dynamics

	19.6 Spikes and Cells
	19.6.1 Memristor Network Connected to MEA Dish Without Cells
	19.6.2 The Effect of Coupling to an External Pool of Spiking Neurons
	19.6.3 The Effect of Extra Spiking

	19.7 Computing with Spikes
	19.7.1 Experimental Schemes for Computing with Memristors
	19.7.2 Examples of Logical Systems
	19.7.3 Logic Gates
	19.7.4 Full-Adder

	19.8 Memristor Networks as Used in Artificial Intelligence Simulations
	19.9 Conclusions
	19.10 Methodology and Experimental Details
	19.10.1 Making the Memristors
	19.10.2 Emergent Network Dynamics Experiment
	19.10.3 Cells

	References

	20 Nature-Inspired Computation: An Unconventional Approach to Optimization
	20.1 Introduction
	20.2 Key Features of Nature-Inspired Algorithms
	20.2.1 Search Behaviour: Exploration and Exploitation
	20.2.2 Algorithm Components
	20.2.3 Mathematical Updating Equations

	20.3 Some Swarm-Based Algorithms
	20.3.1 Particle Swarm Optimization
	20.3.2 Firefly Algorithm
	20.3.3 Cuckoo Search
	20.3.4 Bat Algorithm
	20.3.5 Flower Pollination Algorithm
	20.3.6 Other Algorithms

	20.4 Local Search or Global Search?
	20.4.1 Local Modifications
	20.4.2 Global Modifications
	20.4.3 Mixed or Multiscale Modifications

	20.5 Mathematical Aspects of Algorithmic Compoments
	20.6 Conclusions and Future Topics
	References

	21 On Hybrid Classical and Unconventional Computing for Guiding Collective Movement
	21.1 Introduction: Collective Movement
	21.2 Collective Movement in Slime Mould Physarum Polycephalum
	21.3 A Virtual Collective Inspired by Slime Mould
	21.3.1 Generation of Multi-agent Cohesion
	21.3.2 Generation of Oscillatory Dynamics
	21.3.3 Generation of Collective Amoeboid Movement

	21.4 Automatically Guided Movement: Open-Loop Methods
	21.4.1 Fuse Method
	21.4.2 Stepping-Stone Method
	21.4.3 Elastic Method

	21.5 Automatically Guided Movement: Closed-Loop Feedback Methods
	21.5.1 Momentum Parameter: Effect on Blob Migration
	21.5.2 Hybrid Control System
	21.5.3 Automatic Guidance with Attractant Stimuli
	21.5.4 Automatic Guidance with Repellent Stimuli
	21.5.5 Novel Properties of Guided Amoeboid Movement
	21.5.6 Emergency Recovery Mode for Lost Collectives

	21.6 Discussion
	References

	22 Cellular Automata Ants
	22.1 Introduction
	22.2 Cellular Automata and Ant Colony Optimization Principles
	22.3 Cellular Automata Ants for Clustering Problems
	22.3.1 Initial Algorithm
	22.3.2 The Discrete Data Tolerance Proposed Method Limits
	22.3.3 The Practical Flaws of the Small Size of the Grid
	22.3.4 The Long Interaction Rule
	22.3.5 Progressively Expansive Grid with Inline Gaps

	22.4 Application of Image Processing on Cellular Automata Ants Clustering
	22.5 Simulation Results
	22.6 Conclusions
	References

	23 Rough Set Description of Strategy Games on Physarum Machines
	23.1 Introduction
	23.2 The Rudiments of Rough Sets
	23.3 Rough Set Based Descriptions of Behavior of Physarum Machines
	23.4 Rough Set Strategy Approximations in Physarum Games
	23.5 Physarum Language
	23.6 Software Tool
	23.7 Conclusions
	References

	24 Computing a Worm: Reverse-Engineering Planarian Regeneration
	24.1 Introduction
	24.2 The Computations of Planarian Regeneration
	24.3 Reverse-Engineering Planarian Regeneration
	24.4 A Dynamic Model of Planarian Regeneration
	24.5 Discussion
	References

	25 An Integrated In Silico Simulation and Biomatter Compilation Approach to Cellular Computation
	25.1 Introduction
	25.2 Infobiotics Workbench
	25.2.1 Modelling
	25.2.2 Simulation
	25.2.3 Verification
	25.2.4 Biocompilation

	25.3 Two Genetic Logic Gates
	25.3.1 Beal et al.'s Design
	25.3.2 Tamsir et al.'s Design

	25.4 Analysis
	25.4.1 Simulation
	25.4.2 Performance Benchmarking
	25.4.3 Biocompilation

	25.5 Conclusions
	References

	26 Plant Roots as Excellent Pathfinders: Root Navigation Based on Plant Specific Sensory Systems and Sensorimotor Circuits
	26.1 Introduction
	26.2 Y-Maze: Binary Decision-Making of Maize Roots
	26.3 Light Controls U-Turn Behavior of Maize Roots
	26.4 Anticipation and Memory in Plants
	26.5 Possible Use of Roots for Unconventional Computing
	References

	27 Soft Plant Robotic Solutions: Biological Inspiration and Technological Challenges
	27.1 Introduction
	27.2 Roots---Growing Robots and Emerging Behaviour
	27.3 Movements---Osmotic and Hygromorphyc Actuators
	27.3.1 Osmosis-Based Actuator
	27.3.2 Hygromorphic Actuation Inspired by Passive Movements

	27.4 Mechanoperception---Soft Bending and Force Sensing
	27.5 Conclusions
	References

	28 Thirty Seven Things to Do with Live Slime Mould
	28.1 Introduction
	28.2 Optimisation and Graphs
	28.2.1 Shortest Path and Maze
	28.2.2 Towers of Hanoi
	28.2.3 Travelling Salesman Problem
	28.2.4 Spanning Tree
	28.2.5 Approximation of Transport Networks
	28.2.6 Mass Migration
	28.2.7 Experimental Archeology
	28.2.8 Evacuation
	28.2.9 Space Exploration

	28.3 Geometry
	28.3.1 Voronoi Diagram
	28.3.2 Delaunay Triangulation
	28.3.3 Concave Hull

	28.4 Computing Circuits
	28.4.1 Attraction-Based Logical Gates
	28.4.2 Ballistic Logical Gates
	28.4.3 Opto-Electronics Logical Gates
	28.4.4 Frequency Based Logical Gates
	28.4.5 Micro-Fluidic Logical Gates
	28.4.6 Intra-Cellular Collision Based Computing
	28.4.7 Kolmogorov--Uspensky Machine

	28.5 Electronics
	28.5.1 Wires
	28.5.2 Low Pass Filter
	28.5.3 Oscillators
	28.5.4 Tactile Sensor
	28.5.5 Colour Sensor
	28.5.6 Chemical Sensor
	28.5.7 Memristors
	28.5.8 Schottky Diodes
	28.5.9 Voltage Divider
	28.5.10 Transistors

	28.6 Robotics
	28.6.1 Robot Controllers
	28.6.2 Actuators
	28.6.3 Nervous System
	28.6.4 Illusions

	28.7 Energy Production
	28.7.1 Modulation of Energy Generation
	28.7.2 Biodiesel Production

	28.8 Arts
	28.8.1 Music Generation
	28.8.2 Modelling Creativity

	28.9 Things Inspired by Physarum but Never Done with a Real One
	28.10 Post Coitum Omne Animal Triste Est
	References

	29 Experiments in Musical Biocomputing: Towards New Kinds of Processors for Audio and Music
	29.1 Introduction
	29.2 Background
	29.2.1 The Beginning: Cellular Automata Simulations
	29.2.2 Genuine and Hybrid Schemes

	29.3 Towards Musical Biocomputing: Physarum Polycephalum
	29.3.1 Culturing Methods and Materials
	29.3.2 Step Sequencer
	29.3.3 Granular Synthesis
	29.3.4 Audio Wires

	29.4 Biocomputing for Music with P. Polycephalum
	29.4.1 BioComputer Music

	29.5 Concluding Remarks
	References

	30 Immunocomputing and Baltic Indicator of Global Warming
	30.1 Introduction
	30.2 Data
	30.3 Methods
	30.4 Results
	30.5 Discussion
	30.6 Conclusion
	References

	31 Experimental Architecture and Unconventional Computing
	31.1 Introduction
	31.2 Experimental Architecture
	31.3 Multidisciplinary Method
	31.4 Design-Led Prototyping
	31.5 Sustainability
	31.6 Unconventional Computing
	31.7 Dissipative Systems
	31.7.1 Experimentally Generating Dissipative Structures

	31.8 Assimilation and Growth
	31.9 Dynamic Droplets
	31.9.1 Bütschli System
	31.9.2 Spatiotemporal counting
	31.9.3 Cellular Automata

	31.10 Computational Strategies
	31.10.1 Internal Droplet Modification
	31.10.2 External Environment Modification

	31.11 Dissipative Systems in Unconventional Computing
	31.11.1 Questions of Scale
	31.11.2 Population Scale Interactions

	31.12 Elemental Infrastructures
	31.12.1 Enabling Flow

	31.13 Urban Applications
	31.14 Conclusion
	References

	Index

