
Introduction

The Java Modeling Language, JML, is an increasingly popular specification language
for Java software, that has been developed as a community effort since 1999. The
nature of such a project entails that language details change, sometimes rapidly,
over time and there is no ultimate reference for JML. Fortunately, for the items that
we address in this introduction, the syntax and semantics are for the greatest part
already settled by Leavens et al. [2013]. Basic design decisions have been described
in [Leavens et al., 2006b],2 who outline these three overall goals:

• “JML must be able to document the interfaces and behavior of existing software,
regardless of the analyses and design methods to create it. [. . .]

1 Chapter 8 defines a translation of the JML variant supported by KeY into Java dynamic logic,
and thereby defines a (translational) semantics of JML. Appendix A provides a language reference
for the exact JML variant supported by KeY, presenting syntax, as well as more details on the
semantics. Chapter 9 is entirely dedicated to modular specification and verification using JML and
KeY. Chapter 16 is a tutorial on KeY, using JML in a very intuitive manner only.
2 This 2006 journal publication is a revised version of a technical report that first appeared in 1998.

Chapter 7
Formal Specification with the
Java Modeling Language

Marieke Huisman, Wolfgang Ahrendt, Daniel Grahl, and Martin Hentschel

This text is a general, self contained, and tool independent introduction into the Java
Modeling Language, JML. It appears in a book about the KeY approach and tool,
because JML is the dominating starting point of KeY style Java verification. However,
this chapter does not depend on KeY, nor any other specific tool, nor on any specific
verification methodology. With this text, the authors aim to provide, for the time
being, the definitive, general JML tutorial.

Other chapters in this book discuss the particular usage of JML in KeY style
verification.1 In this chapter, however, we only refer to KeY in very few places,
without relying on it. This introduction is written for all readers with an interest in
formal specification of software in general, and anyone who wants to learn about the
JML approach to specification in particular. A preliminary version of this chapter
appeared as a technical report [Huisman et al., 2014].

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 193–241, 2016
DOI: 10.1007/978-3-319-49812-6 7

194 7 Formal Specification with the Java Modeling Language

• The notation used in JML should be readily understandable by Java programmers,
including those with only standard mathematical training. [. . .]

• The language must be capable of being given a rigorous formal semantics, and must
also be amenable to tool support.”

This essentially means two things to the specification language: Firstly, it needs to
express properties about the special aspects of the Java language, e.g., inheritance,
object initialization, or abrupt termination. Secondly, the specification language itself
heavily relies on Java; its syntax extends Java’s syntax and its semantics extend
Java’s semantics. The former makes it convenient to talk about such features in a
natural way, instead of defining auxiliary constructs or instrumenting the code as in
other specification methodologies. The latter can also come in handy since, with a
reasonable knowledge of Java, little theoretical background is needed in order to use
JML. This has been one of the major aims in the design of JML. It however bears the
problem that reasoning about specifications in a formal and abstract way becomes
more difficult as even simple expressions are evaluated w.r.t. the complex semantics
of Java.

History and Background

Assertions in source code to prove correctness of the implementation have already
been proposed long time ago by Floyd [1967]. However, assertions were not widely
used in practice—the assert statement in Java only first appeared in version 1.4,
in 2002. Other programming languages adopted assertions earlier: Bertrand Meyer
introduced the concept of Design by Contract (DbC) in 1986 with the Eiffel language
[Meyer, 1992, 1997]. DbC is a programming methodology where the behavior of
program components is described as a contract between the provider and the clients
of the component. The client only has to study the component’s contract, and this
should tell him or her exactly what he or she can expect from the component. The
provider is free to choose any implementation, as long as it respects the component’s
contract. Design by Contract has become a popular methodology for object-oriented
languages. In this case, the components are the program’s classes. Contracts naturally
correspond with the object-oriented paradigm to hide (or encapsulate) the internal
state of an object.

The Eiffel compiler came with a special option to check validity of a contract
at runtime. Subsequently, the same ideas where applied to reason about other pro-
gramming languages (including Modula-3, C++, and Smalltalk, that were all handled
in the Larch project [Guttag and Horning, 1993, Leavens and Cheon, 1993]). With
the growing popularity of Java, several people decided to develop a specification
language for Java. Gary T. Leavens and his students at Iowa State University used
their experience from the Larch project, and started work on a DbC specification
language for Java in 1998. They proposed a specification language, and simultane-
ously developed a JML runtime assertion checker, that could be used to validate
the contracts at runtime. At more or less the same time, K. Rustan M. Leino and
his team at the DEC/Compaq research center started working on a tool for static

195

code analysis. For the Extended Static Checker for Java, ESC/Java [Leino et al.,
2000], they developed a specification language that was more or less a subset of
JML. A successor, ESC/Java2 [Cok and Kiniry, 2005], finally adopted JML as it is
now. Several projects have been targeting tool supported formal verification of Java
programs: the LOOP project [van den Berg and Jacobs, 2001], the Krakatoa project
[Marché et al., 2004], and of course KeY. While in KeY originally specifications had
been written in the Object Constraint Language (OCL), that is part of UML, from
version 0.99 (released in 2005) on, JML has been the primary input language.

Ever since, the community has worked on adopting a single JML language, with
a single semantics—and this is still an ongoing process. Over the years, JML has
become a very large language, containing many different specification constructs,
some of which are only sensible in a single analysis technique. Because of the
language being so large, not for all constructs the semantics is actually understood
and agreed upon, and moreover all tools that support JML in fact only support a
subset of it. There have been several suggestions of providing a formal semantics
[Jacobs and Poll, 2001, Engel, 2005, Darvas and Müller, 2007, Bruns, 2009], but as
of 2015, there is no final consensus. Moreover, JML suffers from the lack of support
for current Java versions; currently there are no specifications for Java 5 features,
such as enums or generic types. Dedicated expressions to deal with enhanced foreach
loops have been proposed by Cok [2008].

How to Read this Chapter

When introducing JML, we mix a top-down and a bottom-up approach. At first,
we introduce the probably most important concept of JML (and similar languages),
method contracts, in a high-level manner (Section 7.1). We then jump to the most ele-
mentary building blocks of JML specifications, JML expressions (Section 7.2), which
are needed to discuss method contracts in more detail (Section 7.3). Then, we lift
the granularity of contracts from to the method to the class level (Section 7.4). After
discussing the treatment of the null reference, and of exceptions (Sections 7.5,7.6),
we turn to measures for increasing the separation of specification and implementation,
specification-only fields, methods, and variables (Section 7.7). Subtle complications
of the integer semantics deserve their own, brief discussion (Section 7.8). Finally, we
show that JML is not only used to specify desired behavior, but also to support the
verification process through auxiliary assertions (Section 7.9). An overview of JML
tools and a comparison with other specification languages (Section 7.10) conclude
this tutorial.

During the course of this chapter, the reader may want to experiment with the
examples (available from www.key-project.org/thebook2), using various tools, like
KeY and OpenJML, among others. This is strongly encouraged. However, there are
differences, unfortunately, concerning which language features and library methods
are supported, and different restrictions on the way JML is written. Some of these
difference are a bit arbitrary, others are more fundamental. For instance, runtime ver-
ification tools impose restrictions on JML which are not present in static verification

http://www.key-project.org/thebook2

196 7 Formal Specification with the Java Modeling Language

tools, e.g., that invariants and postconditions have to be executable. The reader may
therefore encounter examples that cannot be (without changes) processed by every
JML tool.

7.1 Introduction to Method Contracts

Specifications, whether they are presented in natural language or some formalism,
can express properties about system artifacts on various levels of granularity; like for
instance the overall system, some intermediate level, like architectural components,
or, on an even finer level of granularity, source code units. JML is designed for unit
specification. In Java, those units are:

• methods, where JML specifies the effect of a single method invocation;
• classes, where JML merely specifies constraints on the internal structure of an

object; and
• interfaces, where JML specifies the external behavior of an object.

Specifications of these units serve as contracts for their implementers, fixing what
they can rely upon, and what they have to deliver in return, following the aforemen-
tioned Design by Contract paradigm.

We start by introducing method specifications in this section. While we go along,
we will also introduce more general concepts, such as JML expressions, that are later
used for class and interface specifications as well.

7.1.1 Clauses of a Contract

Contracts of methods are an agreement between the caller of the method and the
callee, describing what guarantees they provide to each other. More specifically, it
describes what is expected from the code that calls the method, and it provides guar-
antees about what the method will actually do. While in our terminology, ‘contract’
refers to the complete behavioral specification, written JML specifications usually
consist of specification cases.3 These specification cases are made up of several
clauses.

The expectations on the caller are called the preconditions of the method. Typically,
these will be conditions on the method’s parameters, e.g., an argument should be
a nonnull reference; but the precondition can also describe that the method should
only be called when the object is in a particular state. In JML, each precondition is
preceded by the keyword requires, and the conjunction of all requires clauses forms
the method’s precondition. We would like to emphasize that it is not the method

3 In the context of KeY, what is called a contract approximately corresponds to a specification case
in JML. What is called ‘the contract’ in JML (i.e., the complete specification) is considered as a set
of multiple contracts for the same target in KeY. For details see Section 8.2.4.

7.1. Introduction to Method Contracts 197

implementer’s responsibility to check or handle a violation of the precondition.
Instead, this is the responsibility of the caller, and the whole point of contracts is to
make this distribution of responsibilities explicit, and checkable. Having said that, it
can be a difficult design decision when the caller should be responsible for ‘good’
parameters and prestates, and when the called method should check and handle this
itself. We refer to Section 7.1.2 for a further discussion of defensive versus offensive
specifications and implementations.

The guarantees provided by a method are called the postcondition of the method.
They describe how the system state is changed by the method, or what the expected
return value of the method is. A method only guarantees its postcondition to hold
whenever it is called in a state that respects the precondition. If it is called in a state
that does not satisfy the precondition, then no guarantee is made at all. In JML, every
postcondition expression is preceded by the keyword ensures, and the conjunction
of all ensures clauses forms the method’s postcondition.

JML specifications are written as special comments in the Java code, starting with
/*@ or //@. The @ symbol allows the JML parser to recognize that the comment
contains a JML specification. Sometimes, JML specifications are also called anno-
tations, because they annotate the program code. Preconditions and postconditions
are basically just Java expressions (of Boolean type). This is done on purpose: if the
specifications are written in a language that the programmer is already familiar with,
they are easier for him or her to write and to read. JML extends Java’s syntax; almost
every side effect free Java expression, i.e., that does not modify the state and has no
observable interaction with the outside world, (see [Gosling et al., 2013]) is also a
valid JML expression. See Section 7.2 for a detailed discussion of JML expressions.

Example 7.1. Listing 7.1 contains an example of a basic JML specification. It con-
tains specification cases for the methods in an interface Student, modeling a typical
student at some university.

We discuss the different aspects of this example in full detail. To specify a certain
method with JML, requires and ensures clauses are placed immediately before that
method, within a JML comment, starting with /*@ or //@. For instance, the method
changeStatus is specified in JML using two pre- and two postconditions.

The @ symbol is not only used at the beginning of a JML comment, but possibly
also at the beginning of each line of the JML specification, and before the */. This is
not necessary, but helps to highlight the JML specifications better. In general, an @ is
ignored within a JML annotation if it is the first (nonwhite) character in the line, or if
it is the last character before ‘*/.’

The requires and ensures clauses always consist of the keyword requires or
ensures, respectively, followed by a Boolean expression. Note that a specification
case must at least contain one ensures clause and that requires clauses may only
appear at the beginning of a specification case.

For method getName, we specify that it is a pure method, i.e., it may not have
any (visible) side effects. Also, it must terminate unconditionally (possibly with an
exception). Only pure methods may be used in specification expressions, because
these should not have side effects, and always terminate.

198 7 Formal Specification with the Java Modeling Language

1 public interface Student {
2

3 public static final int bachelor = 0;
4 public static final int master = 1;
5

6 public /*@ pure @*/ String getName();
7

8 //@ ensures \result == bachelor || \result == master;
9 public /*@ pure @*/ int getStatus();

10

11 //@ ensures \result >= 0;
12 public /*@ pure @*/ int getCredits();
13

14 //@ ensures getName().equals(n);
15 public void setName(String n);
16

17 /*@ requires c >= 0;
18 @ ensures getCredits() == \old(getCredits()) + c;
19 @*/
20 public void addCredits(int c);
21

22 /*@ requires getCredits() >= 180;
23 @ requires getStatus() == bachelor;
24 @ ensures getCredits() == \old(getCredits());
25 @ ensures getStatus() == master;
26 @*/
27 public void changeStatus();
28

29

30 }

Listing 7.1 First JML example specification

Method getStatus is also specified as being pure. In addition, we specify that
its result may only be one of two values: bachelor or master. To denote the return
value of the method, the reserved JML keyword \result is used.

For method getCredits we also specify that it is pure, and in addition we specify
that its return value must be nonnegative; a student thus never can have a negative
amount of credits.

Method setName is nonpure, i.e., it may have side effects. Its postcondition is
expressed in terms of the pure methods getName and equals: it ensures that after
termination the result of getName is equal to the parameter n.

Method addCredits’s precondition states a condition on the method parameters,
namely that only a positive number of credits can be added. The postcondition
specifies how the credits change. Again, this postcondition is expressed in terms
of a pure method, namely getCredits. Notice the use of the keyword \old. An
expression \old(E) in the postcondition actually denotes the value of expression
E in the state where the method call started, the prestate of the method. Thus the
postcondition of addCredits expresses that the number of credits only increases:

7.1. Introduction to Method Contracts 199

after evaluation of the method, the value of getCredits is equal to the old value of
getCredits, i.e., before the method was called, plus the parameter c.

Method changeStatus’s precondition specifies that this method only may be
called when the student is in a particular state, namely when they have obtained a
sufficient amount of credits to pass from the Bachelor status to the Master status.
Moreover, the method may only be called when the student is still having a Bachelor
status. The postcondition expresses that the number of credits is not changed by this
operation, but the status is. Notice that the two preconditions and the two postcon-
ditions of changeStatus are written as separate requires and ensures clauses,
respectively. Implicitly, these are each joined in conjunction, thus the specification is
equivalent to the following specification:
/*@ requires getCredits() >= 180 &&
@ getStatus() == bachelor;
@ ensures getCredits() == \old(getCredits()) &&
@ getStatus() == master;
@*/

public void changeStatus();
The reader might have wondered why not all method specifications in Student

have a pre- and a postcondition. Implicitly though, they have. For every specification
clause, there is a default. For pre- and postconditions this is the predicate true, i.e., no
constraints are placed on the caller of the method, or on the method’s implementation.

Example 7.2. Thus for example the specification of method getStatus actually is
the following:

Java + JML
/*@ requires true;
@ ensures status == bachelor || status == master;
@*/

public int getStatus() {
return status;

}
Java + JML

7.1.2 Defensive Versus Offensive Method Implementations

An important point about method contracts is that they can be used to avoid defensive
programming. Consider the specification of method addCredits in Listing 7.1,

This method assumes that its argument is nonnegative, and otherwise it is not
going to function correctly. When one uses a defensive programming style, one
would first test the value of the argument and throw an exception if this was negative.
This clutters up the code, and in many cases it is not necessary. Instead, using
specifications, one can use an ‘offensive’ coding style. The specification states what

200 7 Formal Specification with the Java Modeling Language

the method requires from its caller. It only guarantees to function correctly if the
caller also fulfills its part of the contract. When validating the application, one checks
that every call of the method is indeed within the bounds of its specification, and thus
the explicit test in the code is not necessary. Thus, making good use of specifications
can avoid adding many parameter checks in the code. Such checks are only necessary
when the parameters cannot be controlled—for example, because they are given via
an external user.

7.1.3 Specifications and Implementations

Method specifications are written independently of possible implementations. Classes
that implement this interface may choose different implementations, as long as they
respect the specification. Method specifications do not always have to specify the
exact behavior of a method; they give minimal requirements that the implementation
should respect.

Example 7.3. Considering the specification in Listing 7.1 again, the method speci-
fication for changeStatus prescribes that the credits may not be changed by this
method. However, method addCredits is free to update the status of the student.
So for example, an implementation that silently updates the status from Bachelor
to Master is appropriate according to the specification. The specification case is
repeated here for understandability and that it is not required and recommended to
copy specifications of interfaces in classes that realize them.

Java + JML
/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

public void addCredits(int c) {
credits = credits + c;
if (credits >= 180) {status = master;}

}

Java + JML

According to the specification, both addCredits and changeStatus would
be free to change the name of the student, even though we would typically
not expect this to happen. A way to avoid this, is to add explicitly conditions
getName()==\old(getName()) to all postconditions. Later, in Section 7.9.1, we
will see how assignable clauses can be used to explicitly disallow these unwanted
changes in a more convenient way.

7.2. Expressions 201

7.2 Expressions

We have already seen that standard Java expressions can be used in JML specifica-
tions. These expressions have to be side effect free, thus for example assignments,
or increment/decrement operators, are not allowed. As also mentioned above, JML
expressions may contain method calls to pure methods.

In addition, JML defines several specification-specific constructs, to be used in
expressions. The use of the \result and \old keywords has already been demon-
strated in Listing 7.1, and the official language specification contains a few more
of these. Besides Java’s logical operators, such as conjunction &, disjunction |and
negation !, also other logical operators are allowed in JML specifications, e.g., im-
plication ==>, and logical equivalence <==>. Since expressions are not supposed to
have side effects or terminate exceptionally, in JML in many cases the difference
between logical operators such as & and |, and short circuit operators, such as &&,
and || is not important. However, sometimes the short circuit operators have to be
used to ensure an expression is well-defined. For instance, y != 0 & x/y == 5
may not be a well-defined expression, while y != 0 && x/y == 5 is.

7.2.1 Quantified Boolean Expressions

For specifying interesting properties, purely propositional Boolean expressions are
too limited. How could one for instance express any of the following properties with
just propositional connectors?

• An array arr is sorted.
• The variable m holds the maximum entry of array arr.
• All Account objects in an array allAccounts are stored at the index corre-

sponding to their respective accountNumber field.

Given that the arrays in these examples have a statically unknown length, proposi-
tional connectives are not enough to express any of the above. What we need here
is quantification. For that, Boolean JML expressions are extended by the following
constructs.4

• (\forall T x; b)
‘for all x of type T , b holds’

• (\forall T x; a; b)
‘for all x of type T fulfilling a, b holds’

• (\exists T x; b)
‘there exists an x of type T such that b holds’

• (\exists T x; a; b)
‘there exists an x of type T fulfilling a, such that b holds’

4 The JML keywords \forall and \exists correspond to ∀ and ∃ in textbook notation.

202 7 Formal Specification with the Java Modeling Language

Here, T is a Java (primitive or reference) type, x is any name (hereby declared
to be of type T), and a and b are Boolean JML expressions. The a is called
range predicate. The two forms using a range predicate are not strictly needed,
as they can be expressed without. (\forall T x; a; b) is logically equivalent to
(\forall T x; a ==> b), and (\exists T x; a; b) is logically equivalent
to (\exists T x; a && b). However, the range predicates have a certain prag-
matics not shared by their logical counterparts. In (\forall T x; a; b), as well
as in (\exists T x; a; b), the Boolean expression a is used intuitively to restrict
range of x further than T does.

Example 7.4. Using quantifiers, we can specify that an array should be sorted, for
instance in a precondition for a logarithmic lookup method that assumes sorting.

JML
//@ requires (\forall int i, j;
//@ 0 <= i & i < j & j < a.length;
//@ a[i] <= a[j]);
public int lookup(int elem) {...

JML

The first argument int i,j is the declaration of the variables over that the
quantification ranges. The second argument 0 <= i & i < j & j < a.length
defines the range of the values for this variable, and the third argument is the actually
universally quantified formula (a[i] <= a[j] in this case).

Example 7.5. An alternative, but less preferred, way to phrase the specification in
Example 7.4 is the following:

JML
//@ requires (\forall int i, j;
//@ 0 <= i & i < j & j < a.length ==> a[i] <= a[j]);
public int lookup(int elem) {...

JML

Besides supporting readability, the range predicate form helps certain JML tools
to ‘execute’ quantified formulas where possible. This is less important for theorem
provers, like KeY. But a runtime verification tool would need to operationalize the
precondition, by looping through all i,j fulfilling 0<=i & i<j & i<a.length,
instead of looping through all i,j between Integer.MIN_VALUE and
Integer.MAX_VALUE.

Example 7.6. To specify that a method returns the index of an integer array arr
holding the maximum entry, we can write the following postcondition.

JML
//@ ensures (\forall int i; 0 <= i &&
//@ i < arr.length; \result >= arr[i]);

JML

7.2. Expressions 203

But is that enough? (The reader may briefly reflect before reading on.) This single
line only specifies that the result is larger than any other element. An implementation
always returning Integer.MAX_VALUE would satisfy the above postcondition5. We
therefore need an additional postcondition that states that the result is actually an
element of the array:

JML
//@ ensures arr.length > 0 ==>
//@ (\exists int i; 0<=i && i<arr.length; \result==arr[i]);

JML

Example 7.7. The following Boolean JML expressions say that all Account objects
in an array allAccounts are stored at the index corresponding to their respective
accountNumber field.

JML
(\forall int i; 0 <= i && i < allAccounts.length;

allAccounts[i].accountNumber == i)
JML

Such an expression could for instance be used in an invariant, see Section 7.4.1.

7.2.2 Numerical Comprehensions

In addition to the Boolean quantified expressions, JML offers so called general-
ized quantifiers \sum, \product, \min, \max, and \num_of. Those are actually
numerical comprehensions (or higher-order functions) with bound variables; see
Section 2.3.1. The postcondition in Example 7.6 can alternatively be given as:
//@ ensures \result ==
//@ (\max int i; 0 <= i && i < arr.length; arr[i]);
The above is syntactically similar to a quantified formula: the \max operator binds a
variable i, and a Boolean guard expression restricts it to be within the range of the
array’s indices. The type of the \max expression is the type of its body; here it is int.
The intuitive semantics is obviously that the result is the maximum of all arr[i]
where i is in the array range. However, the \max construct is not total, i.e., it is not
always a well-defined expression. In case arr has zero length, for instance, there
is no maximum. A similar case appears with a noncompact range, e.g., the set of
all mathematical integers (represented by the JML type \bigint, see Section 7.8):
(\max \bigint i; true; i).

Another comprehension operator is the summation operator \sum, of which we
make use in Example 7.9 on page 224 since the exact number of summands is not
known:
5 See also Section 7.8 for a discussion on Java integers.

204 7 Formal Specification with the Java Modeling Language

(\sum int i; 0 <= i && i < s1.length; s1[i].getCredits())

This expression corresponds to ∑
s1.length−1
i=0 s1[i].getCredits() in mathematical

notation. More generally, sum comprehensions in JML can have several bound vari-
ables that range over sets of values. The general pattern is (\sum T x; P; Q)
where T is a type, P a Boolean expression and Q an integer expression corresponds
to ∑x∈{y∈T |P}Q. Likewise the \product operator is used to express product compre-
hensions. Since addition (as multiplication) is commutative and associative, there is
no particular order in which elements are summed up. Sums with empty ranges have
value 0 by definition, empty products have value 1.

Expressions using the \num_of operator, that gives the cardinality of a finite
set, can be expressed in terms of sums: (\num_of T x; P) is syntactic sugar for
(\sum T x; P; 1).

However, like for maximum, sum comprehensions are not always well-defined. For
instance, the expression (\sum \bigint i; 0 <= i; i) corresponds to ∑

∞
i=0 i,

the value of which is undefined since it diverges. In some tools—including KeY—
effective reasoning about these comprehensions is therefore restricted to closed
integer intervals, for which sums, etc., are always defined. In particular, KeY only
interprets sums of the shape (\sum int i; ` <= i && i < u; Q), where the
lower bound ` is included and the upper bound u is excluded. This restricted form
using intervals has the advantage of having a simple induction schema to define
these comprehensions, that lays the foundation to reasoning about sums and products.
More details about this are discussed in Section 8.1.

7.2.3 Evaluation in the Prestate

As indicated in the introductory example, JML allows us to mark any expres-
sion e in a postcondition with \old(e), which means that e is not evaluated in
the current (post)state of the method, but in its prestate. In most cases, \old(e)
is a subexpression of some bigger expression, and it is important to be aware
that all parts of the expression not included in \old(. . .) construct are evalu-
ated in the current (post)state. This is fairly obvious in many examples, like
ensures getCredits() == \old(getCredits()) + c; in Listing 7.1. For a
more subtle example, consider an ATM scenario, where an insertedCard (repre-
sented by an object with a Boolean field invalid) is ‘confiscated’ after too many
failed attempts to enter the correct PIN, specified by
//@ ...
//@ ensures \old(insertedCard).invalid;
//@ ...

We encourage the reader, before reading on, to reflect on the difference between
\old(insertedCard).invalid and \old(insertedCard.invalid).

Writing \old(insertedCard.invalid) would mean that the method imple-
mentation has to guarantee that the invalid field of the old insertedCard object

7.3. Method Contracts in Detail 205

was true before the method’s execution. This makes no sense, as a method implemen-
tation can never influence its prestate. However, \old(insertedCard).invalid
makes much more sense, as an implementation can, for instance, set the invalid
field of the old insertedCard object to true. To demand the invalidation of the
object insertedCard in the poststate, \old(insertedCard).invalid refers to
the current field of the object formerly referred to by insertedCard.

7.3 Method Contracts in Detail

Now that the reader is familiar with the particular features of JML expressions, we
are ready to continue the presentation of method contracts. Among other things, we
will introduce specification visibility, much more structure, and more semantics, in
contracts.

7.3.1 Visibility of Specifications

So far, the specifications have not specified anything about the values of an object’s
fields. Typically, these are declared private, which limits also their use within spec-
ifications. Basically JML uses the same access rules like Java which means that
elements used within specifications have to be visible to it and that a specification
itself also has a visibility. The access modifiers public, protected, and private
are explicitly used to define specifications visibility. If none of these modifiers is
used a specification has the default (package) visibility.

In addition to the Java access rules, JML forbids the usage of elements within
specifications that are less visible than the specification itself. The reason of this
restriction is to avoid to expose implementation details to the clients (information
hiding). As a consequence, it is not possible to use private variables directly within
protected or public specifications. However, it is possible to change their visibility
only for the specification layer via spec_protected or spec_public. These mod-
ifiers have to be used with care and only if the adjusted field fits the abstraction level
of the specification.

Example 7.8. If we specify the instance variables of CStudent to be spec_public,
then its constructor can also be specified as in Listing 7.2.

A second restriction of specification visibility to keep in mind is that specifications
that constrain a field must have at least the visibility of the field. The reason is that
otherwise a user of a field would not see the constraints to maintain. This is especially
important for invariants and constraints, discussed in Sections 7.4.1 and 7.4.3.

206 7 Formal Specification with the Java Modeling Language

class CStudent implements Student {

/*@ spec_public @*/ private String name;
/*@ spec_public @*/ private int credits;
/*@ spec_public @*/ private int status;
...
/*@ requires c >= 0;
@ ensures credits == c;
@ ensures status == bachelor;
@ ensures name = n;
@*/

public CStudent (int c, String n) {
credits = c;
name = n;
status = bachelor;

}
}

Listing 7.2 Class CStudent with spec_public variables

7.3.2 Specification Cases

When specifying a method, it is often useful—and sometimes necessary—to describe
the behavior separately for different parts of the prestate/input space. The structuring
mechanism for that is the specification case, each of which is specific for a particular
precondition. Specification cases are combined by the also keyword. The above
method contracts consisted of only one specification case. We now give an example
where two specification cases are given for one method.

Example 7.9. Listing 7.3 shows the specification of a class implementing a set of
integers, with a limited capacity that is fixed at the time when the integer set object is
constructed.

Here, method add is specified by two specification cases, one for the case, where
the set is not full and the element to be added is not contained (size < limit &&
!contains(elem)); and one for the case, where the set is full or the element to be
added is already contained (size == limit || contains(elem);). Note that it
is possible to specify add with only one specification case. Refer to [Raghavan and
Leavens, 2000] for a procedure to produce flat specifications.

Listing 7.3 is furthermore an example for extensive usage of quantification. More-
over, it demonstrates the power of pure methods. Without the ability to use contains
in the specification of the other methods, all occurrences of contains would need
to be replaced by the existentially quantified JML expression specifying contains,
resulting in a much more complicated specification. We will extend on this example
when discussing class invariants.

7.3. Method Contracts in Detail 207

1 public class LimitedIntegerSet {
2 public final int limit;
3 /*@ spec_public @*/ private int arr[];
4 /*@ spec_public @*/ private int size = 0;
5

6 public LimitedIntegerSet(int limit) {
7 this.limit = limit;
8 this.arr = new int[limit];
9 }

10

11 /*@ requires size < limit && !contains(elem);
12 @ ensures \result == true;
13 @ ensures contains(elem);
14 @ ensures (\forall int e;
15 @ e != elem;
16 @ contains(e) <==> \old(contains(e)));
17 @ ensures size == \old(size) + 1;
18 @
19 @ also
20 @
21 @ requires size == limit || contains(elem);
22 @ ensures \result == false;
23 @ ensures (\forall int e;
24 @ contains(e) <==> \old(contains(e)));
25 @ ensures size == \old(size);
26 @*/
27 public boolean add(int elem) {/*...*/}
28

29 /*@ ensures !contains(elem);
30 @ ensures (\forall int e;
31 @ e != elem;
32 @ contains(e) <==> \old(contains(e)));
33 @ ensures \old(contains(elem))
34 @ ==> size == \old(size) - 1;
35 @ ensures !\old(contains(elem))
36 @ ==> size == \old(size);
37 @*/
38 public void remove(int elem) {/*...*/}
39

40 /*@ ensures \result == (\exists int i;
41 @ 0 <= i && i < size;
42 @ arr[i] == elem);
43 @*/
44 public /*@ pure @*/ boolean contains(int elem) {/*...*/}
45

46

...
47 }

Listing 7.3 Specifying limited size integer set

208 7 Formal Specification with the Java Modeling Language

7.3.3 Semantics of Normal Behavior Specification Cases

An important question is when a method specification is actually satisfied. And in
particular, if a method does not terminate, does it then satisfy its specification? The
specifications as we have seen here implicitly state that the method must always
terminate, i.e., they specify a total correctness condition, see [Hoare, 1969]. If
method m is specified as follows:
/*@ requires P;
@ ensures Q;
@*/

public . . . m(. . .) { . . .

this means the following: If method m is executed in a prestate where P holds,
then execution of method m from this prestate terminates, and—if it terminates
normally6—in the final state the postcondition Q holds. Section 8.2 provides a more
formal account on contract semantics.

Nontermination and Exceptions

To specify that a method may not terminate under some precondition, one can add
an explicit diverges clause. A diverges clause specifies under which conditions
a method may not terminate, for example to express that for certain parameters a
method may not terminate. As we have seen above, the default is false, i.e., a
method must always terminate. Like requires, diverges clauses are evaluated in
the prestate; a diverges clause thus describes a precondition that is necessary for
nontermination.
/*@ requires P;
@ ensures Q;
@ diverges x < 0;
@*/

public . . . m(int x) { . . .

Sometimes we wish to exclude the case that a method may terminate because
of an exception. In this case, the respective specification case is preceded by the
keyword normal_behavior, which states that the method execution must terminate
normally, and in the final state the postcondition must hold.

Lightweight and Heavyweight Specification

The JML reference manual [Leavens et al., 2013] further distinguishes between
so called lightweight and heavyweight specifications. Heavyweight specification

6 A method is said to terminate normally if either it reached the end of its body, in a normal state,
or it terminated because of a return instruction. In Section 7.6 we discuss how we can specify
methods that terminate because of an exception.

7.3. Method Contracts in Detail 209

cases are preceded by one of the keywords behavior, normal_behavior, or
exceptional_behavior (see Section 7.6); all others are lightweight. The differ-
ence is that, in lightweight specifications, there are no standardized defaults—except
for diverges whose default is always false. Instead, every tool is free to choose
its own semantics. KeY takes the choice of applying the same defaults as for heavy-
weight specifications. The visibility of a lightweight specification case in JML is
always the one of the method they specify.

7.3.4 Specifications for Constructors

Constructors can be considered as special methods. In the prestate of a constructor, the
object does not yet exist. Thus a precondition of a constructor can only put constraints
on the constructor parameters, it cannot require anything about the internal state of
the object—as the object does not exist yet when the constructor is called. However,
the postcondition of the constructor can specify constraints on the state of the object.
Typically, it will relate the object state to the constructor’s parameters.

Example 7.10. Suppose we have a class CStudent implementing the Student inter-
face. It could have the following constructor:

Java + JML
/*@ requires c >= 0;
@ ensures getCredits() == c;
@ ensures getStatus() == bachelor;
@ ensures getName() == n;
@*/

CStudent (int c, String n) {
credits = c;
name = n;
status = bachelor;

}

Java + JML

Thus, it would be incorrect to specify requires getCredits() >= 0; or
requires getStatus() == bachelor; these specifications are meaningless at
the moment that the constructor is invoked.

7.3.5 Notions of Purity

Above in Section 7.1.1, we have said that only pure methods may be used in a method
specification, and purity was defined as terminating unconditionally and having no

210 7 Formal Specification with the Java Modeling Language

visible side effects. ‘No visible side effects’ means that the state that was allocated
on the heap before the method call may not be changed. Thus, this does not exclude
that a method creates a new object and initializes it. In the same way, constructors are
pure if they only operate on fields of the object they initialize, not touching the state
that was allocated before the call to the constructor. If it, however, changes other parts
of the state it is not pure. Later, in Section 9.4.4, we will see how purity annotations
help to verify programs in a modular way. For clarity, this notion of purity in JML
is sometimes known as weak purity. This is in contrast to strict purity that requires
that the heap is not changed in any way. While weakly and strictly pure methods
have the same observable behavior, reasoning about hidden changes in weakly pure
methods can make a proof more complicated. In KeY’s dialect of JML, strict purity
is indicated by the modifier strictly_pure.

Apart from that, there are situations where methods are technically speaking
not pure, but from a client point of view may be considered to be so. Consider for
an example the function that computes a hash code. The first time this function is
called on an object, a field of the object will be written, so that the next calls can be
evaluated by looking up this field. Because of this, different notions of purity and
observational purity exist in the literature [Barnett et al., 2004, 2005b, Darvas and
Müller, 2006, Darvas and Leino, 2007, Naumann, 2007, Cok and Leavens, 2008].

For the scope of this chapter, it is sufficient to define purity simply as not having
any observable side effects.

While pure methods must terminate under any circumstance, they may still raise
exceptions or have a nontrivial precondition. In these cases, the value of a pure
method invocation is not always well-defined. Therefore, it is a best practice to have
true as precondition of pure methods and to rule out exceptions and not defined
return values.

7.4 Class Level Specifications

Consider again the specification of Student in Listing 7.1. If we look carefully at
the specifications and the description that we give about the student’s credits, we
notice that we implicitly assume some properties about the value of getCredits
that hold throughout. For example, we wrote above:

“a student thus never can have a negative amount of credits”

and also

“the number of credits only increases.”

But if we would like to make explicit that we assume that these properties always hold,
we would have to add this to all specifications in Student, and thus in particular,
also to all methods that do not relate at all to the number of credits. Thus for example,
we would get the following specification:

7.4. Class Level Specifications 211

Java + JML
/*@ requires getCredits() >= 0;
@ ensures \result == bachelor || \result == master;
@ ensures getCredits() >= 0;
@*/

/*@ pure @*/ public int getStatus();

Java + JML

Clearly, this is not desired, because specifications would get very large, and be-
sides describing the intended behavior of that particular method, they also describe
properties over the lifetime of the object. Therefore, JML provides also class level
specifications, such as invariants, history constraints, and initially clauses. These
specify properties over the internal state of an object, and how the state can evolve
during the object’s lifetime.

7.4.1 Invariants

One of the most important and widely-used specification elements in object-
orientation are type invariants7, also called class or interface invariants, depending
on where they are defined. An invariant is a Boolean (JML) expression over the
object state, and can be seen as a condition to constrain the state an instance can be in.
In addition, any constructor has to ensure that the invariant is established. Methods
can be except from this scheme by adding the modifier helper to their declaration.

Example 7.11. Listing 7.4 shows three possible invariants that can be added to inter-
face Student. These specify that credits are never nonnegative; a student’s status
is always either Bachelor or Master, and nothing else; and if a student’s status is
Master, he or she has earned more than 180 credits. The pure methods are used in
the invariants.8

Of course, instead of specifying invariants, one could also add these specifications
to all pre- and postconditions explicitly. However, this means that if you add a method
to a class, you have to remember to add these pre- and postconditions yourself.
Moreover, invariants are also inherited by subclasses (and by implementations of
interfaces). Thus any method that overrides a method from a superclass still has
to respect the invariants. And any method that is added to the subclass also has to
respect the invariants from the superclass. This leads to a very nice separation of
concerns.

7 Not to be confused with loop invariants. Those will be discussed in Section 7.9.2.
8 There is an unresolved discussion about whether methods that are used in invariants have to be
helper, or how to otherwise avoid potential circularity between showing and assuming invariants.
We choose to not mark public methods as helper, because helper methods are designed for local
usage. Please note, though, that some tools, like OpenJML, require methods used in invariants to be
helper.

212 7 Formal Specification with the Java Modeling Language

interface Student {

public static final int bachelor = 0;
public static final int master = 1;

/*@ instance invariant getCredits() >= 0;
@ instance invariant getStatus() == bachelor ||
@ getStatus() == master;
@ instance invariant getStatus() == master ==>
@ getCredits() >= 180;
@
@ instance initially getCredits() == 0;
@ instance initially getStatus() == bachelor;
@
@ instance constraint getCredits() >= \old(getCredits());
@ instance constraint \old(getStatus()) == master ==>
@ getStatus() == master;
@ instance constraint \old(getName()) == getName();
@*/

public /*@ pure @*/ String getName();

public /*@ pure @*/ int getStatus();

public /*@ pure @*/ int getCredits();

/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

public void addCredits(int c);

/*@ requires getCredits() >= 180;
@ requires getStatus() == bachelor;
@ ensures getCredits() == \old(getCredits());
@ ensures getStatus() == master;
@*/

public void changeStatus();

}

Listing 7.4 Interface Student with class level specifications

An important point to realize is that invariants have to hold only in all states in
which a method is called or terminates. Thus, inside the method, the invariant may
be temporarily broken. Note that the kind of termination of a method does not matter.
Regardless of terminating normally, exceptionally, or erroneously, a method has to
meet the invariant.

Example 7.12. The following possible implementation of addCredits is correct,
even though it breaks the invariant that a student can only be studying for a Master

7.4. Class Level Specifications 213

if they have earned more than 180 points inside the method: if credits + c is
sufficiently high, the status is changed to Master. After this assignment the invariant
does not hold, but because of the next assignment, the invariant is reestablished
before the method terminates.

Java + JML
/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

public void addCredits(int c) {
if (credits + c>= 180) {status = master;} // invariant broken
credits = credits + c;

}

Java + JML

However, if a method calls another method on the same object, it has to ensure
that the invariant holds before this callback. Why this is necessary, is best explained
with an example.

interface CallBack {

//@ instance invariant getX() > 0;
//@ instance invariant getY() > 0;

/*@ pure @*/ public int getX();
/*@ pure @*/ public int getY();

//@ ensures getX() == x;
public void setX(int x);

//@ ensures getY() == y;
public void setY(int y);

//@ ensures \result == getX() % getY();
public int remainder();

public int longComputation();

}

Listing 7.5 Interface CallBack

Example 7.13. Consider the interface CallBack in Listing 7.5. Typically, correctness
of the method remainder crucially depends on the value of getY being greater
than 0. Suppose we have an implementation of the CallBack interface, where the
method longComputation is sketched in Listing 7.6.

214 7 Formal Specification with the Java Modeling Language

public int longComputation(){
. . .
if (getY() . . .) {

setY(0); // invariant broken
}
. . .
int r = remainder(); // callback
. . .
setY(r + 1); // invariant reestablished
. . .
return . . .

}

Listing 7.6 Invariant broken during callback

Naively, one could think that the fact that the invariant about getY() is bro-
ken inside this method, is harmless, because the invariant is reestablished by the
setY(r + 1) statement. However, the call to method remainder is a callback, and
the invariant should hold at this point. In fact, correct functioning of this method call
depends on the invariant holding. The invariant implicitly is part of remainder’s
precondition. If the invariant does not hold at the point of the callback, this means
that remainder is called outside its precondition, and no assumption can be made
about its result as well.

Although invariants are always specified within a class or interface, their effective
scope is global. A method of some specific class is obliged to respect invariants of
all other classes. There is a way to avoid the requirement that the invariant has to
hold upon callback, by specifying that a method is a helper method. Such methods
must not depend on the invariant to hold, and they do not guarantee that the invariant
will hold afterwards. Typically, only private methods should be specified as helper
methods, because one does not want that any other object can directly invoke a helper
method. Finally we note that, while a pure helper method cannot assume the invariant
to hold when it is called, it does preserve any invariant because of purity.

Where Do Invariants Come From?

Sometimes invariants are imposed by the domain which is modeled by the code.
The interface Student in Listing 7.4 is such an example. Students can only have a
positive number of credits, they must be either Master or Bachelor students, and so
forth. Another common motivation for invariants is efficiency. Efficient computations
often require to organize data in a specific way. One way is introducing redundancy,
like for instance in an index of a book, mapping words to pages where they occur.
Such an index is redundant (we can always search through the whole book to find the
occurrences of a word), but it enables efficient look-up. On the downside, redundancy
opens up for inconsistencies. The countermeasure is to use invariants, formalizing the
consistency conditions (like each word in an index appearing in the text as well, at

7.4. Class Level Specifications 215

the page given by the index). Other ways to increase efficiency limit the organization
of data to comply to certain restrictions. A prominent example of that is sortedness,
which allows for quicker look-up. In the following, we demonstrate how sortedness
can be expressed with an invariant.

Example 7.14. We turn the LimitedIntegerSet (Listing 7.3) into a sorted data
structure, by adding the invariant

JML
/*@ public invariant (\forall int i;
@ 0 < i && i < size;
@ arr[i-1] <= arr[i]) ;
@*/

JML

to that class. With that, the implementer of each method can rely on sortedness in the
prestate, and the implementer of each (impure) method has to guarantee sortedness
in the poststate.

Static Invariants vs. Instance Invariants

Class invariants may or may not refer to the object this and its instance (i.e.,
nonstatic) fields or methods. For example, the class invariant in Example 7.14 refers
to the instance field arr. Such invariants are also called instance invariants, and
can be declared as such with the instance modifier. This is however not necessary,
as class invariants are instance invariants per default. If, on the other hand, a class
invariant does not refer to this, neither to any instance field or instance method, we
can highlight that (and potentially help verification tools) by declaring the invariant
as static, using the static modifier. Please note that, since instance methods might
change static variables, static invariants have to be respected by instance methods as
well.

Similarly, interface invariants may or may not refer to instance (i.e., nonstatic)
methods. For example, all invariants in Listings 7.4 and 7.5 mention instance methods,
and are therefore instance invariants. The reader may have noted that invariants
in Listings 7.4 and 7.5 are explicitly declared as instance invariant. This is
necessary because, for interfaces, the default is different from classes: invariants are
static, if not declared otherwise.

Semantics of Invariants

Defining a precise semantics for invariants is still an active area of research, see, e.g.,
[Poetzsch-Heffter, 1997, Leino and Müller, 2004, Barnett et al., 2004, Müller et al.,
2006, Bruns, 2009]. A complication is that, although invariants are declared in a
particular class, not only instances of that class have to respect it, but all objects in the

216 7 Formal Specification with the Java Modeling Language

system. An alternative approach, that is used in the Spec# framework, is to explicitly
add specification statements unpack and pack for invariants. An invariant may only
be broken if it has been explicitly unpacked. When the invariant is reestablished, it
has to be explicitly be packed again, and this only succeeds if the invariant indeed
holds at this point. Every method can then specify explicitly whether it assumes
invariants to hold (i.e., to be packed) or not. This approach is sometimes referred to
as the Boogie methodology [Barnett et al., 2006].

Similar to the Boogie methodology, in the KeY system, invariants are not implicitly
added to specifications. Instead, the specification must make explicit which specific
invariants are included, and which are not. This specification may be more verbose,
but it is clear from the given specification that invariants are assumed or established.
See Section 9.2.1.3 for further discussion. The invariant for an object o can be referred
to through \invariant_for(o). This allows fine-grained usage of invariants in
specifications. Unlike in Boogie, explicit packing/unpacking instructions in the code
are not necessary. Instead, the specifier has to specify a set of locations the invariant
depends on at most (accessible clause). Usually, methods rely at least on the
invariant of the current receiver. For convenience, this invariant is implicitly included
for nonhelper methods (see Section 8.2 on proof obligations).

Finally, it is important to realize that the notion of invariants that we discussed
here only makes sense in a sequential setting. In a multithreaded setting, there always
may be another thread accessing the object simultaneously, and one cannot talk about
initial and final states of a method invocation anymore. Instead, in a multithreaded
setting, one sometimes specifies strong invariants that may never be broken. For
instance, Zaharieva-Stojanovski and Huisman [2014] present a modular specification
and verification technique for class invariants in a concurrent setting.

7.4.2 Initially Clauses

Sometimes, one explicitly wishes to specify the conditions that are satisfied by an
object upon creation. Each (nonhelper) constructor9 of the object has to establish the
predicate specified by the initially clause. Another advantage of initially clauses is
that they are inherited; that means that also constructors of subclasses have to fulfill
them. Constructors in Java itself are not inherited. As a consequence, a constructor
can rely on the guarantees provided by a called super constructor but does not have
to maintain them.

Example 7.15. Listing 7.4 shows some possible initially clauses for the Student
interface.

Again, it would be possible to specify this property as a postcondition of all
constructors, instead of as a single initially clause. But in this way, any additional
constructor has to respect the initially clause, and we ensure that also subclasses
respect it.

9 Again, typically only private constructors would be annotated as a helper constructor.

7.4. Class Level Specifications 217

7.4.3 History Constraints

Invariants as we discussed above define a predicate that every state of the object
should respect. However, sometimes one also wishes to specify how an object
may evolve over time, i.e., the relationship that exists between the prestate and the
poststate of a method call. This could be seen as a sort of general postcondition that
has to be respected by every method, however the definition is actually more fine
grained than that. For this, history constraints (usually constraints for short) have
been introduced by Liskov and Wing [1993]. Constraints can be seen as implicit
postconditions, but just as invariants and initially clauses, they have the advantage that
they are inherited, and immediately are required to hold for any additional methods.
Constraints may rely on syntactical features that are used to measure changes between
states such as the \old operator. Assigning suitable semantics to history constraints
is nontrivial; a possibility would be to see them as special two-state model methods
(see Section 9.2.2). This is not yet implemented in KeY at the time of publishing this
book.

Example 7.16. Listing 7.4 defines several constraints for the Student interface. The
first constraint specifies that the amount of credits can never decrease. The second
constraint specifies that if a student has obtained the Master status, he or she will
remain a Master student, and cannot be downgraded to a Bachelor student again.
Finally, the third constraint specifies that a student’s name can never change.

When specifying constraints, it is important that they should denote a reflexive
relation, i.e., it should be possible to respect a constraint without actually changing
the state. In particular, any pure method should be able to respect the constraint.
Therefore, one should not specify the following strict constraint:
constraint \old(getCredits()) < getCredits();

as it is impossible to respect this constraint with a pure method. Typically, constraints
will also be transitive, so that when you consecutively call two methods from the
same object, you also know the relationship that holds between the prestate of the
first method, and the poststate of the second method.

Example 7.17. Consider the possible implementation of addCredits in Listing 7.7.
To show that the constraint is respected, it has to hold for the following state pairs:

• (prestate, call-state changeStatus)
• (call-state changeStatus, return-state changeStatus)
• (return-state changeStatus, poststate)

Notice that if the constraint is transitive, the relationship also holds for the pair of
prestate and poststate, which is indeed what we want.

Again, in a multithreaded setting, the meaning of constraints would become less
clear. Because any interleaving is possible, all intermediate states must be assumed
to be visible to other threads. However, a constraint such as that getName returns
a constant value could still be meaningful also in a multithreaded setting (except

218 7 Formal Specification with the Java Modeling Language

//@ constraint \old(getCredits()) <= getCredits();

/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

// prestate
public void addCredits(int c) {

credits = credits + c;
if (credits >= 180) {

// call-state changeStatus
changeStatus();
// return-state changeStatus

}
} // poststate

Listing 7.7 Checking history constraints

that the number of possible visible state pairs that have to be considered might
grow exponentially). Therefore, in a concurrent setting one could imagine a notion
of strong history constraints, i.e., a relationship that has to hold for any pair of
consecutive states.

7.4.4 Initially Clauses and History Constraints: Static vs. Instance

Just as class invariants (see Section 7.4.1), also initially clauses and history constraints
have instance as well as static versions, which can be declared with the instance
and static modifier, respectively. The static variants cannot explicitly mention an
instance (i.e., nonstatic) field or method, neither can they refer to this itself. The
instance variants, on the other hand, have no such restriction.

In classes, the default for initially clauses and history constraints is instance,
meaning this modifier can be omitted. For interfaces, the default for initially clauses
and history constraints is static. Note that, in interface Student (Listing 7.4), all
initially clauses and history constraints mention nonstatic methods or fields. They
can therefore not be static (which is the default), and have to be marked as instance
explicitly.

7.4.5 Inheritance of Specifications

Design by Contract allows one to impose the concept of behavioral subtyping [Liskov,
1988], that is usually defined by the Liskov substitution principle, or Liskov principle
for short [Liskov and Wing, 1994]. A type T ′ is a behavioral subtype of type T
if every observable behavior of T is also observable on T ′. In an object-oriented

7.4. Class Level Specifications 219

program, this means that any subclass may be used wherever a superclass is expected.
Behavioral subtyping expresses the idea that a subclass thus should behave as the
superclass (at least, when it is used in a superclass context). Subclasses in Java do
not always define behavioral subtypes. They can be used simply for the purpose of
code reuse.

However, the substitution principle as originally stated by Liskov [1988] can
sometimes be too strong in practice (see [Leavens, 1988]). For instance, what exactly
is the refined behavior of a linked list, as compared to a list in general? Surely, there is
no nondeterminism that can be refined. This means there cannot be strict behavioral
subtypes regarding all behaviors. Instead, we focus on the client perspective again
and define behavior subtypes regarding contracts (and invariants). This means that a
class C′ is a behavioral subtype of a super class C, if for every method m implemented
in both C and C′ (i.e., the implementation in C′ is overriding), every specification
case for C :: m is also a specification case for C′ :: m, and that the contract of C :: m is
refined by the contract of C′ :: m. A full formalization of this definition of behavioral
subtyping can be found in [Leavens and Naumann, 2006].

To ensure that a subclass indeed defines a behavioral subtype, specification in-
heritance can be used [Dhara and Leavens, 1995, Leavens and Dhara, 2000]: In
JML, every (nonprivate) method in the subclass inherits the overridden method’s
specification cases defined in the superclass. And in addition, all invariants of the
superclass are inherited by the subclass. Notice that this same approach applies for
interfaces and implementing classes. An interface can be specified with its desired
behavior. Every class that implements this interface should be a behavioral subtype
of the interface, i.e., it should satisfy all the specifications of the interface. Concretely,
this means the following:

• every method that overrides a method from a superclass, or implements from an
interface, has to respect the method specification from the superclass;

• every class that implements an interface has to respect the specifications of the
interface; and

• every class that extends another class has to respect the specifications of that
class.

Still, it is possible to refine specifications in subclasses (or implementing classes),
in addition to what is inherited. Any additional specification of an inherited method
(whether or not the implementation is overridden) is added to the inherited specifica-
tions from the superclass, using the also keyword.
/*@ also
@ <subclass-specific-spec-cases>
@*/

public void method () { ...
Note that the JML annotation starts with also, not preceded by anything. This is
because the inherited specification cases are still there, even if implicit, to be extended
here by whatever is written after the also.

Invariants are also fully, and implicitly, inherited. Extending the set of inherited
invariants by additional invariants specific for a subclass is easy, by simply writing

220 7 Formal Specification with the Java Modeling Language

them in the subclass, using the normal syntax for invariants. The same applies also to
initially clauses and constraints.

The idea of behavioral subtypes is crucial for the correctness of object-oriented
programs. We can specify the behavior of a class in an abstract way. For example, in
class Average in Listing 7.8, we have an array of Student instances; the concrete
instances that are stored in the array may have different implementations, but we know
that they all implement the methods specified in the interface Student in Listing 7.1.
This means that we can rely on the specification case of Student#getCredits()
in Line 11 of Average#averageCredits().

Respecting inherited specifications is a good practice, but it does not guarantee
behavioral subtyping per se. JML allows us to make program elements more visible
in the specification than they are in the implementation (through the spec_public
modifier, see Section 7.3.1). In this way, specifications may expose implementation
details. While it is also a good practice to declare those specifications private, in many
cases, this would disable us from giving any meaningful specification. A solution to
this dilemma is abstraction, that will be covered in Section 7.7.1 below.

7.5 Nonnull Versus Nullable Object References

In Java, the set of values of reference type include the null reference. (Note that the
same is true for the values of array type, because each array type is also a subtype of
Object.) But even if the type system always allows null, the specifier may want
to exclude the null reference in many cases. Whether or not null is allowed can be
expressed by means of simple (in)equations, like, for instance, o != null, in pre/-
postconditions or invariants. However, this issue is of so dominant importance that
JML offers two special modifiers just for that, non_null and nullable. Class mem-
bers (i.e., fields), method parameters, and method return values can be declared as
non_null (meaning null is forbidden), or nullable (in which case null is allowed,
but not enforced).

Here are some examples for forbidding null values.
private /*@ non_null @*/ String name;
adds the implicit invariant invariant name != null; to the class at hand.
public void setName(/*@ non_null @*/ String n) {...
adds the implicit precondition requires n != null; to each specification case of
setName.
public /*@ non_null @*/ String getName() {...
adds the implicit postcondition ensures \result != null; to each specification
case of getName.

The reader can imagine that non_null modifiers can easily bloat the specification.
Therefore, JML has built-in non_null as the default for all fields, method parameters,
and return types, such that all non_null modifiers in the above examples are actually
redundant. By only writing the following, without any explicit non_null, we get

7.5. Nonnull Versus Nullable Object References 221

exactly the same implicit invariants, preconditions, and postconditions as mentioned
above.
private String name;

public void setName(String n) {. . .

public String getName() {. . .

But how can we allow null anyway? We can avoid the restrictive nonnull default
by the aforementioned modifier nullable. In the above examples, we could allow
null (and thereby avoid the implicit conditions), by writing
private /*@ nullable @*/ String name;

public void setName(/*@ nullable @*/ String n) {...

public /*@ nullable @*/ String getName() {...

Notice that the nonnull by default also can have some unwanted effects, as
illustrated by the following example.

Example 7.18. Consider the following declaration of a LinkedList.

Java + JML
public class LinkedList {

private Object elem;
private LinkedList next;
. . .

}

Java + JML

Because of the nonnull by default behavior of JML, this means that all elements in
the list are nonnull. Thus the list must be cyclic, or infinite.10 This is usually not
the intended behavior, and thus the next reference should be explicitly annotated as
nullable.

Java + JML
public class LinkedList {

private Object elem;
private /*@ nullable @*/ LinkedList next;
....

}

Java + JML

In short, it is important to remember that for all class fields, method parameters,
and method results, the null reference is forbidden wherever we do not state otherwise
with the JML modifier nullable.

10 A linked data structure having infinite length is indeed a contradiction. At runtime, there are only
finitely many created objects on the heap.

222 7 Formal Specification with the Java Modeling Language

In the context of allowing vs. forbidding the null reference, handling of arrays de-
serves special mentioning. The additional question here is whether, or not, the prohibi-
tion of null holds for the elements of the array. Without loss of generality, we consider
the following array typed field declaration: String[] arr;. Because of nonnull be-
ing the default, this is equivalent to writing /*@ non_null @*/ String[] arr;.
Now, in both cases, the prohibition of null references extends, in JML, to the elements
of the array! In other words, both the above forms have the same meaning as if the
following invariants were added:

Java + JML
//@ invariant arr != null;
//@ invariant (\forall int i;
//@ i >= 0 && i < arr.length;
//@ arr[i] != null);

Java + JML

Again, no such invariant is needed for disallowing null; writing String[] arr; is
enough. We can, however, allow null for both, the whole array and its elements (at
first), by writing /*@ nullable @*/ String[] arr;. To that, we can add further
restrictions. For instance, if only the elements may be null, but not the whole array,
we can write:

Java + JML
//@ invariant arr != null;
/*@ nullable @*/ String[] arr;

Java + JML

7.6 Exceptional Behavior

So far, we have only considered normal termination of methods. But in some cases,
exceptions cannot be avoided. Therefore JML also allows one to specify explicitly
under what conditions an exception may occur.

The signals and signals_only clauses are introduced to specify exceptional
postconditions. In addition, one can give an exceptional_behavior method. Ex-
ceptional postconditions have the form signals (E e) P, where E is a subtype
of Throwable, and the following meaning: if the method terminates because of an
exception that is an instance of type E, then the predicate P has to hold. The variable
name e can be used to refer to the exception in the predicate. Note the implication
direction: a signals clause does not specify under which condition an exception
may occur by itself, neither that it must occur. Such specification patterns can only be
obtained in combination with requires and ensures clauses. The signals clause
describes a necessary condition, but not a sufficient one. For a formal account on
contract semantics, see Section 8.2 in the following chapter.

7.6. Exceptional Behavior 223

The signals_only clause is optional in a method specification. Its syntax is
signals_only E1, E2, . . ., En, meaning that if the method terminates because
of an exception, the dynamic type of the exception has to be a subclass of E1, E2,
. . . , or En. If signals_only is left out, only the exception types that are declared in
the method’s throws clause and unchecked exceptions, i.e., instances of Error and
RuntimeException, are permitted. These are exactly the exception types that are
permitted by Java’s type system.

1 class Average {
2

3 /*@ spec_public @*/ private Student[] sl;
4

5 /*@ signals_only ArithmeticException;
6 @ signals (ArithmeticException e) sl.length == 0;
7 @*/
8 public int averageCredits() {
9 int sum = 0;

10 for (int i = 0; i < sl.length; i++) {
11 sum = sum + sl[i].getCredits();
12 };
13 return sum/sl.length;
14 }
15 }

Listing 7.8 Class Average

Example 7.19. Consider for example class Average in Listing 7.8. The specifi-
cation of method averageCredits states that the method may only terminate
normally, or with an ArithmeticException—and thus, it will not throw an
ArrayIndexOutOfBoundsException. Moreover, if an ArithmeticException
occurs, then in this exceptional state the length of sl is 0.

Notice that it is incorrect in this case to use an ensures clause, instead of a
signals clause: an ensures clause specifies a normal postcondition, that only
holds upon normal termination of the method.

Above, in Section 7.1 we discussed normal_behavior specifications. Implic-
itly, these state that the method has to terminate normally. Similarly, JML also
features an exceptional_behavior method specification. This specifies that, if
the method terminates, then this must be due to an exception.11 In contrast, a plain
behavior specification may well contain both ensures clauses and signals or
signals_only clauses, whereas a normal behavior specification may not contain
these, and an exceptional behavior specification may not contain an ensures clause.
As mentioned above in Section 7.3.2, a single method can be specified with several
method specifications, joined with also. Exceptional behavior specifications are
typically used in this case.

11 Remember that an explicit diverges clause still permits nontermination.

224 7 Formal Specification with the Java Modeling Language

Example 7.20. Consider the more detailed specification for averageCredits in
Listing 7.9. This states that if sl.length > 0, i.e., there are students in the list,

class Average2 {

/*@ spec_public @*/ private Student[] sl;

/*@ normal_behavior
@ requires sl.length > 0;
@ ensures \result ==
@ (\sum int i; 0 <= i && i < sl.length;
@ sl[i].getCredits())/sl.length;
@ also
@ exceptional_behavior
@ requires sl.length == 0;
@ signals_only ArithmeticException;
@ signals (ArithmeticException e) true;
@*/

public int averageCredits() {
int sum = 0;
for (int i = 0; i < sl.length; i++) {

sum = sum + sl[i].getCredits();
};
return sum/sl.length;

}
}

Listing 7.9 Class Average2

then the method terminates and the result is the average value of the credits obtained
by these students. If sl.length == 0 then the method will terminate exceptionally,
with an ArithmeticException.

In this example, the two preconditions together cover the complete state space for
the value of sl.length. If sl.length could be less than 0, the method’s behavior
would not be specified.

Finally, it is important to realize that invariants and constraints also must hold
when a method terminates exceptionally. This might seem strange at first: something
goes wrong during the execution, so why would it be necessary that the object stays
in a good state. But in many cases, the execution can recover from the exception, and
normal execution can be resumed. But this means that it is necessary that also when
an exception occurs, the object stays in a ‘well-defined’ state, i.e., a state in which
the invariants hold, and that evolves according to the constraints.

A Note on false

The Boolean expression false is used frequently to exclude certain behaviors. For
instance, the clause

7.7. Specification-Only Class Members 225

signals (Throwable e) false;

states that the method at hand must not terminate exceptionally. Because, if it did, the
property false would need to hold, which is never the case. Therefore, exceptional
termination is never able to satisfy such a specification. Similarly, if one speci-
fies a postcondition ensures false; this states that a method must not terminate
normally. Thus a method specification:
ensures false;
signals (Throwable e) false;
diverges true;

implicitly says that a method must never terminate (neither normally, nor exception-
ally). Finally, a method can also be specified with a precondition requires false;.
This means that the method may not be invoked, as no caller can fulfill the precondi-
tion of the method.

7.7 Specification-Only Class Members

The previous sections shows how the behavior of code members is specified in JML.
But sometimes it is easier or even required to introduce new members only for
specification. Model fields, as discussed in Section 7.7.1, allow to provide abstraction
from the concrete program state. For each abstract state, a relationship to the concrete
program state can be defined. In addition to model fields, sometimes it is also useful
to define model methods, i.e., methods that are used in specifications only.

This section also introduces ghost variables (Section 7.7.2). These can be used
to extend the state space with specification-only information. They do not provide
abstraction, but can record extra information. The use of model and ghost fields is
often confused, and therefore Section 7.7.3 compares both approaches, and highlights
their differences. For an in-depth account on model field and model method semantics,
their encoding in KeY, and how to use them in verification, the reader is kindly
referred to Section 9.2.

7.7.1 Model Fields and Model Methods

An important feature of specifications is that they provide abstraction over the
concrete implementations. Model fields serve as an abstraction feature in a familiar
guise. They are declared like regular fields, but within JML specifications and with
the modifier keyword model. Model fields can be read from like regular fields,
but there are no assignments to them since they do not have a state of their own.
Instead, to make sure that the concrete implementation corresponds to the abstract
specification, a link between the two has to be made. For this purpose, the represents
clause defines how the value of the abstract variable is defined in terms of the values

226 7 Formal Specification with the Java Modeling Language

of the concrete entities. In the so called functional form, the represents clause, that is
a class member, appears similar to an assignment, as can be seen in the following
example taken from [Breunesse et al., 2005].

Example 7.21. Class Decimal implements decimal variables using an intPart and
decPart variable, but the specification is given in terms of a single model field that
represents the value of the composed decimal number.

Java + JML
class Decimal {

public static final short PRECISION = (short) 1000;
/*@ spec_public @*/ private short intPart = (short) 0;
/*@ spec_public @*/ private short decPart = (short) 0;

//@ model int value;
//@ represents value = intPart * PRECISION + decPart;

}
Java + JML

Sometimes, a represents clause cannot be defined directly as a translation into
concrete variables; sometimes a (nonfunctional) relation between the abstract and
the concrete state can be expressed, sometimes only a dependency relation. JML
provides a way to define nonfunctional represents clauses. Instead of the assignment
operator, they consist of the keyword \such_that followed by a Boolean expression.
It means that the model field points to some value such that this condition is satisfied.

Example 7.22. Consider class MatrixImplem in Listing 7.10. It implements a matrix
as a single array (on some platforms, like JavaCard, only one-dimensional arrays are
allowed). A model variable matrix is declared, that specifies the abstract representa-
tion of the matrix. Unfortunately, no functional represents clause can be specified for
this. Instead, the such_that keyword is used to define a relational represents clause,
that enables to write the specifications of the matrix methods in terms of the abstract
matrix variable.

Model fields are useful in many cases. Typical examples are specifications of
interfaces. The behavior of an interface is specified in terms of model variables, and
the classes implementing the interface define represents clauses for these model
variables, relating them to their own concrete implementation. Because of the flexible
connection between concrete and abstract state using the represents clause, this
does not impose any restriction on the internal state of a class implementing the
interface. Note that in interfaces, model field declarations are static by default,
nonstatic model field declarations must use the modifier instance.

Example 7.23. Listing 7.11 gives an alternative specification for interface Student
using model fields. It shows the specification for an implementing class CCStudent.
Note that it does not declare the model variables, but only defines the represents
clause.

7.7. Specification-Only Class Members 227

public class MatrixImplem {

//@ public model int[][] matrix;
private int x;
private int y;
private int[] matrix_implem;
/*@ represents matrix \such_that
@ (\forall int i; i >= 0 && i < x;
@ (\forall int j; j >= 0 && j < y;
@ matrix[i][j] == matrix_implem[x * j + i]));
@*/

/*@ ensures
@ (\forall int i; i >= 0 && i < x;
@ (\forall int j; j >= 0 && j < y;
@ matrix[i][j] == 0));
@*/

public MatrixImplem(int x, int y) {
this.x = x;
this.y = y;
matrix_implem = new int [x * y];

}

//@ ensures \result == matrix[i][j];
public /*@ pure @*/ int get (int i, int j) {

return matrix_implem[x * j + i];
}

/*@ ensures \result >= 0 && \result < x
@ ==> matrix[\result][coordY(elem)] == elem;
@*/

public /*@ pure @*/ int coordX (int elem) {
for (int i = 0; i < matrix_implem.length; i++)

if (matrix_implem[i] == elem)
return i % x;

return -1;
}

/*@ ensures \result >= 0 && \result < y
@ ==> matrix[coordX(elem)][\result] == elem;
@*/

public /*@ pure @*/ int coordY (int elem) {
for (int i = 0; i < matrix_implem.length; i++)

if (matrix_implem[i] == elem)
return i / x;

return -1;
}

}

Listing 7.10 Relational represents clause

228 7 Formal Specification with the Java Modeling Language

public interface Student {

/*@ public instance model int status;
@ public instance model int credits;
@ represents status = (credits < 180 ? bachelor : master);
@*/

/*@ public instance invariant status == bachelor || status == master;
@ public instance invariant credits >= 0;
@*/

public static final int bachelor = 0;
public static final int master = 1;

/*@ pure @*/ public String getName();

//@ ensures \result == status;
/*@ pure @*/ public int getStatus();

//@ ensures \result == credits;
/*@ pure @*/ public int getCredits();

//@ ensures getName().equals(n);
public void setName(String n);

/*@ requires c >= 0;
@ ensures credits == \old(credits) + c;
@*/

public void addCredits(int c);

/*@ requires credits >= 180;
@ requires status == bachelor;
@ ensures credits == \old(credits);
@ ensures status == master;
@*/

public void changeStatus();
}

class CCStudent implements Student {

private int[] creditList;

/*@ private represents credits =
@ (\sum int i; 0 <= i && i < creditList.length; creditList[i]);
@*/

// rest of class continued...
}

Listing 7.11 Interface Student with model fields and an implementation.

7.7. Specification-Only Class Members 229

Sometimes, to complete a specification, one needs a method that only is intended
for specification. To support this, JML provides model methods. A model method is
defined as part of the specification. It can be implemented, but it may also be abstract.
And the behavior of a model method is typically defined in terms of its pre- and
postconditions again. Typical usages for model methods are:

• if the specification needs a method that is not related to the code, for example to
sum all the elements in an array;

• if the specification needs a method that cannot be implemented easily, but that
can be specified without any problem.

7.7.2 Ghost Variables

Sometimes the information needed in specifications is not provided by the source
code itself. Typical examples are specifications that express something about the
control flow, e.g., how often or in which order methods are called, or about the used
resources, e.g., to limit the number of objects. This additional knowledge can be
modeled with ghost variables.

A ghost variable in JML can be defined as a class/instance member or as a local
variable. In both cases, it is declared like a normal Java variable, but inside a JML
annotation preceded by the keyword ghost. The used type may be a specification-
only type such as \bigint (see Section 7.8). The initial value of a ghost variable
can be directly assigned at its declaration. Its value can be updated during method
execution by a set statement. This is a JML annotation statement within a method
body, consisting of a keyword set followed by an assignment. The left-hand side of
the assignment has to be a ghost variable and the right sight can be any side-effect-free
JML expression.

Example 7.24. Consider class LinkedList in Listing 7.12, that represents a linked
data structure. In general, this structure could be circular. To specify that it really is a
list, i.e., that it is finite and noncircular, we use a ghost field length to represent the
length of a list. Since there may be more elements than Java’s primitive int type can
accommodate, we use the specification-only type \bigint. The invariant states that
length is always positive and that the length of the tail is always smaller than the
current one. From this, we may conclude the above property.

7.7.3 Ghost Variables Versus Model Fields

It is important to understand the difference between model and ghost variables. Both
are variables that are used for specification purposes only, and they do not occur
during the execution of the program.

230 7 Formal Specification with the Java Modeling Language

1 public class LinkedList {
2 private /*@ spec_public @*/ int value;
3 private /*@ spec_public nullable @*/ LinkedList next;
4

5 //@ public ghost \bigint length;
6 //@ public invariant 0 < length;
7 //@ public invariant next == null || next.length+1 == length;
8 }

Listing 7.12 Using a ghost field to track recursion depth

However, model variables provide an abstract representation of the state. If the
underlying state changes, implicitly the model variable also changes. Often it is
possible to define this relationship explicitly as a translation, but sometimes it can
only be given in a nonconstructive manner (or even as a dependency relation).

In contrast, ghost variables extend the state. They provide some additional infor-
mation that cannot be directly related to the object state. Ghost variables are often
used to keep track of the events that have happened on an object, e.g., which methods
have been called, how often have these methods been called etc. There also exists
work where ghost variables have been used to keep track of the resources used by the
program: every time a new object is created, there is an associated set annotation
that increases a resource counter, modeled as a ghost variable [Barthe et al., 2005].
In this way, the specification can state something about the number of objects that
have been created by the program. This information allows then to define a resource
analysis over the application.

7.8 Integer Semantics

Since JML incorporates Java expressions, specifications also adhere to the semantics
of the Java numerical data types. This means in particular that always special care
has to be taken regarding overflows in integer operations12. Undoubtedly, dealing
with finite numerical data types is a very common source of programming errors. The
most infamous example from the real world is the maiden flight of Ariane 5, where
conversion of 64-bit floating-point data to 16-bit integers finally caused the spacecraft
to be destroyed just seconds after lift off [Nuseibeh, 1997]. It is thus desirable to
detect such errors and to not repeat them in the specification. We will show how
to avoid this problem through the use of JML’s \bigint data type, that represents
the mathematical integers. This section does not discuss semantics of integral data
types in general; those can be found in [Beckert et al., 2007, Chapter 12] or (more
elaborate) in [Schlager, 2002].

12 Similar issues arise with rounding in floating-point operations, which however will not be covered
here.

7.8. Integer Semantics 231

Example 7.25. Regard the short method mult() below; it returns a*b, but this is not
multiplication in the mathematical sense, since an overflow may occur.
public int mult (int a, int b) { return a*b; }
The naive specification ensures \result == a*b; would be trivially true since
JML uses the very same overflow semantics as in Java.

This example shows a feature of Java that may be a large source of confu-
sion. Integer operators in Java are often misunderstood to equal their mathemat-
ical counterparts, see, e.g., the survey by Chalin [2003]. But the actual mathemat-
ical functionality13 represented by, e.g., a*b (where both are int expressions) is
((a+231) · (b+231) mod 232)−231). In addition, these operators are overloaded—
the * operator has different semantics if one operand is of type long (64-bit integers).
This means that, in many situations, naive specifications are just incorrect due to

the presence of overflows. For instance, in Listing 7.4, the invariant that credits
are nonnegative can be broken by method addCredits(), that does not check for
overflows.

Example 7.26. To display even more obscure characteristics of overflow semantics,
the following Boolean JML expression is trivially true. We leave it to the reader to
find out with which element the quantifier would be instantiated.

JML
(\exists int x; x-1 > x

&& (\forall int y; x <= y)
&& x == -x
&& x != 0 && x * 2 == 0);

JML

Besides Java’s bounded integer types (also known as bit vector types), JML
offers the specification only primitive type \bigint that represents the mathematical
integers Z. ‘Specification only’ means that, besides variables bound by a quantifier,
only ghost variables and ghost/model fields can be declared with type \bigint.
The Java standard library also provides a type called BigInteger, that represents
arbitrary precision integers. While \bigint is a primitive type with an infinite
number of elements, BigInteger is just a regular Java object type. This means, in
particular, that instances of BigInteger must be created through constructors and
that quantification makes little sense since it only ranges over the (finitely many)
created instances. It is therefore inadequate for specification purposes.

Let us come back to Example 7.25. How can we specify that there is no overflow?
In Java, all arithmetic operations are unchecked, i.e., an overflow is not indicated in
any way, e.g., by exceptions. A precondition like a*b <= Integer.MAX_VALUE is
trivially true. Instead, we can apply numerical conversion to \bigint to expressions

13 More mathematically speaking, the int data type with operators + and * forms a finite Abelian
ring that is isomorphic to Z/Z232 . This means that addition and multiplication are commutative,
associative, and distributive; but there are zero-dividers—as shown in Example 7.26.

232 7 Formal Specification with the Java Modeling Language

of type int. Note that this kind of conversion, a widening, has no effect on the values
of a and b, but on the semantics of the * operator. Under the preconditions that the
(mathematical) product of a and b is within the bounds of int, we can ensures that
the result is indeed the mathematical product:

Java + JML
//@ requires Integer.MIN_VALUE <= (\bigint) a * (\bigint) b;
//@ requires Integer.MAX_VALUE >= (\bigint) a * (\bigint) b;
//@ ensures \result == (\bigint) a * (\bigint) b;
public int mult (int a, int b) { return a*b; }

Java + JML

Because this specification is tedious to write and even more horrible to read,
classes and methods can be annotated in JML with math modifiers [Chalin, 2004].
The default integer semantics in specifications can be changed by declaring the
method spec_bigint_math, that achieves the above while saving to write down
casts explicitly.

Java + JML
//@ requires Integer.MIN_VALUE <= a * b;
//@ requires Integer.MAX_VALUE >= a * b;
//@ ensures \result == a * b;
public /*@ spec_bigint_math @*/ int mult (int a, int b) {

return a*b;
}

Java + JML

An even simpler way to express the absence of overflows is to change the semantics
of the Java implementation through the code_safe_math modifier. It causes the
program to be interpreted as if operations were checked, leading to an exception in
case of overflow. The only thing left to show is that there are no exceptions:

Java + JML
//@ signals_only \nothing;
public /*@ code_safe_math @*/ int mult (int a, int b) {

return a*b;
}

Java + JML

There are six math modifiers in total, declaring integer expressions in specifications
or code to be interpreted as either Java integers with default operations, mathematical
integers, or Java integers with checked operations. While these modifiers are currently
not directly supported, the KeY prover offers to select different integer semantics
with a similar effect; see Section 15.2.3 on page 531 and Section 5.4.

7.9. Auxiliary Specification for Verification 233

7.9 Auxiliary Specification for Verification

The previously discussed specification constructs are essential to the Design by
Contract philosophy and relevant to all analysis techniques. However, for static
verification of Java programs it is typically required to provide some additional
information, like the locations a method might access (Section 7.9.1); guidance for
the verification tool in the presence of loops via loop invariants (Section 7.9.2); or in
general via assert statements (Section 7.9.3).

7.9.1 Framing

An important aspect of verification is modularity. Each method is verified in isolation,
and any method call inside a body is abstracted by its method specification. To
achieve this, it is not enough to specify what a method does; it is also required to
specify what a method does not do. This is known as the frame problem [Borgida
et al., 1995, Müller et al., 2003]. Basically, for modular verification one needs to
know what is the frame of a method, i.e., what are the variables that may be changed
at most by the method, and what is the antiframe, i.e., which variables must not be
changed by the method.

To specify this, JML uses the assignable clause. This provides a set of variable
locations that may be modified by a method (thus, it may be an over-approximation
of the actual set of locations that are modified by the method). Location sets can
be given through comma separated lists of single variables or one of the special
keywords \nothing (only locations of newly allocated objects may be changed,
corresponds to weak purity, see Section 7.3.5), \everything (any location may
be changed), this.* (all locations provided by the current object), and array[*]
or array[i..j] (all elements in the array or between indices i and j). Whereas
assignable clauses are attached to single specification cases, pure methods are defined
to have an empty frame under any precondition. The extension to JML that is used in
KeY provides additional constructs to specify frames, offering more flexibility; see
Section 9.3.2. Most importantly, the keyword \strictly_nothing denotes strictly
the empty set of locations; strictly pure methods are annotated with strictly_pure,
see Section 7.3.5.

JML also allows one to add an accessible clause to method specifications, Sec-
tion 9.9.10 of the JML reference manual [Leavens et al., 2013]. This clause provides
a set of variable locations on which the observable behavior of the method depends.
The way this clause is used in KeY differs from and considerably goes beyond stan-
dard JML. We postpone explanation of accessible clauses to Sections 8.3.2 and
9.3.

Example 7.27. Listing 7.13 contains the specification of Listing 7.1, but with as-
signable clauses added. Method addCredits increases the achieved credits, which
means that it may have to update the master flag to maintain the invariant. There-

234 7 Formal Specification with the Java Modeling Language

fore, the assignable clause of this method lists the instance variables credits and
master. Even though the variables are not modified directly by the method, it is
required to list them in the assignable clause, because they may be modified during
the method execution. Methods updateCredits, changeToMaster and setName
modify only one instance variable, that is listed in the assignable clause of their
method specifications. Finally, method getName is specified as a pure method, that
automatically implies that the assignable clause is \nothing by default.

Of course, it would be possible to add the information in the assignable clause
to the postcondition, explicitly specifying that the variables not mentioned in the
assignable clause are not changed. But this is not a satisfactory solution: a class might
have many variables and only a few are typically changed by a method. Moreover,
when a new variable is added, for every method that does not change it, an additional
postcondition about this variable not being changed would have to be added. As one
can imagine, this is error-prone, and leads to overly verbose specifications.

For readers who would like to dive further into the topic of modularity, Chapter 9
is entirely dedicated to aspects of modularity in specification and verification. In
particular, it introduces a specification-only type \locSet, which represents sets of
program locations as first class subjects.

7.9.2 Loop Invariants

A verification tool typically needs some guidance in presence of loops to verify that
a method implementation complies to its specification. This is due to the general
impossibility to statically evaluate the loop body repeatedly until the loop condition
evaluates to false. The number of iterations is not static but depends on dynamic
input parameters and initial states. In program verification, the dominating solution
to this problem is the usage of a loop invariant [Floyd, 1967, Hoare, 1969]. This is a
formula whose validity is preserved by the loop body (given the loop condition was
true before). From this we can conclude that, if the entire loop starts in a state where
the loop invariant holds, then it will still hold once the loop terminates in addition to
the negated loop condition14.

There exist approaches to automated invariant generation [German and Wegbreit,
1975, Karr, 1976] (see also Chapter 6), and the recent years saw a very dynamic
development in this area. Yet, much more needs to be done to automatically find good
invariants, and to integrate that into verification tools. (The bottleneck is currently not
to generate formulas that are invariant over the loop body, but to identify those that
contribute to the overall correctness proof.) For the time being, finding loop invariants
that allow us to verify some code unit is still a largely manual task. Guidance on
how to write loop invariants is beyond our scope here. But the reader can refer to
Section 16.3 in this book.

14 In fact, to reason about Java, it is required to also support abrupt loop termination, caused by an
exception or programmatically by a return, break or continue statement.

7.9. Auxiliary Specification for Verification 235

1 public class Student {
2 private /*@ spec_public @*/ String name;
3

4 /*@ public invariant credits >= 0;
5 @*/
6 private /*@ spec_public @*/ int credits;
7

8 /*@ public invariant credits < 180 ==> !master &&
9 @ credits >= 180 ==> master;

10 @*/
11 private /*@ spec_public @*/ boolean master;
12

13 /*@ requires c >= 0;
14 @ ensures credits == \old(credits) + c;
15 @ assignable credits, master;
16 @*/
17 public void addCredits(int c) {
18 updateCredits(c);
19 if (credits >= 180) {
20 changeToMaster();
21 }
22 }
23

24 /*@ requires c >= 0;
25 @ ensures credits == \old(credits) + c;
26 @ assignable credits;
27 @*/
28 private void updateCredits(int c) {
29 credits += c;
30 }
31

32 /*@ requires credits >= 180;
33 @ ensures master;
34 @ assignable master;
35 @*/
36 private void changeToMaster() {
37 master = true;
38 }
39

40 /*@ ensures this.name == name;
41 @ assignable this.name;
42 @*/
43 public void setName(String name) {
44 this.name = name;
45 }
46

47 /*@ ensures \result == name;
48 @*/
49 public /*@ pure @*/ String getName() {
50 return name;
51 }
52 }

Listing 7.13 Full specification of Student with assignable clauses

236 7 Formal Specification with the Java Modeling Language

In the first place, loop invariants are proof artifacts, comparable to induction
hypotheses in inductive proofs. But JML offers the possibility to annotate loops, in the
source code, with invariants, to be used by verification tools during the proof process.
The corresponding keyword is maintaining or loop_invariant, followed by
a Boolean JML expression. The JML comment that contains this must be placed
directly in front of the loop. Notice that a loop invariant may contain an \old(E)
expression. This refers to the value of the expression E before the method started,
not to the value of E at the previous iteration of the loop.

As long as no diverges clause (see Section 7.3.3) is defined, it is required
to prove that a method terminates. In presence of a loop this is only possible if a
decreasing clause (also named variant) is provided together with the loop invariant.
The decreasing term must be well-founded, which means that it cannot decrease
forever. For the decreasing clause, it has to be shown that it is strictly decreasing for
each loop iteration and that it evaluates to a nonnegative value in any state satisfying
the invariant. Therefore, this is sufficient to conclude that the loop terminates. In
JML the decreasing term is specified via keyword decreasing, followed by an
expression of type integer.

Example 7.28. The loop invariant in method search in Listing 7.14 shows a very
common loop invariant pattern for methods iterating over an array. All the elements
that have been examined so far respect a certain property, and the loop terminates
at least when all the elements in the array have been examined. Variable found
indicates in this example whether the element to search is contained in the already
examined elements or not. A loop invariant restricting the range of loop variables is
typically always needed, but not sufficient alone. In this example, the range of loop
variable i is limited to valid array indices (0 <= i && i <= a.length). Finally,
a well-founded decreasing clause is provided, that allows one to prove termination.

1 /*@ normal_behavior
2 @ requires a != null;
3 @ ensures \result == (\exists int i;
4 @ 0 <= i && i < a.length; a[i] == val);
5 @*/
6 public boolean search(int[] a, int val) {
7 int i = 0;
8 /*@ maintaining !(\exists int j; 0 <= j && j < i; a[j] == val);
9 @ maintaining 0 <= i && i <= a.length;

10 @ decreasing a.length - i;
11 @*/
12 while (i < a.length) {
13 if (a[i] == val)
14 return true;
15 i++;
16 }
17 return false;
18 }

Listing 7.14 Loop invariant example to search an element in an array

7.9. Auxiliary Specification for Verification 237

Loop invariants are sensitive to the frame problem as discussed for method calls
in Section 7.9.1. Basically, it is necessary to specify which variable locations might
be changed by a loop and which not. In KeY this is done with the assignable clause.
Only locations have to be specified since local variables changed by the loop are
computed automatically by KeY. Note that a loop assignable clause refers to all
locations that are possibly changed by any loop iteration, not just a single one. For
instance, if an array a is manipulated at a (variable) index i, it is not enough to
specify assignable a[i]; but instead assignable a[*]; refers to any element.

Example 7.29. Method sum of Listing 7.15 computes the sum of the values pro-
vided by an array using a for-each loop. The assignable clause is explicitly set to
\strictly_nothing to make sure that no objects are created during loop execution.
Local variables are not listed in the assignable clause since they are automatically
added by KeY.

1 /*@ requires array != null;
2 @ ensures \result == (\sum int i;
3 @ 0 <= i && i < array.length; array[i]);
4 @*/
5 public static int sum(int[] array) {
6 int sum = 0;
7 /*@ maintaining sum == (\sum int j;
8 @ 0 <= j && j < \index; array[j]);
9 @ maintaining \index >= 0 && \index <= array.length;

10 @ decreasing array.length - \index;
11 @ assignable \strictly_nothing;
12 @*/
13 for (int value : array) {
14 sum += value;
15 }
16 return sum;
17 }

Listing 7.15 Loop invariant example to compute the sum of an array

Java 1.5 introduced so called enhanced for loops (also called foreach loops, see
[Gosling et al., 2013, Section 14.14]) that iterate over elements of an array or a
collection. Here, the index variable is only implicit. As proposed by Cok [2008], the
keyword \index refers to this value. An example is also shown in Listing 7.15.

238 7 Formal Specification with the Java Modeling Language

7.9.3 Assertions and Block Contracts

Sometimes, the program verifier needs some additional guidance in proving a contract.
This can be given as an intermediate assertion: assert P;15 We have to prove that
P is true in this intermediate state. Afterwards, we can use this additional knowledge
to prove the overall proof obligation. In this way, assertions in the code are similar
to cuts in proofs. JML also provides a dual assume statement. It is supposed to be
assumed to be true without verifying it.

While the intuition behind these constructs is clear, they perturb the concept of
design by contract. In particular, the statement assume false; would make any
contract trivially satisfied. For this reason, in KeY assert and assume are replaced
by the more flexible concept of block contracts [Wacker, 2012]. The behavior of any
Java block can be specified in the same way as a method is specified (see Section 7.1)
by placing the specification directly in front of the Java block. It can contain any
clause that is available for method contracts. The only differences are: First, that \old
represents the value before executing the block, and not the one before executing the
method, and second, that the \signals_only definition must be explicitly specified,
because a block has no throws definition from which it can be computed. Listing 7.16
shows the usage of a block contract within a longer method. The block itself swaps
the value of the two variables x and y.

1 public void swapInBetween() {

2

...
3 /*@ ensures x == \old(y);
4 @ ensures y == \old(x);
5 @ assignable x, y;
6 @ signals_only \nothing;
7 @*/
8 {
9 y = x + y;

10 x = y - x;
11 y = y - x;
12 }

13

...
14 }

Listing 7.16 Usage of a block contract to swap two values

15 JML assert statements are not to be confused with Java assert statements. The former are only
present in specifications and meant to guide the prover. The latter is an actual program statement to
be checked at runtime, that raises an exception upon failure.

7.10. Conclusion 239

7.10 Conclusion

This chapter has provided a short overview of the Java Modeling Language (JML),
its main features and how it can be used to describe intended program behavior.
More information about JML, including people involved in the community effort,
the reference manual, tools supporting JML, teaching material, and relevant papers
are available from the JML webpage jmlspecs.org.

To conclude, we briefly discuss other related program annotation languages, and
the wide range of tool support that exists for JML.

7.10.1 Tool Support for JML

One of the strong points of JML is that many different kinds of tool support exist for
it, covering the whole spectrum of formal methods. For an—unfortunately outdated—
overview of JML tools, the reader may refer to [Burdy et al., 2003a]. We briefly
describe a few, more information is available from the JML webpage. It should
be noted that most recent tool development, including KeY, aims at combining
different kinds of tool support within a single environment. In particular both the
JMLEclipse [Chalin et al., 2010] and OpenJML [Cok, 2011] tool suites each include
their own runtime checker, static analysis tool, and test case generator.

The original developers of JML started the work on JML with runtime checking
in mind, i.e., JML should provide support to check pre- and postconditions during
program execution. Many different tools exist that support this, for different subsets
of JML, e.g., JMLRac [Cheon, 2003], AspectJML [Rebêlo et al., 2014], and as
mentioned subtools of JMLEclipse and OpenJML. The runtime checking approach
has also been the basis for model checking of JML annotated programs in Bogor:
every program annotation is translated into an assertion, that is validated during the
software model checking procedure [Robby et al., 2006].

JML is also used for test case generation. JMLunitNG [Zimmerman and Nagmoti,
2010] extends standard unit testing with knowledge derived from the program an-
notations. It is included in the OpenJML tool suite. The test case generation feature
of KeY (see Chapter 12) uses information from the KeY prover to improve test case
generation. As mentioned, also JMLEclipse provides support for test case generation,
based on the JET tool [Cheon, 2007]. A recently developed test case generation tool
is JMLOK2 [Milanez et al., 2014].

There are also several tools that support static checking of JML annotations,
i.e., at compile time, without executing the program. These tools differ in the level
of automation and the support they provide for manually constructing a proof. In
general, the more user intervention is possible, the more complex properties can be
verified. KeY is a typical example of a tool that can verify complex properties, but
may require manual intervention. Other tools in this category are Krakatoa [Marché
et al., 2004] and KIV [Balser et al., 2000, Stenzel, 2005].

http://jmlspecs.org/

240 7 Formal Specification with the Java Modeling Language

ESC/Java [Leino et al., 2000] and its successor ESC/Java2 [Cok and Kiniry,
2005] follow the auto-active verification paradigm. They intend to provide automatic
support for proving program correctness (if necessary, compromising soundness
or completeness). Another tool that has been developed with automation in mind
is JACK [Barthe et al., 2007], however it also provides support to fall back on
interactive proving using Coq. Also the static verification subtools of JMLEclipse
and OpenJML are developed with automation in mind. Finally, the VerCors tool set
[Amighi et al., 2012] combines separation logic support for concurrent programs
with JML annotations.

Last, it should be mentioned that there are also very different tools that support
JML. There is a JMLdoc facility that allows one to generate web pages for JML
annotations (similar to Javadoc). There also exist tools that generate JML annotations.
These range from generating arbitrary JML specifications such as Daikon [Ernst
et al., 2007], and Houdini [Flanagan and Leino, 2000] to tools that can generate
one specific class of annotations, such as Chase [Cataño and Huisman, 2003]. The
KeY project provides support for editing JML specifications in Eclipse. The Eclipse
extension is called JML Editing and offers features such as syntax highlighting and
refactoring. It is available at www.key-project.org/eclipse/JMLEditing.

7.10.2 Comparison to Other Program Annotation Languages

The JML language has been a pioneer in the area of annotation based specification
languages dedicated to a single programming language. As explained above, in
Section II, the intention of the developers was to provide a language to write assertions
for Java programs. Its design has been inspired by earlier experiences of some of the
developers on annotating Modula-3 [Leino and Nelson, 1998], and C++ (the Larch
project) [Cheon and Leavens, 1994].

As a major difference to more abstract specification languages, such as Z [Spivey,
1992], VDM [Fitzgerald et al., 2008], Alloy [Jackson, 2003], the B method [Abrial,
1996], and UML [Rumbaugh et al., 2010], JML focuses solely on the phases of
software development in which source code is written. It is also primarily intended
to specify existing code, rather than to implement programs according to a preex-
isting specification. However, it should be noted that some work has been done on
translating specifications in these high level languages into JML, e.g., for B [Cataño
et al., 2012].

JML also has a number of similarities to the Object Constraint Language
(OCL) [Warmer and Kleppe, 1999], a language for annotating UML class diagrams
with constraints on object states. It is used for both meta modeling and application
modeling. In the latter case, annotations are added to the fine design of the imple-
mentation, much like class and method specifications in JML. But unlike JML, OCL
does not subscribe to any programming language, and therefore does not address
language-specific concerns (like, e.g., exceptions). Earlier versions of KeY supported
OCL as well [Beckert et al., 2007], but this has been discontinued.

http://www.key-project.org/eclipse/JMLEditing

7.10. Conclusion 241

JML has been an inspiration for many other program annotation languages that
have emerged over the last years, such as the ANSI/ISO C Specification Language
(ACSL) [Baudin et al., 2010], and the language of the VCC tool (formerly “Veri-
fying C Compiler”) [Cohen et al., 2009], Spec# for C# [Barnett et al., 2005a], and
Dafny [Leino, 2010], that is an integrated annotation and programming language.

Recently, separation logic [O’Hearn et al., 2001, 2004] has become a popular
alternative to Hoare logic to specify program behavior. Separation logic allows
explicit reasoning about the heap, that makes it suitable for reasoning about pointer
programs, and for concurrent programs. Several approaches exist that combine
separation logic with JML (or JML like languages), to enable reasoning about pointers
and/or concurrent programs, while maintaining the expressiveness of JML [Tuerk,
2009, Jacobs and Piessens, 2011, Amighi et al., 2012]. The dynamic frame approach
[Kassios, 2011, Weiß, 2011] offers even more flexibility to specify and reason about
complex heap modifications. KeY uses its own extension to JML, that makes use of
dynamic frames; it is covered in Section 9.3.

	7 Formal Specification with the Java Modeling Language
	7.1 Introduction to Method Contracts
	7.1.1 Clauses of a Contract
	7.1.2 Defensive Versus Offensive Method Implementations
	7.1.3 Specifications and Implementations

	7.2 Expressions
	7.2.1 Quantified Boolean Expressions
	7.2.2 Numerical Comprehensions
	7.2.3 Evaluation in the Prestate

	7.3 Method Contracts in Detail
	7.3.1 Visibility of Specifications
	7.3.2 Specification Cases
	7.3.3 Semantics of Normal Behavior Specification Cases
	7.3.4 Specifications for Constructors
	7.3.5 Notions of Purity

	7.4 Class Level Specifications
	7.4.1 Invariants
	7.4.2 Initially Clauses
	7.4.3 History Constraints
	7.4.4 Initially Clauses and History Constraints: Static vs. Instance
	7.4.5 Inheritance of Specifications

	7.5 Nonnull Versus Nullable Object References
	7.6 Exceptional Behavior
	7.7 Specification-Only Class Members
	7.7.1 Model Fields and Model Methods
	7.7.2 Ghost Variables
	7.7.3 Ghost Variables Versus Model Fields

	7.8 Integer Semantics
	7.9 Auxiliary Specification for Verification
	7.9.1 Framing
	7.9.2 Loop Invariants
	7.9.3 Assertions and Block Contracts

	7.10 Conclusion
	7.10.1 Tool Support for JML
	7.10.2 Comparison to Other Program Annotation Languages

