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FUNCTIONAL CALCULUS FOR C0-SEMIGROUPS USING

INFINITE-DIMENSIONAL SYSTEMS THEORY

FELIX L. SCHWENNINGER AND HANS ZWART

Dedicated to Charles Batty on the occasion of his sixtieth birthday.

Abstract. In this short note we use ideas from systems theory to define a
functional calculus for infinitesimal generators of strongly continuous semi-
groups on a Hilbert space. Among others, we show how this leads to new
proofs of (known) results in functional calculus.

1. Introduction

Let A be a linear operator on the linear spaceX . In essence, a functional calculus
provides for every (scalar) function f in the algebra A a linear operator f(A) from
(a subspace of) X to X such that

• f 7→ f(A) is linear;
• f(s) ≡ 1 is mapped on the identity I;
• If f(s) = (s− r)−1, then f(A) = (A− rI)−1;
• For f = f1 · f2 we have f(A) = f1(A)f2(A).

As the domains of the operators f(A) might differ, the above properties have to be
seen formally, and, in general, need to be made rigorous. It is well-known that self-
adjoint (or unitary operators) on a Hilbert space have a functional calculus with
A being the set of continuous functions from R (or the torus T respectively) to C,
(von Neumann [10]). This theory has been further extended to different operators
and algebra’s, see e.g. [7], [3], and [2]. For an excellent overview, in particular on
the H∞-calculus, we refer to the book by Markus Haase, [5].

For the algebra of bounded analytic functions on the left half-plane and A the
infinitesimal generator of a strongly continuous semigroup, we show how to build a
functional calculus using infinite-dimensional systems theory.

2. Functional calculus for H−
∞

We choose our class of functions to be H−
∞, i.e., the algebra of bounded analytic

functions on the left half-plane. For A we choose the generator of an exponentially
stable strongly continuous semigroup on the Hilbert space X . This semigroup will
be denoted by

(

eAt
)

t≥0
. We refer to [4] for a detailed overview on C0-semigroups.
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In the following all semigroups are assumed to be strongly continuous. To explain
our choice/set-up we start with the following observation.

Let h be an integrable function from R to C which is zero on (0,∞) and let
t 7→ 1(t) denote the indicator function of [0,∞), i.e., 1(t) = 1 for t ≥ 0 and
1(t) = 0 for t < 0. Then for t > 0

(

h ∗ eA·x0 1(·)
)

(t) =

∫ ∞

−∞

h(τ)eA(t−τ)x0 1(t− τ)dτ

=

[
∫ t

−∞

h(τ)e−Aτdτ

]

eAtx0

=

[
∫ 0

−∞

h(τ)e−Aτdτ

]

eAtx0.

Hence the convolution of h with the semigroup gives an operator times the semi-
group. We denote this operator by g(A), with g the Laplace transform of h.

Now we want to extend the mapping g 7→ g(A). Therefore we need the Hardy
space H2(X) = H2(C+;X), i.e., the set of X-valued functions, analytic on the
right half-plane which are uniformly square integrable along every line parallel to
the imaginary axis. By the (vector-valued) Paley-Wiener Theorem, this space is
isomorphic to L2((0,∞);X) under the Laplace transform, see [1, Theorem 1.8.3].

Definition 2.1. Let X be a Hilbert space. For g ∈ H−
∞ and f ∈ L2((0,∞);X) we

define the Toeplitz operator

(1) Mg(f) = L
−1 [Π(g (L (f))] ,

where L and L
−1 denotes the Laplace transform and its inverse, respectively, and

Π is the projection from L2(iR, X) onto H2(X).

Remark 2.2. If we take f(t) = eAtx0, t ≥ 0, and “g = L(h)”, then this extends
the previous convolution.

The following norm estimate is easy to see.

Lemma 2.3. Under the conditions of Definition 2.1 we have that Mg is a bounded
linear operator from L2((0,∞);X) to itself with norm satisfying

(2) ‖Mg‖ ≤ ‖g‖∞.

To show that Definition 2.1 leads to a functional calculus, we need the following
concept from infinite dimensional systems theory, see e.g. [16].

Definition 2.4. Let Y be a Hilbert space, and C a linear operator bounded from
D(A), the domain of A, to Y . C is an admissible output operator if the mapping
x0 7→ CeA·x0 can be extended to a bounded mapping from X to L2([0,∞);Y ).

Since in this paper only admissible output operators appear, we shall sometimes
omit “output”. In [17] the following was proved.

Theorem 2.5. Let A be the generator of an exponentially stable semigroup on the
Hilbert space X. For every g ∈ H−

∞ there exists a linear mapping g(A) : D(A) 7→ X
such that

(
(

Mg(e
A·x0)

)

(t) = g(A)eAtx0, x0 ∈ D(A).

Furthermore,

• g(A) is an admissible operator;
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• g(A)eAt extends to a bounded operator for t > 0;
• g(A) commutes with the semigroup;
• g(A) can be extended to a closed operator gΓ(A) such that g 7→ gΓ(A) has
the properties of an (unbounded) functional calculus;

• This (unbounded) calculus extends the Hille-Phillips calculus.

Hence in general the functional calculus constructed in this way will contain
unbounded operators. However, they may not be “too unbounded”, as the product
with any admissible operator is again admissible.

Theorem 2.6 (Lemma 2.1 in [17]). Let A be the generator of an exponentially
stable semigroup on the Hilbert space X and let C be an admissible operator, then

(

Mg(CeA·x0)
)

(t) = Cg(A)eAtx0, x0 ∈ D(A2).

Moreover, Cg(A) extends to an admissible output operator.

3. Analytic semigroups

From Theorem 2.5 we know that g(A)eAt is a bounded operator for t > 0. In
this section we show that for analytic semigroups the norm of g(A)eAt behaves
like | log(t)| for t close to zero. Let A generate an exponentially stable, analytic
semigroup on the Hilbert space X . Then there exists a M,ω > 0 such that, see [11,
Theorem 2.6.13],

(3) ‖(−A)
1

2 eAt‖ ≤ M
1√
t
e−ωt, t > 0.

Using this inequality, we prove the following estimate.

Theorem 3.1. Let A generate an exponentially stable, analytic semigroup on the
Hilbert space X. There exists m, ε0 > 0 such that for every g ∈ H−

∞, ε ∈ (0, ε0)

(4) ‖g(A)eAε‖ ≤ m‖g‖∞| log(ε)|.

If we assume that (−A∗)
1

2 or (−A)
1

2 is admissible, then

(5) ‖g(A)eAε‖ ≤ m‖g‖∞
√

| log(ε)| for ε ∈ (0, ε0).

If both (−A∗)
1

2 and (−A)
1

2 are admissible, then g(A) is bounded.

Proof. For y ∈ D(A∗), x ∈ D(A2) we have

1

2
〈y, g(A)eA2εx〉 =

∫ ∞

0

〈y, (−A)eA2tg(A)eA2εx〉dt

=

∫ ∞

0

〈(−A∗)
1

2 eA
∗εeA

∗ty, g(A)(−A)
1

2 eAεeAtx〉dt,

where we used that g(A) commutes with the semigroup. Using Cauchy-Schwarz’s
inequality, we find

1

2
|〈y, g(A)eA2εx〉| ≤ ‖(−A∗)

1

2 eA
∗εeA

∗·y‖L2‖g(A)(−A)
1

2 eAεeA·x‖L2(6)

= ‖(−A∗)
1

2 eA
∗εeA

∗·y‖L2 · ‖Mg

(

(−A)
1

2 eAεeA·x
)

‖L2

≤ ‖(−A∗)
1

2 eA
∗εeA

∗·y‖L2 · ‖g‖∞ · ‖(−A)
1

2 eAεeA·x‖L2 ,
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where we used Lemma 2.3. Hence it remains to estimate the two L2-norms. SinceX
is a Hilbert space

(

eA
∗t
)

t≥0
is an analytic semigroup as well. Hence both L2-norms

behave similarly. We do the estimate for eAt. For ωε < 1/4,

‖(−A)
1

2 eAεeA·x‖2L2 =

∫ ∞

0

‖(−A)
1

2 eAεeAtx‖2dt

=

∫ ∞

ε

‖(−A)
1

2 eAtx‖2dt

≤ M2

∫ ∞

ε

e−2ωt

t
‖x‖2dt

= M2‖x‖2
∫ ∞

1

e−2εωt

t
dt

≤ M2‖x‖2m1| log(εω)|,

where we used (3) and m1 is an absolute constant.
Combining the estimates and using the fact that ω is fixed, we find that there

exists a constant m3 > 0 such that for all x ∈ D(A2) and y ∈ D(A∗) there holds

|〈y, g(A)eA2εx〉| ≤ m3| log(ε)|‖g‖∞‖x‖‖y‖.

Since D(A2) and D(A∗) are dense in X , we have proved the estimate (4).

We continue with the proof of inequality (5). If (−A∗)
1

2 is admissible, then (6)
implies that

1

2
|〈y, g(A)eA2εx〉| ≤ ‖(−A∗)

1

2 eA
∗εeA

∗·y‖L2‖g(A)(−A)
1

2 eAεeA·x‖L2

≤ m2‖y‖ · ‖Mg

(

(−A)
1

2 eAεeA·x
)

‖L2 .

The estimate follows as shown previously. Let us now assume that (−A)
1

2 is ad-
missible. Then by Theorem 2.6 there holds

‖g(A)(−A)
1

2 eAεeA·x‖L2 ≤ ‖g(A)(−A)
1

2 eA·x‖L2

= ‖Mg

(

(−A)
1

2 eA·x
)

‖L2

≤ ‖g‖∞‖(−A)
1

2 eA·x‖L2

≤ ‖g‖∞m‖x‖,

where we have used Lemma 2.3 and the admissibility of (−A)
1

2 . Now the proof of
(5) follows similarly as in the first part.

If (−A)
1

2 and (−A∗)
1

2 are both admissible, then we see from the above that the
epsilon disappears from the estimate, and since the semigroup is strongly continu-
ous, g(A) extends to a bounded operator. �

In [13], it is shown that for any δ ∈ (0, 1) there exists an analytic, exponentially

stable semigroup on a Hilbert space, and g ∈ H−
∞ such that (−A)

1

2 is admissible

and ‖g(A)eAε‖ ∼ (
√

| log(ε)|)1−δ. Similarly, the sharpness of (4) is shown.
In the next section we relate the above theorem to results in the literature.
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4. Closing remarks

A natural question is whether the calculus above coincides with other definitions
of the H−

∞-calculus. As the construction extends the Hille-Phillips calculus, the
answer is “yes”, see [14].

In [15], Vitse showed a similar estimate as in (4) for analytic semigroups on
general Banach spaces by using the Hille-Phillips calculus. The setting there is
slightly different since bounded analytic semigroups and functions g ∈ H−

∞ with
bounded Fourier spectrum are considered. In [13], the authors improve Vitse’s
result with a more direct technique. In the course of that work, the approach to
Theorem 3.1 via the calculus construction used here was obtained. Moreover, the
techniques here and in Vitse’s work [15] require that the functions f are bounded,
analytic on a half-plane. In [13] it is shown that the corresponding result is even
true for functions f that are only bounded, analytic on sectors which are larger
than the sectorality sector of the generator A.

Furthermore, Haase and Rozendaal proved that (4) holds for general (exponen-
tially stable) semigroups on Hilbert spaces, see [6]. Their key tool is a transference
principle. More general, they show that on general Banach spaces one has to con-
sider the analytic multiplier algebra AM2(X), as the function space to obtain a
corresponding result. Note that AM2(X) is continuously embedded in H−

∞ with
equality if X is a Hilbert space.

The difference in the transference principle and the approach followed here is
that in the transference principle, estimates are first proved for “nice” functions
and than extended to the whole space H−

∞. Whereas we prove the result first for
“nice” elements in X , and then extend the operators g(A).

The fact that the calculus is bounded for analytic semigroups when both (−A)
1

2

and (−A∗)
1

2 are admissible, can already be found in [8]. However, as the admissi-

bility of (−A)
1

2 is equivalent to A satisfying square function estimates, the result is
much older and goes back to McIntosh, [9].

The construction of the H−
∞-calculus followed here can be adapted to general

Banach spaces, see [12, 14].
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