
Chapter 1
Item Selection and Ability Estimation
in Adaptive Testing

Wim J. van der Linden and Peter J. Pashley

1.1 Introduction

The last century saw a tremendous progression in the refinement and use of
standardized linear tests. The first administered College Board exam occurred in
1901 and the first Scholastic Assessment Test (SAT) was given in 1926. Since then,
progressively more sophisticated standardized linear tests have been developed for
a multitude of assessment purposes, such as college placement, professional licen-
sure, higher-education admissions, and tracking educational standing or progress.
Standardized linear tests are now administered around the world. For example, the
Test of English as a Foreign Language (TOEFL) has been delivered in approxi-
mately 88 countries.

Seminal psychometric texts, such as those authored by Gulliksen (1950),
Lord (1980), Lord and Novick (1968), and Rasch (1960), have provided increas-
ingly sophisticated means for selecting items for linear test forms, evaluating them,
and deriving ability estimates using them. While there are still some unknowns
and controversies in the realm of assessment using linear test forms, tried-and-true
prescriptions for quality item selection and ability estimation abound. The same
cannot yet be said for adaptive testing. To the contrary, the theory and practice of
item selection and ability estimation for computerized adaptive testing (CAT) are
still evolving.

Why has the science of item selection and ability estimation for CAT environ-
ments lagged behind that for linear testing? First of all, the basic statistical theory
underlying adapting a test to an examinee’s ability was only developed relatively re-
cently. (Lord’s 1971 investigation of flexilevel testing is often credited as one of the
pioneering works in this field.) But more importantly, a CAT environment involves
many more delivery and measurement complexities as compared to a linear testing
format.
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To illustrate these differences, consider the current development and scoring of
one paper-and-pencil Law School Admission Test (LSAT). To begin, newly writ-
ten items are subjectively rated for difficulty and placed on pretest sections by
test specialists. Items that statistically survive the pretest stage are eligible for final
form assembly. A preliminary test form is assembled using automated test assembly
algorithms, and is then checked and typically modified by test specialists. The form
is then pre-equated. Finally, the form is given operationally, to about 25,000 ex-
aminees on average, and most likely disclosed. Resulting number-right scores are
then placed on a common LSAT scale by psychometricians using IRT scaling and
true-score equating. The time lag between operational administrations and score re-
porting is usually about three weeks.

In contrast, within a CAT environment item selection and ability estimation oc-
cur in real time. As a result, computer algorithms must perform the roles of both
test specialists and psychometricians. Because the test adapts to the examinee, the
task of item selection and ability estimation is significantly harder. In other words,
procedures are needed to solve a very complex measurement problem. These pro-
cedures must at the same time be robust enough to be relied upon with little or no
human intervention.

Consider another, perhaps more subtle, difference between linear and CAT
formats. As indicated above with the LSAT example, item selection and ability
estimation associated with linear tests are usually conducted separately, though
sometimes using similar technology, such as item response theory. Within a CAT
format, item selection and ability estimation proceed hand in hand. Efficiencies in
ability estimation are heavily related to the selection of appropriate items for an indi-
vidual. In a circular fashion, the appropriateness of items for an individual depends
in large part on the quality of interim ability estimates.

To start the exposition of these interrelated technologies, this chapter discusses
what could be thought of as baseline procedures for the selection of items and the
estimation of abilities within a CAT environment. In other words, it discusses basic
procedures appropriate for unconstrained, unidimensional CATs that adapt to an ex-
aminee’s ability level one item at a time for the purposes of efficiently obtaining an
accurate ability estimate. Constrained, multidimensional, and testlet-based CATs,
and CATs appropriate for mastery testing, are discussed in other chapters in this
volume (Eggen, chap. 19; Glas & Vos, chap. 21; Mulder & van der Linden, chap. 4;
Segall, chap.3; van der Linden, chap. 2; Vos & Glas, chap,. 20). Also, the focus
in this chapter is on adaptive testing with dichotomously scored items. But adap-
tive testing with polytomous models has already been explored for such models as
the nominal response model (e.g., De Ayala, 1992), graded response model (e.g.,
De Ayala, Dodd & Koch, 1992), partial credit model (Chen, Hou & Dodd, 1998),
generalized partial credit model (van Rijn, Eggen, Hemker & Sanders, 2002), and
an unfolding model (Roberts, Lin & Laughlin, 2001). Finally, in the current chapter,
item parameters are assumed to have been estimated, with or without significant
estimation error. A discussion of item parameter estimation for adaptive testing is
given elsewhere in this volume (Glas, chap. 14; Glas, van der Linden & Geerlings,
chap. 15).
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Classical procedures are covered first. Often these procedures were strongly
influenced by a common assumption or a specific circumstance. The common as-
sumption was that what works well for linear tests probably works well for CATs.
Selecting items based on maximal information is an example of this early thinking.
The specific circumstance was that these procedures were developed during a
time when fast PCs were not available. For example, approximations, such as
Owen’s (1969) approximate Bayes procedure, were often advocated to make CATs
feasible to administer with slow PCs.

More modern procedures, better suited to adaptive testing using fast PCs, are
then discussed. Most of these procedures have a Bayesian flavor to them. Indeed,
adaptive testing seems to naturally fit into an empirical or sequential Bayesian
framework. For example, the posterior distribution of � estimated from k � 1 items
can readily be used both to select the kth item and as the prior for the derivation of
the next posterior distribution.

When designing a CAT, a test developer must decide how initial and interim abil-
ity estimates will be calculated, how items will be selected based on those estimates,
and how the final ability estimate will be derived. This chapter provides state-of-
the-art alternatives that could guide the development of these core procedures for
efficient and robust item selection and ability estimation.

1.2 Classical Procedures

1.2.1 Notation and Some Statistical Concepts

The following notation and concepts are needed. The items in the pool are denoted
by i D 1; :::; I , whereas the rank of the items in the adaptive test is denoted by
k D 1; : : : ; K . Thus, ik is the index of the item in the pool administered as the kth
item in the test. The theory in this chapter will be presented for the case of selecting
the kth item in the test. The previous k � 1 items form the set Sk D fii ; : : : ; ik�1g;
they have responses that are represented by realizations of the response variables
Ui1 D ui1 ; : : : ; Uik�1

D uik�1
. The set of items in the pool remaining after k � 1

items have been selected is Rk D f1; : : : ; I gnSk�1. Item k is selected from this set.
For the sake of generality, the item pool is assumed to be calibrated by the three-

parameter logistic (3PL) model. That is, the probability of a correct response on
item i is given as

pi .�/ � Pr.Ui D 1 j �/ � ci C .1 � ci /
expŒai .� � bi /�

1 C expŒai .� � bi /�
; (1.1)

where � 2 .�1; 1/ is the parameter representing the ability of the examinee
and bi 2 .�1; 1/, ai 2 Œo; 1/, and ci 2 Œ0; 1� represent the difficulty, dis-
criminating power, and the guessing probability on item i , respectively. One of
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the classical item-selection criteria discussed below is based on the three-parameter
normal-ogive model,

pi .�/ � ci C .1 � ci /ˆŒai .� � bi /�; (1.2)

where ˆ is the normal cumulative distribution function.
The likelihood function associated with the responses on the first k � 1 items is

L.� j ui1 : : : uik�1
/ �

k�1Y

j D1

fexpŒaij .� � bij /�guij

1 C expŒaij .� � bij /�
: (1.3)

The second-order derivative of the loglikelihood reflects the curvature of the ob-
served likelihood function at � relative to the scale chosen for this parameter. The
negative of this derivative is generally known as the observed information measure:

Jui1
:::uik�1

.�/ � � @

@�2
ln L.� j ui1 ; : : : ; uik�1

/: (1.4)

The expected value of the observed information measure over the response variables
is Fisher’s expected information measure:

IUi1
:::Uik�1

.�/ � EŒJUi1
:::Uik�1

.�/�: (1.5)

For the response model in (1.1), the expected information measure reduces to

IUi1
:::Uik�1

.�/ D
k�1X

j D1

Œp0
ij

.�/�2

pij .�/Œ1 � pij .�/�
; (1.6)

with
p0

ij
.�/ � @

@�
pij .�/: (1.7)

In a Bayesian approach, a prior for the unknown value of the ability parameter,
g.�/, is assumed. Together, the likelihood and prior yield the posterior distribution
of � :

g.� j ui1 : : : uik�1
/ D L.� j ui1 : : : uik�1

/g.�/R
L.� j ui1 : : : uik�1

/g.�/d�
: (1.8)

Typically, this density is assumed to be uniform or, if the examinees can be taken
to be exchangeable, to be an empirical estimate of the ability distribution in the
population of examinees. The population distribution is often modeled to be normal.
For the response models in (1.1) and (1.2), a normal prior distribution does not
yield a normal small-sample posterior distribution, but the distribution is known to
converge to normality (Chang & Stout, 1993).

It is common practice in adaptive testing to assume that the values of the item
parameters have been estimated with enough precision to treat the estimates as the
true parameter values. Under this assumption, the two-parameter logistic (2PL) and
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one-parameter logistic (1PL) or Rasch models, obtained from (1.1) by setting ci D 1

and ai D 0, subsequently, belong to the exponential family. Because for this fam-
ily the information measures in (1.4) and (1.5) are identical (e.g., Andersen, 1980,
sect. 3.3), the distinction between the two measures has only practical meaning for
the 3PL model. This fact will be relevant for some of the Bayesian criteria later in
this chapter.

1.2.2 Ability Estimators

The ability estimator after the responses to the first k � 1 items is denoted as
b�ui1

;:::;uik�1
, but for brevity we will sometimes use b�k�1. Several ability estima-

tors have been used in CAT. In the past, the maximum-likelihood (ML) estimator
was the most popular choice. The estimator is defined as the maximizer of the like-
lihood function in (1.3) over the range of possible � values:

b�ML
ui1

:::uik�1
� arg max

�

˚
L.� j ui1 : : : uik�1

/ W � 2 .�1; 1/
�

: (1.9)

An alternative is Warm’s (1989) weighted likelihood estimator (WLE), which is
the maximizer of the likelihood in (1.3) weighted by a function wk�1.�/:

b�WLE
ui1

:::uik�1
� arg max

�

˚
wk�1.�/L.� j ui1 : : : uik�1

/ W � 2 .�1; 1/
�

; (1.10)

where the weight function wk�1.�/ is defined to satisfy

@wk�1.�/

@�2
� Hk�1.�/

2Ik�1.�/
; (1.11)

with

Hk�1.�/ �
k�1X

j D1

Œp0
ij

.�/�Œp00
ij

.�/�

pij .�/Œ1 � pij .�/�
; (1.12)

p00
ij

.�/ � @2pij .�/

@�2
; (1.13)

and Ik�1.�/ � IUi1
:::Uik�1

.�/ as defined in (1.5). For a linear test, the WLE is

attractive because it has been shown to be unbiased to order n�1 (Warm, 1989).
In a more Bayesian fashion, a point estimator of � can be based on its poste-

rior distribution in (1.8). Posterior-based estimators used in adaptive testing are the
Bayes modal (BM) or maximum a posteriori (MAP) estimator and the expected a
posteriori (EAP) estimator. The former is defined as the maximizer of the posterior
of � ,

b�MAP
ui1

:::uik�1
� arg max

�

˚
g.� j ui1 : : : uik�1

/ W � 2 .�1; 1/
� I (1.14)
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the latter as its expected value:

b�EAP
ui1

:::uik�1
�
Z

�g.� j ui1 : : : uik�1
/d�: (1.15)

The MAP estimator was introduced in IRT in Lord (1986) and Mislevy (1986).
Use of the EAP estimator in adaptive testing is discussed extensively in Bock and
Mislevy (1988).

A more principled Bayesian approach is to refrain from point estimates at all, and
use the full posterior of � as the ability estimator for the examinee. This estimator
not only reveals the most plausible value of � but shows the plausibility of any other
value as well. It is common to summarize this uncertainty about � in the form of the
variance of the posterior distribution of � :

Var.� j ui1 : : : uik�1
/ �

Z
Œ��E.� j ui1 : : : uik�1

/�2g.� j ui1 : : : uik�1
/d�: (1.16)

For the 3PL model, a unique maximum for the likelihood function in (1.3) does
not always exist (Samejima, 1973). Also, for response patterns with all items cor-
rect or all incorrect, no finite ML estimates exist. However, for linear tests, the ML
estimator is consistent and asymptotically efficient. For adaptive tests, the small-
sample properties of the ML estimator depend on such factors as the distribution
of the items in the pool and the item-selection criterion used. Large-sample theory
for the ML estimator for an infinite item pool and one of the popular item-selection
criteria will be reviewed later in this chapter.

For a uniform prior, the posterior distribution in (1.8) becomes proportional to
the likelihood function over the support of the prior, and the maximizers in (1.9)
and (1.14) are equal. Hence, for this case, the MAP estimator shares all the above
properties of the ML estimator. For nonuniform prior distributions, the small-sample
properties of the MAP estimator depend not only on the likelihood but also on
the shape of the prior distribution. Depending on the choice of prior distribution,
the posterior distribution may be multimodal. If so, unless precaution is taken, MAP
estimation may result in a local maximum.

For a proper prior distribution, the EAP estimator always exists. Also, unlike the
previous estimators, it is easy to calculate. No iterative procedures are required; one
round of numerical integration generally suffices. This feature used to be important
in the early days of computerized adaptive testing but has become less critical now
that the typical adaptive testing platform has become much more powerful.

1.2.3 Choice of Estimator

The practice of ability estimation in linear testing has been molded by the availabil-
ity of a popular computer program (e.g., BILOG, see Zimoski, Muraki, Mislevy &
Bock, 2006; MULTILOG, see Thissen, Chen & Bock, 2002). In adaptive testing,
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such a de facto standard is missing. Most testing programs run their operations
using their own software. In developing their software, most of them have taken
an eclectic approach to ability estimation. The reason for this practice is that, un-
like linear testing, in adaptive testing three different stages of ability estimation
can be distinguished: (1) ability estimation to start the item-selection procedure;
(2) ability estimation during the test to adapt the selection of the items to the
examinee’s ability; and (3) ability estimation at the end of the test to report a
score for the examinee. Each of these stages involves its own requirements and
problems.

Initial Ability Estimation

As already noted, the method of ML estimation does not produce finite estimates for
response patterns with all items correct or all incorrect. Because such patterns are
likely for the first few items, ML estimation cannot be used for ability estimation
at the beginning of the test. Several measures have been proposed to resolve this
problem. First, it has been proposed to fix the ability estimate at a small (incorrect
items) or large value (correct items) until finite estimates are obtained. Second, abil-
ity estimation is sometimes postponed until a larger set of items has been answered.
Third, the problem has been an important motive to use Bayesian methods such as
the EAP estimator. Fourth, if relevant empirical information on the examinees is
available, such as scores on earlier related tests, initial ability estimates can be in-
ferred from this collateral information. A method for calculating such estimates is
discussed later in this chapter.

None of these solutions is entirely satisfactory, though. The first two solutions
involve an arbitrary choice of ability values and items, respectively. The third so-
lution involves the choice of a prior distribution, which, in the absence of response
data, completely dominates the choice of the first item. If the prior distribution is
located away from the true ability of the examinee, it becomes counterproductive
and can easily produce a longer initial string of correct or incorrect responses than
necessary. (Bayesian methods are often said to produce a smaller posterior variance
after each new datum, but this statement is not true; see Gelman, Carlin, Stern &
Rubin, 1995, sect. 2.2. Initial ability estimation in adaptive testing with a prior at the
wrong location is a good counterexample.) As for the fourth solution, although there
are no technical objections to using empirical priors (see the discussion later in this
chapter), the choice of them should be careful. For example, the use of general back-
ground variables easily leads to social bias and should be avoided.

Fortunately, the problem of inferring an initial ability estimate is only acute for
short tests, for example, 10-item tests in a battery. For longer tests, of more than 20
to 30 items, say, the ability estimator generally does have enough time to recover
from a bad start.
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Interim Ability Estimation

Ideally, the next estimates should converge quickly to the true value of the ability
parameter. In principle, any combination of ability estimator and item-selection cri-
terion that does this job for the item pool could be used. Although some of these
combinations look more “natural” than others (e.g., ML estimation with maximum-
information item selection and Bayesian estimation with item selection based on
the posterior distribution), practice of CAT has not been impressed by this argument
and has often taken a more eclectic approach. For example, a popular choice has
been the EAP estimator in combination with maximum-information item selection.

As already noted, in the early days of adaptive testing, the numerical aspects
of these estimators used to be important. For example, in the 1970s, Owen’s
item-selection procedure was an important practical alternative to a fully Bayesian
procedure because it did not involve any time-consuming, iterative calculations.
However, for modern PCs, computational limitations to CAT no longer exist.

Final Ability Estimation

Although final ability estimates should have optimal statistical properties, their pri-
mary function is no longer to guide item selection but to provide the examinee with
a meaningful summary of his or her performance in the form of the best possi-
ble score. For this reason, final estimates are sometimes transformed to an equated
number-correct score on a reference test, that is, a released linear version of the test.
The equations typically used for this procedure are the test characteristic function
(e.g., Lord, 1980, sect. 4.4) and the equipercentile transformation that equates the
ability estimates on the CAT into number-correct scores on a paper-and-pencil ver-
sion of the test (Segall, 1997). The former is known once the items are calibrated;
the latter has to be estimated in a separate empirical study. To avoid the necessity
of explaining complicated ML scoring methods to examinees, Stocking (1966) pro-
posed a modification to the likelihood equation such that its solution is a monotonic
function of the number-correct score. However, the necessity to adjust the scores
afterward can be entirely prevented by imposing appropriate constraints on the item
selection that automatically equate the number-correct scores on an adaptive test to
reference test (van der Linden, this volume, chap. 2).

The answer to the question of what method of ability estimation is best is
intricately related to other aspects of the CAT. First of all, the choice of item-
selection criterion is critical. Other aspects that have an impact on ability estimates
are the composition of the item pool, whether or not the estimation procedure uses
collateral information on the examinees, the choice of the method to control the ex-
posure rates of items, and the presence of content constraints on item selection. The
issue will be returned to at the end of this chapter where some of these aspects are
discussed in more detail.
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1.2.4 Classical Item-Selection Criteria

Maximum-Information Criterion

Birnbaum (1968) introduced the test information function as the main criterion for
linear test assembly. The test information function is the expected information mea-
sure in (1.5) taken as a function of the ability parameter. Birnbaum’s motivation
for this function was the fact that, for increasing test length, the variance of the
ML estimator is known to converge to the reciprocal of (1.5). In addition, the mea-
sure in (1.5) is easy to calculate and additive in the items. In adaptive testing, the
maximum-information criterion was immediately adopted as a popular choice. The
criterion selects the kth item to maximize (1.5) at � Db�ui1

;:::;uik�1
. Formally, it can

be presented as

ik � arg max
j

n
IU1

; : : : ;Uk�1;Uj
.b�ui1

;:::;uik�1
/ W j 2 Rk

o
: (1.17)

Because of the additivity of the information function, the criterion boils down to

ik � arg max
j

n
IUj

.b�ui1
;:::;uik�1

/ W j 2 Rk

o
: (1.18)

Observe that, though the ML estimator is often advocated as the natural choice,
the choice of estimator of � in (1.18) is open. Also, the maximum-information crite-
rion is often used in the form of a previously calculated information table for a fine
grid of � values (for an example, see Thissen & Mislevy, 1990, Table 5.2).

For a long time, the use of ML estimation of � in combination with (1.19)
as item-selection criterion in CAT missed the asymptotic motivation that existed
for linear tests. Recently, such a motivation has been provided by Chang and
Ying (2009). These authors show that, for this criterion, the ML estimator of �

converges to the true value with a sampling variance approaching the reciprocal of
(1.5). The result holds only for an (infinite) item pool with all possible values for
the discrimination parameter in the item pool bounded away from 0 and 1, and
values for the guessing parameter bounded away from 1. Also, for the 3PL model,
a slight modification of the likelihood equation is necessary to prevent multiple
roots. Because these conditions are mild, the results are believed to provide a useful
approximation to adaptive testing from a well-designed item pool. As shown in
Warm (1989), the WLE in (1.10) outperforms the ML estimator in adaptive testing.
The results by Chang and Ying are therefore expected to hold for the combination
of (1.18) with the WLE as well.

Owen’s Approximate Bayes Procedure

Owen (1969; see also 1975) was the first to use a Bayesian approach to adaptive
testing. His method had the format of a sequential Bayes procedure in which at each
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stage the previous posterior distribution of the unknown parameter serves as its new
prior distribution.

Owen’s method was formulated for the three-parameter normal-ogive model in
(1.2) rather than its logistic counterpart. His criterion was to choose the kth item
such that ˇ̌

bik � E.� j ui1 : : : uik�1
/
ˇ̌

< ı (1.19)

for a small value of ı � 0; where E.� j ui1 : : : uik�1
/ is the EAP estimator defined

in (1.15). After the item is administered, the likelihood is updated and combined
with the previous posterior to calculate a new posterior. The same criterion is then
applied to select a new item. The procedure is repeated until the posterior variance
in (1.16) reaches the level of uncertainty about � the test administrator is willing
to tolerate. The last posterior mean is reported to the examinee as his or her final
ability estimate.

In Owen’s procedure, the selection of the first item is guided by the choice of a
normal density for the prior, g.�/. However, the class of normal priors is not the
conjugate for the normal-ogive model in (1.2); that is, they do not yield a normal
posterior distribution. Because it was impossible to calculate the true posterior in
real time, Owen provided closed-form approximations to the posterior mean and
variance and suggested using these to normalize the posterior distribution. The ap-
proximation for the mean was motivated by its convergence to the true value of � in
mean square for k ! 1 (Owen, 1975, Theorem 2).

Note that in (1.19), bi is the only item parameter that determines the selection of
the kth item. No further attempt is made to optimize item selection. However, Owen
did make a reference to the criterion of minimal preposterior risk (see below) but
refrained from pursuing this option because of its computational complexity.

1.3 Modern Procedures

Ideally, item-selection criteria in adaptive testing should allow for two different
types of possible errors: (1) errors in the ability estimates and (2) errors in the esti-
mates of the item parameter.

Because the errors in the first ability estimates in the test are generally large,
item-selection criteria ignoring them tend to favor items with optimal measurement
properties at the wrong value of � . This problem, which was documented as the at-
tenuation paradox in test theory a long time ago (Lord and Novick, 1968, sect. 16.5),
has been largely ignored in adaptive testing. For the maximum-information criterion
in (1.18), the “paradox” is illustrated in Figure 1.1, where the item that performs best
at the current ability estimate,b� , does worse at the true ability, ��. The classical so-
lution for a linear test was to maintain high values for the discrimination parameter
but space the values for the difficulty parameter (Birnbaum, 1968, sect. 20.5). This
solution goes against the nature of adaptive testing.
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Fig. 1.1 Attenuation paradox in item selection in CAT

Ignoring errors in the estimates of the item parameter values is a strategy without
serious consequences as long as the calibration sample is large. However, the first
large-scale CAT applications showed that to maintain item pool integrity, the pools
had to be replaced much more often than anticipated. Because the costs of replace-
ment are high, the current trend is to minimize the size of the calibration sample.
A potential problem for CAT from a pool of items with errors in their parameter
values, however, is capitalization on chance. Because the items are selected to be
optimal according to a criterion, the test will tend to have both items with optimal
true values and less than optimal values with compensating errors in their parameter
estimates. Figure 1.2 illustrates the effect of capitalization on chance on ability esti-
mation for a simulation study of a 20-item adaptive test from item pools of varying
sizes calibrated with samples of different sizes. For the smaller calibration samples,
the error in the ability estimates at the lower-end scale goes up if the item pool
becomes larger. This counterintuitive result is due only to capitalization on chance;
for other examples of this phenomenon, see van der Linden and Glas (2000).

Recently, new item-selection criteria have been introduced to fix the above prob-
lems. These criteria have shown to have favorable statistical properties in extended
computer simulation studies. Also, as for their numerical aspects, they can now eas-
ily be used in real time on the current generation of PCs.

1.3.1 Maximum Global-Information Criterion

To deal with large estimation error in the beginning of the test, Chang and
Ying (1996) suggested replacing Fisher’s information in (1.17) by a measure based
on Kullback-Leibler information. The Kullback–Leibler information is a general



14 W.J. van der Linden and P.J. Pashley

Fig. 1.2 Mean absolute error (MAE) in ability estimation from item pools with k D 40, 80, 400,
and 1200 items (size of calibration samples: 250: solid; 500: dashed; 1200: dotted; 2500: dashed-
dotted)

measure for the “distance” between two distributions. The larger the Kullback–
Leibler information, the easier it is to discriminate between two distributions, or
equivalently, between the values of the parameters that index them (Lehmann &
Casella, 1998, sect. 1.7).

For the response model in (1.1), the Kullback–Leibler measure for the response
distributions on the kth item in the test associated with the true ability value (�0) of
the examinee and the current ability estimate (b�k�1) is

Kik

�
b�k�1; �0

�
� E

"
log

L.�0 j Uik /

L.b�k�1 j Uik /

#
; (1.20)

where the expectation is taken over response variable Uik . The measure can there-
fore be calculated as

Kik

�
b�k�1; �0

�
D pik .�0/ log

pik .�0/

pik

�
b�k�1

�

C Œ1 � pik .�0/� log
1 � pik .�0/

1 � pik .b�k�1/
: (1.21)
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Because of conditional independence between the responses, information in the
responses for the first k items in the test can be written as

Kk

�
b�k�1; �0

�
� E

"
log

L.�0 j Ui1 ; : : : ; Uik /

L.b�k�1 j Ui1 ; : : : ; Uik /

#
D

kX

hD1

Kih

�
b�k�1; �0

�
:

(1.22)
Kullback–Leibler information tells us how well the response variable discriminates
between the current ability estimate,b�k�1, and the true ability value, �0. Because the
true value �0 is unknown, Chang and Ying propose replacing (1.20) by its integral
over an interval about the current ability estimate, [b�k�1 � ık;b�k�1 C ık], with ık

a decreasing function of the rank number of the item in the adaptive test. The kth
item in the test is then selected according to

ik � arg max
j

8
<

:

Z b�k�1Cık

b�k�1�ık

Kj .b�k�1; �/d� W j 2 Rk

9
=

; : (1.23)

Evaluation of the criterion will be postponed until all further criteria in this section
have been reviewed.

1.3.2 Likelihood-Weighted Information Criterion

Rather than integrating the unknown parameter � out, as in (1.23), the integral could
have been taken over a measure of the plausibility of the possible values of � . This
idea has been advocated by Veerkamp and Berger (1997). Although they presented
it for the Fisher information measure, it can easily be extended to the Kullback–
Leibler measure.

In a frequentistic framework, the likelihood function associated with the re-
sponses Ui1Dui1 ; : : : ; Uik�1

D uik�1
expresses the plausibility of the various values

of � given the data. Veerkamp and Berger proposed weighing Fisher’s information
with the likelihood function and selecting the kth item according to

ik � arg max
j

�Z 1

�1
L.� j ui1 ; : : : ; uik�1

/Iik .�/d� W j 2 Rk

�
: (1.24)

If maximum-likelihood estimation of ability is used, the criterion in (1.24) places
most weight on � values close to the current ability estimate. In the beginning of the
test, the likelihood function is flat, and values away fromb�k�1 receive substantial
weight. Toward the end of the test the likelihood function tends to become peaked,
and nearly all of the weight will go to values close tob�k�1.

Veerkamp and Berger (1997) also specified an interval information criterion that,
like (1.23), assumes integration over a finite interval of � values about the current
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ability estimate. However, rather than defining an interval with the size of ık , they
suggested using a confidence interval for �: The same suggestion would be possible
for the criterion in (1.23).

1.3.3 Fully Bayesian Criteria

All Bayesian criteria for item selection involve the use of a posterior distribution of
� . Because a posterior distribution is a combination of a likelihood function and a
prior distribution, the basic difference with the previous criterion is the assumption
of the latter. Generally, unless reliable collateral information about the examinee
is available, the prior distribution of � should be chosen to be low informative.
The question of how to estimate an empirical prior from collateral information is
answered in the next section. The purpose of the current section is to review several
of the Bayesian criteria for item selection proposed in van der Linden (1998). For a
more technical review, see van der Linden and Glas (2007).

Analogous to (1.24), a posterior-weighted information criterion can be defined as

ik � arg max
j

�Z
IUj

.�/g.� j ui1 ; : : : ; uik�1
/d� W j 2 Rk

�
: (1.25)

Generally, the criterion puts more weight on items with their information near the
location of the posterior distribution. However, the specific shape of the posterior
distribution determines precisely how the criterion discriminates between the infor-
mation functions of the candidate items.

Note that the criterion in (1.25) is still based on Fisher’s expected information
in (1.5). Though the distinction between expected and observed information makes
practical sense only for the 3PL model, a more Bayesian choice would be to use
observed information in (1.4). Also, note that it is possible to combine (1.25) with
the earlier Kullback–Leibler measure.

All of the next criteria are based on preposterior analysis. They predict the re-
sponse distributions on the remaining items in the pool, i 2 Rk , after k � 1 items
have been administered and then choose the kth item according to the update of
a posterior quantity for these distributions. A key element in this analysis is the
predictive posterior distribution for the response on item i , which has probability
function

p.ui j ui1 ; : : : ; uik�1
/ D

Z
p.ui j �/g.� j ui1 ; : : : ; uik�1

/d�: (1.26)

Suppose item i 2 Rk were selected. The examinee would respond correctly to this
item with probability pi .1 j ui1 ; : : : ; uik�1

/. A correct response would enable us to
update any of the following quantities:

1. the full posterior distribution of � ;
2. any point estimate of the ability value of the examinee,b�k ;
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3. the observed information atb�k; and
4. the posterior variance of � .

An incorrect response has probability pi .0 j ui1 ; : : : ; uik�1
/ and could be used

for similar updates. It should be noticed that the update of the observed information
atb�k involves an update fromb�k�1 tob�k . Because of this, the information measure
must be reevaluated at the latter not only for the predicted response to candidate
item k but for all previous k � 1 responses as well.

The first item-selection criterion based on preposterior analysis is the maximum
expected information criterion. The criterion maximizes observed information over
the predicted responses on the kth item. Formally, it can be represented as

ik � arg max
j

n
pj .0 j ui1 ; : : : ; uik�1

/Jui1
;:::;uik�1

;Uj D0.b� ui1
;:::;uik�1

;Uj D0/

Cpj .1 j ui1 ; : : : ; uik�1
/Jui1

;:::;uik�1
;Uj D1.b�ui1

;:::;uik�1
;Uj D1/

W j 2 Rk

o
: (1.27)

If in (1.27) observed information is replaced by the posterior variance of � , the
minimum expected posterior variance criterion is obtained:

ik � arg min
j

n
pj .0 j ui1 ; : : : ; uik�1

/Var.� j ui1 ; : : : ; uik�1
; Uj D 0/

Cpj .1 j ui1 ; : : : ; uik�1
/Var.� j ui1 ; : : : ; uik�1

; Uj D 1/

W j 2 Rk

o
: (1.28)

The expression in (1.28) is known as the preposterior risk associated with a quadratic
loss function for the estimator. Owen (1975) referred to this criterion as a numeri-
cally more complicated alternative to his criterion in (1.19).

It is possible to combine the best elements of the ideas underlying the criteria in
(1.25) and (1.28) by first weighting observed information using the posterior distri-
bution of � and then taking the expectation over the predicted responses. The new
criterion is

ik � arg max
j

�
pj .0 j ui1 ; : : : ; uik�1

/

�
Z

Jui1
;:::;uik�1

;Uj D0.�/g.� j ui1 ; : : : ; uik�1
; Uj D 0/d�

�
Z

Jui1
;:::;uik�1

;Uj D1.�/g.� j ui1 ; : : : ; uik�1
; Uj D 1/d� W j 2 Rk

�
: (1.29)

It is also possible to generalize the criteria in (1.26)–(1.28) to a larger span of pre-
diction. For example, when predicting the responses for the next two items, (ik; ik0),
the generalization involves the replacement of the posterior predictive probability
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function in the above criteria by

p.uik j ui1 ; : : : ; uik�1
/p.uik0

j ui1 ; : : : ; uik /; (1.30)

as well as a similar modification of the other posterior updates. Although the op-
timization is over pairs of candidates for items k and k C 1, better adaptation is
obtained if the candidate for item k is actually administered but the other item is re-
turned to the pool, whereupon the procedure is repeated. Combinatorial problems
inherent in the application of the procedure with larger item pools and spans of
prediction can be avoided by using a trimmed version of the pool with unlikely
candidate items left out.

1.3.4 Bayesian Criteria with Collateral Information

As indicated earlier, an informative prior located at the true value of � would give
Bayesian ability estimation its edge. For a large variety of item-selection criteria,
such a prior would not only yield finite initial ability estimates but also improve
item selection and speed up convergence of the estimates during the test. If useful
collateral information on the examinee exists, for example, in the form of previous
achievements or performances on a recent related test, an obvious idea is to infer
the initial prior from this information. An attractive source of collateral information
during the test is the response times (RTs) on the items. They can be used for a
more effective update of the posterior distribution of � during the rest of the test.
This section deals with the use of both types of collateral information.

Statistically, no objections whatsoever exist against this idea; when the interest
is only in ML or Bayesian estimation of � , item-selection criteria based on collat-
eral information are known to be ignorable (Mislevy & Wu, 1988). Nevertheless,
if policy considerations preclude the use of collateral information in test scores, a
practical strategy is to still use the information to improve the design of the test but
to calculate the final ability estimate only from the last likelihood function for the
examinee.

Initial Empirical Prior Distribution

Procedures for adaptive testing with the 2PL model with the initial prior distribution
regressed on predictor variables are described in van der Linden (1999). Let the
predictor variables be denoted by Xp, p D 0; : : : ; P . The regression of � on the
predictor variables can be modeled as

� D ˇ0 C ˇ1X1 C � � � C ˇP XP C "; (1.31)

with
" � N.0; �2/: (1.32)
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Substitution of (1.30) into the response model gives

pi .�/ D expŒai .ˇ0 C ˇ1X1 C � � � C ˇP XP C " � bi /�

1 C expŒai .ˇ0 C ˇ1X1 C � � � C ˇP XP C " � bi /�
: (1.33)

For known values for the item parameters, the model amounts to logistic regres-
sion with examinees’ values of " missing. The values of the parameters ˇ1; : : : ; ˇP

and � can be estimated from data using the EM algorithm. The estimation
procedure boils down to iteratively solving two recursive relationships given in
van der Linden (1999, Eqs. 16–17). These equations are easily solved for a set
of pretest data. They also allow for an easy periodical update of the parameter
estimates from response data when the adaptive test is operational.

If the item selection is based on point estimates of ability, the regressed value of
� on the predictor variables,

b�0 D ˇ0 C ˇ1x1 C � � � C ˇP xP ; (1.34)

can be used as the prior ability estimate for which the initial item is selected. If the
items are selected using a full prior distribution for � , the choice of prior following
(1.32)–(1.33) is

g.�/ � N
�
b�0; �

�
: (1.35)

Observe that both (1.34) and (1.35) provide an individualized initialization for
the adaptive test: Different examinees will start at different initial ability estimates.
The procedure therefore offers more than statistical advantages. Initialization at the
same ability estimate for all examinees leads to first items in the test that are always
chosen from the same subset in the pool. Hence, they become quickly overexposed,
and the testing program becomes vulnerable to security breaches. On the other hand,
the empirical initialization of the test above entails a variable entry point to the pool,
and hence offers a more even exposure of its items.

Item Selection with RTs as Collateral Information

RTs on test items are recorded automatically during adaptive testing, They are also
a potentially rich source of collateral information about the examinee’s ability. One
possible use of RTs is as an additional source of information for the update of the
posterior distribution of � during testing. This procedure becomes possible as soon
as we have a model for the RT distributions on the items in the pool that is statisti-
cally linked to the response model.

The modeling framework used in this demonstration of the procedure is a hi-
erarchical framework with (i) the 3PL model and a lognormal model for the RT
distribution as distinct first-level models and (ii) a bivariate normal model for the
distribution of the person parameters in these models as a second-level model. The
lognormal model is a normal model for the log of the RTs with £j 2 .�1; 1/ as
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the speed for examinee j and ˇi 2 .�1; 1/ and ˛i 2 .0; 1/ are the time intensity
and discrimination parameters for item i . The model equation is

f .tij I £j ; ˛i ; ˇi / D ˛i

tij
p

2�
exp

�
�1

2

�
˛i .ln tij � .ˇi � £j //

�2
�

: (1.36)

At the second level,

.�; £/ � MVN.�P ; †P/; (1.37)

with mean vector �P D .�� ; �£/ and covariance matrix †P for the person param-

eters in the population of examinees. More details on the model and the estimation
of its parameters are given in Klein Entink, Fox, and van der Linden (2009) and van
der Linden (2007).

The idea is to adjust the posterior distribution of � in (1.8) using simultaneous
updates of its two components:

1. An update of the likelihood L.� j ui1 : : : uik�1
/ using the response on the item.

This is the regular Bayesian update of a posterior distribution.
2. The retrofitting of the original prior g.�/ in (1.8) using the RTs on the items.

The new prior distribution is the posterior predictive density of � given the RTs,
that is,

f .e� j tk�1/ D
Z

f .� j £/f .£ j tk�1/d£: (1.38)

For the models in (1.36)–(1.37), use of the log RTs leads to a normal density for

(1.38) with closed-form expressions for the mean and standard deviation that are
easily calculated from the known item parameters and RTs on the previous items.

Observe that (1.38) leads to an individualized prior that is continuously improved
during the test using additional information obtained from the individual test taker.
The result is faster convergence of the posterior distribution of � as well as the
improved item exposure mentioned above relative to the case of a common fixed
prior distribution for all examinees.

The procedure is demonstrated empirically in van der Linden (2008). Figure 1.3
shows the results from this study for adaptive tests of n D 10 and 20 items for
various degrees of correlation between � and £. Even for a modest correlation of
��£ D 0:2, the improvement for the EAP estimator used as final estimate in this
study is already conspicuous. In fact, a comparison between the two panels shows
that for ��£ D 0:2 the MSE function for n D 10 already has a similar shape as the
MSE function for n D 20 without the use of RTs. Also, observe that the curves
for the conditions with RTs are generally flatter than the one for the case without.
The empirical item pool used in this study was relatively scarce at the lower end
of the scale (fewer easy items). The use of the RTs nicely compensated for this
scarcity.
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Fig. 1.3 MSE functions of EAP estimator of � for item selection without RTs (dashed line) and
with RTs with ��£ D 0:2, 0:4, 0:6, and 0:8 (solid lines; the darker the line, the higher the cor-
relation) for tests of n D 10 and 20 items. [Reproduced with permission from W. J. van der
Linden (2008). Using response times for item selection in adaptive testing. Journal of Educational
and Behavioral Statistics, 33, 5-20.]

1.3.5 Bayesian Criteria with Random Item Parameters

If the calibration sample is small, errors in the estimates of the values of the item
parameters should not be ignored but dealt with explicitly when estimating � in
adaptive testing. A Bayesian approach would not fix the item parameters at point
estimates but leave them random, using their posterior distribution given all previ-
ous responses in the ability estimation procedure. Tsutakawa and Johnson (1990)
describe this empirical Bayes approach to ability estimation for responses to linear
tests. Their procedure can easily be modified for application in adaptive testing.

The modification is as follows: Let y be the matrix with response data from all
previous examinees. For brevity, the parameters (ai;bi ; ci ) for the items in the pool
are collected into a vector �. Suppose a new examinee has answered k�1 items, and
we need the update of his or her posterior distribution for the selection of item k.
Given a prior for �, the derivation of the posterior distribution of this vector of item
parameters is standard. The result is the posterior density g.� j ui1 ; : : : ; uik�1

; y/.
Using the assumptions in Tsutakawa and Johnson (1990), the posterior distribu-

tion of � after item k � 1 can be updated as

g.� j ui1 ; : : : ; uik�1
; y/ D g.�/

R
p.uik�1

j �; �/g.� j ui1 ; : : : ; uik�2
; y/d�

p.uik�1
j ui1 ; : : : ; uik�2

; y/
:

(1.39)

Key in this expression is the replacement of the likelihood associated with the re-
sponse to the last item, ik�1, by its average over the posterior distribution of the
item parameters given all previous data, g.� j ui1 ; : : : ; uik�2

; y/. Such averaging is
the Bayesian way of accounting for posterior uncertainty in unknown parameters.
Given the posterior distribution of � , the posterior predictive probability function
for the response on item ik can be derived as

p.uik j ui1 ; : : : ; uik�1
; y/ �

Z
p.uik j �/g.� j ui1 ; : : : ; uik�1

; y/d�: (1.40)
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Once (1.40) is calculated, it can be used in one of the criteria in (1.25) or (1.27)–
(1.29).

In spite of all our current computational power, a real-time update of the posterior
distribution of the item parameters, g.� j ui1 ; : : : ; uik�1

; y/, is prohibitive, due to the
evaluation of complex multiple integrals. However, in practice, it makes sense to up-
date the posterior only periodically, after prior screening of the new set of response
patterns for possible aberrant behavior by some of the examinees or compromise
of the items. When testing the next examinees, the posterior distribution of � then
remains fixed until the next update. The resulting expression in (1.39)–(1.40) can
easily be calculated in real time using appropriate numerical integration. Alterna-
tively, we could use the simplifying assumptions for the update of g.� j y/ given in
Tsutakawa and Johnson (1990).

A different need for item-selection criteria to deal with random item parame-
ters arises in adaptive testing with rule-based item generation. In this application,
the traditional pool of discrete items is replaced by a pool of computer-generated
items, or, more challenging, the items are generated by computer algorithms in real
time. The first experiments with rule-based item generation typically involve two
different types of rules. One type is based on the structural aspects of the items
(generally referred to as “radicals”) found in a cognitive analysis of the content
domain. The second type is rules for item cloning, that is, for generating a fam-
ily of items that look different but are based on the same combination of radicals.
Within the families, the items thus differ only in their surface features (generally
referred to as “incidentals”). Recent examples of the use of such types of rules
are given in Freund, Hofer, and Holling (2008) and Holling, Bertling, and Zeuch
(in press).

The structure of an item pool with items nested in families with the same combi-
nations lends itself nicely to hierarchical response modeling with a regular response
model for each individual item, such as the one in (1.1), as first-level models and a
separate second-level model for each family to describe the distribution of its item
parameters. Generally, the differences in item parameters between families will be
much larger than within families. Nevertheless, explicit modeling of the within-
family differences is much better than ignoring them and treating all items within
a family as psychometrically equivalent. Hierarchical response models for this pur-
pose have been proposed by Glas and van der Linden (2001, 2003; see also Sinharay,
Johnson & Williamson, 2003) and Geerlings, van der Linden and Glas (2009). The
first model is treated more in detail elsewhere in this volume (Glas, van der Linden &
Geerlings, chap. 15); this chapter should be consulted for item calibration and model
fit issues.

Let the pool be generated to have item families p D 1; : : : ; P , each with distri-
bution p.�j�p; †p/ of its item parameters � D .a; b; c/. In the hierarchical model
by van der Linden and Glas, each family has a distinct normal distribution for its
item parameters. The item pool is assumed to be calibrated using samples of items
from each family to estimate its mean �p and covariance †p.
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Item selection from a pool of calibrated items proceeds along the following two
steps:

1. adaptive selection of a family; i.e., identification of the family with the best match
of its �pand †p with the current �

2. estimate; and
3. random selection of an item from the family.

More formally, in a Bayesian framework, the procedure is as follows. The update
of the posterior distribution of � after these k � 1 items is given by

p.� j uk�1/ / g.�/

k�1Y

pD1

Z
p.up j �; �p/p.�pj�p ; †p/d�p: (1.41)

The first step is to select the kth family to be optimal at this posterior distribution.
As an example, item selection based on the minimum expected posterior variance
criterion in (1.32) is proposed. The only necessary change in this criterion is an
adjustment of the posterior predicted distribution of the responses on the candidate
item in (1.32) to those for a random item from a candidate family. Consider family
p as the candidate for the kth family in the test; this candidate is denoted as pk . The
posterior predicted distribution for the response on a random item from this family
has probability function

p.upk
j uk�1/ D

Z 	Z
p.upk

j �; �pk
/p.�pk

j�pk
; †pk

/d�pk



p.� j uk�1/d�:

(1.42)

Observe that in this expression we first average the response probability over the
distribution of the item parameters for family pk to allow for the random sampling
of an item from it, and then average the result over the posterior distribution of the
ability of the examinee. This expression is used in (1.32) to identify the best family
in the pool. The second step is to randomly sample an item from this family.

For an exploration of the behavior of this criterion using simulated adaptive test-
ing, see Glas and van der Linden (2003).

1.3.6 Miscellaneous Criteria

The item-selection criteria presented thus far were statistically motivated. An item-
selection procedure that addresses both a statistical and a more practical goal
is the method of multistage ˛-stratified adaptive testing proposed in Chang and
Ying (1999). The method was introduced primarily to reduce the effect of ability
estimation error on item selection. As illustrated in Figure 1.1, if the errors are large,
an item with a lower discrimination parameter value is likely to be more efficient
over a larger range of � values than one with a higher value.
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These authors therefore propose stratifying the pool according to the values of the
discrimination parameter for the items and restricting item selection to strata with
increasing values during the test. In each stratum, items are selected according to
the criterion of minimum distance between the value of the difficulty parameter and
the current ability estimate. In a recent theoretical study, the authors showed why
early selection of highly discriminating items after a few initial incorrect responses
is detrimental to the estimation of � (Chang & Ying, 2008). The procedure also
provides a remedy to the problem of uneven item exposure in CAT. Because items
with a lower discrimination parameter have an equal chance of being chosen, uneven
exposure of the higher parameters is prevented.

To deal with capitalization on calibration error (see Figure 1.2), it may be effec-
tive to cross-validate item parameter estimation during adaptive testing. A practical
way of doing so is to split the calibration sample into two parts, and estimate the
item parameters separately for each part. One set of estimates can be used to se-
lect the items; the other to update the ability estimate after the examinee has taken
them. Item selection then still tends to capitalize on the errors in the estimates in
the first set, but the effects on ability estimation are neutralized by using the second
set of estimates. Conditions under which this neutralization offsets the loss in pre-
cision due to calibration from a smaller sample were studied in van der Linden and
Glas (2001).

Most of the item-selection criteria in this chapter select items for which the ex-
aminee has a probability of a correct response close to 0.5. For some educational
applications, for instance, formative assessment to monitor the achievements of stu-
dents during class work, such response probabilities may be less motivating. Eggen
and Verschoor (2006) examined the effects of modifying item selection to produce
higher or lower response probabilities. Direct selection on such probabilities worked
well for the 1PL model but not for models with varying discrimination parameters,
for which selection at a deliberate shift in the ability estimate worked better.

A final suggestion for item selection in adaptive testing was offered in Wainer,
Lewis, Kaplan, and Braswell (1992). As selection criterion they used the posterior
variance between the subgroups that scored the item in the pretest correctly and
incorrectly. Results from an empirical study of this criterion are given in Schnipke
and Green (1995).

1.3.7 Evaluation of Item-Selection Criteria and Ability Estimators

The question of which combination of item-selection criterion and ability estimation
is best is too complicated for analytic treatment. Current statistical theory provides
us only with asymptotic conclusions.

A well-known result from Bayesian statistics is that for k ! 1; the poste-
rior distribution g.� j ui1 ; : : : ; uik�1

/ converges to degeneration at the true value
of � . Hence, it can be concluded that all posterior-based ability estimation and
item-selection procedures reviewed in this chapter produce identical asymptotic
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results. Also, the result by Chang and Ying (2009) referred to earlier shows that
for maximum-information item selection, the ML estimator converges to the true
value of � as well. The WLE in (1.10) is expected to show the same behavior.

However, particularly for adaptive testing with its much shorter test length,
small-sample comparisons of estimators and criteria are more relevant. For such
comparisons we have to resort to simulation studies.

Relevant studies have been reported in Chang and Ying (1999), van der
Linden (1998), Veerkamp and Berger (1997), Wang, Hanson, and Lau (1999),
Wang and Vispoel (1998), Weiss (1982), Weiss and McBride (1984) and Warm
(1989), among others. Sample results for the bias and mean-square error (MSE)
functions for five different combinations of ability estimators and item-selection
criteria are given in Figures 1.4 and 1.5. All five combinations show the same slight

Fig. 1.4 Bias functions for five item-selection criteria after n D 5, 10, 20, 30 items (maximum-
information with MLE: solid; maximum-posterior weighted Information: dotted; maximum ex-
pected information: dashed-dotted; maximum expected posterior variance: dashed; maximum
expected posterior weighted information: finely dotted). [Reproduced with permission from W. J.
van der Linden (1998). Bayesian item-selection criteria for adaptive testing. Psychometrika, 62,
201–216.]
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Fig. 1.5 MSE functions for five item-selection criteria after n D 5, 10, 20, 30 items (maximum-
information with MLE: solid; maximum-posterior weighted information: dotted; maximum
expected information: dashed-dotted; maximum expected posterior variance: dashed; maxi-
mum expected posterior weighted information: finely dotted). [Reproduced with permission from
W. J. van der Linden (1998). Bayesian item-selection criteria for adaptive testing. Psychometrika,
62, 201–216.]

inward bias for n D 10, which disappears completely for n D 20 and 30. Note
that the bias for the ML estimators in Figure 1.4 has a direction opposite the one in
the estimator for a linear test (e.g., Warm, 1989). This result is due to a feedback
mechanism created by the combination of the contributions of the items to the bias
in the estimator and the maximum-information criterion (van der Linden, 1998).

MSE functions for linear tests are typically U-shaped with the dip at the � values
where the items are located. However, as Figure 1.5 shows, for the same item-
selection criteria as in Figure 1.4, after n D 10 items all MSE functions are already
flat. The best functions were obtained for the criteria in (1.27)–(1.29). Each of these
criteria was based on preposterior analysis. Hence, a critical element in the success
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of an item-selection criterion seems to be its use of posterior predictive probability
functions to predict the item responses on the remaining items in the pool. As re-
vealed by the comparison between the MSE functions for the maximum-information
and maximum posterior-weighted information criteria in Figure 1.5, simply using
the posterior distribution of � appears to have little effect.

Weiss (1982) reported analogous results for the maximum-information criterion
and Owen’s criterion in (1.19). In Wang and Vispoel’s (1998) study, the behavior of
the ML, EAP, and MAP estimators in combination with the maximum-information
criterion were compared with Owen’s criterion. For a 30-item test from a real-world
item pool, the three Bayesian procedures behaved comparably, whereas the ML esti-
mator produced a worse standard error but a better bias function. Wang, Hanson, and
Lau (1999) reported several conclusions for modifications of the ML and Bayesian
estimators intended to remove their bias. A sobering result was given by Symp-
son, Weiss, and Ree (see Weiss, 1982, p. 478) who, in a real-world application of
the maximum-information and Owen’s selection criterion, found that approximately
85% of the items selected by the two criteria were the same. However, the result may
largely be due to the choice of a common initial item for all examinees.

1.4 Concluding Remarks

As noted in the introduction section of this chapter, methods for item selection and
ability estimation within a CAT environment are not yet as refined as those currently
employed for linear testing. Hopefully, though, this chapter has provided evidence
that substantial progress has been made in this regard. Modern methods have be-
gun to emerge that directly address the peculiarities of adaptive testing, rather than
relying on simple modifications of rules used in linear testing situations. Recent
analytical studies with theoretical frameworks to evaluate the different procedures
have been especially good to see. In addition, the constraints on timely numerical
computations imposed by older and slower PCs have all but disappeared.

The studies discussed in this chapter only relate to a small part of the conditions
that may prevail in an adaptive testing program. Clearly, programs can differ in the
type of item-selection criterion and ability estimator they use. However, they can
also vary in numerous other ways, such as the length of the test and whether the
length is fixed or variable; the size and composition of the item pools; the availabil-
ity of useful collateral information about the examinees; the size and composition of
the calibration samples; the ability to update item parameter estimates using opera-
tional test data; the use of measures to control item exposure rates; and the content
constraints imposed on the item-selection process. Important trade-offs exist among
several of these factors, which also interact in their effect on the statistical behavior
of the final ability estimates.

Given the complexities of a CAT environment and the variety of approaches
(some untested) that are available, how should one proceed? One method would
be to delineate all the relevant factors that could be investigated and then undertake
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an extensive simulation study—a daunting task at best. A more practical strategy
is to study a few feasible arrangements in order to identify a suitable, though not
necessarily optimal, solution for a planned adaptive testing program.
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