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Abstract—With the increasing size and complexity of designs
in electronics, new approaches are required for the description
and verification of digital circuits, specifically at the system
level. Functional HDLs can appear as an advantageous choice
for formal verification and high-level descriptions. In this paper
we explain how to use high-level structures and concepts
like higher-order functions, and parametrization together with
partial evaluation implementation technique, to describe run-
time reconfigurable systems in Haskell. We use the CLaSH
tool to translate high-level Haskell descriptions into RT level,
synthesizable VHDL. A simple design is used to show the ideas
and is implemented on Suzaku-sz410 board for practical proof
of concept.

Index Terms—Key Words: Run-Time Reconfiguration, Self-
Reconfiguration, Functional HDL, Partial Evaluation

I. INTRODUCTION

The diversity of applications for electronic systems in-
creases everyday. Applications typically include software
and hardware parts interacting together, and while soft-
ware parts usually handle the control-driven and simple
computation tasks, the hardware parts run the computation-
intensive tasks of the application. Implementing specific
computation-intensive tasks as Application Specific Inte-
grated Circuits (ASIC) can cost a lot of time and money.
Re-programmability and reconfigurability of hardware can
introduce benefits like high flexibility, less area consumption,
less time to market, even power saving. Generally speaking,
Reconfigurable Hardware can fill the gap between ASIC
and software in terms of performance, power consumption,
and time to market criteria. The need for reconfigurability
can be driven by 3 main factors: Multiability (to perform
different functions at different times), Evolvability (to adapt
to the environment and changes in standards over time),
and Survivability (the system remains functional despite
having a few failures) [20]. Different architectures have been
proposed for reconfigurable hardware, but FPGAs are the
most common reconfigurable hardware in practice. Using
FPGAs as ASIC substitute was effective only in low-volume
products before, but nowadays high volume production of

FPGAs and rising None Recurring Engineering (NRE) costs
of ASICs, shift the balance toward FPGAs [12]. Some
of the reconfigurable architectures are capable of being
reconfigured partially at run-time, which means it is possible
to change some parts of the design on FPGA, without
affecting other running parts. This feature is called Run-
Time Reconfiguration (RTR).

Because of the exponentially growing number of transis-
tors on silicon [10], and using low-level tools and method-
ologies for system design, a productivity gap is created
which increases the time to market factor for electronic
designs. In order to cope with this productivity gap, high-
level tools and methodologies are required. Designing in a
higher levels of abstraction can lead to improve the time to
market factor and reduce the productivity gap.

It is possible to define specific areas inside FPGA as
Reconfiguration Regions which communicate with other
parts of the design through fixed and static channels such
as busmacros.

Modules that are intended to be configured to the same
reconfigurable area, are called Reconfiguration Candidates
here. Therefore, every reconfiguration region has a group of
reconfiguration candidates.

Figure 1 shows a typical run-time reconfigurable system
with two reconfiguration regions (RR1 and RR2), in which,
RR1 has A, B, and C modules as its reconfiguration candi-
dates and RR2 has D and E modules as its reconfiguration
candidates

Design Space Exploration (DSE) in higher levels of ab-
straction can discover better design alternatives in the early
stages of the design flow. Extensive research has taken place
on designing in higher levels of abstraction, but mainly for
non-reconfigurable systems. Most of these works use high-
level languages such as SystemC, Simulink or UML as a
language for describing hardware and software together. In a
system that includes RTR hardware, it is possible to share the
hardware resources in temporal domain, thus design space
exploration and partitioning for a RTR hardware should
consider a new dimension which is the time dimension
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Figure 1. A typical run-time reconfigurable system

besides the spatial dimension.
There are several works in modeling and design method-

ologies for RTR systems based on high-level description
languages like SystemC [23], [22], [18], [15], [19], [21],
[2], [8], [4] Simulink [9], and UML [7], [17], [26], [11],
[24], [25], [1], [14]. Because of the lack of features like
polymorphism, partial application, higher order functions,
etc, it is not easy to model RTR systems in traditional HDLs
[5]. Because of these features and better support for formal
verification, functional HDLs has appeared as an alternative.
In this paper we will describe how to model RTR systems
with Haskell which is a functional programming language.
We use a tool named CLaSH to generate hardware from
Haskell description of RTR systems.

In the next section we will discuss several modeling ap-
proaches for RTR systems mainly in SystemC and UML. In
section III a general information about Haskell is presented
and CLaSH tool will be introduced. In section IV we will
discuss the proposed approach together with a simple RTR
design example in Haskell. Finally a short conclusion is
presented in section V.

II. PREVIOUS WORK

The work in [15] is one of the most referenced works
in the area of RTR modeling. The idea is to collect all
reconfigurable alternatives of a specific reconfigurable area
into a module called Dynamically Reconfigurable Fabric
(DRCF) and configure the specific module when it is re-
quested from other parts of the system. First, an analysis of
modules is done to extract their interfaces and ports, then
all the instances of the modules are found and analyzed in
the top level (at the same level of hierarchy). After this
phase, a DRCF component is created which includes all
the interfaces and ports collected in the analysis phase. The
DRCF module will contain all the reconfigurable alternatives
at the same level of hierarchy and its instantiation replaces
instantiations of all reconfiguration candidates. When a call
to a specific reconfigurable module happens, if it is not
already the active module in the DRCF, it will be activated
in the DRCF component. There are several functions in the
template to read and write from/to component, or to get low
and high addresses of the memory space that contains the

configuration bits of each DRCF component. In [19] authors
have used OSSS methodology as a base and added RTR
performance evaluation and synthesis support to it. In order
to keep the reconfiguration details away from the designer,
they use polymorphism like the polymorphism exists in C++
language [19]. It supports synthesis of inheritance, objects,
classes, etc. Since the synthesis of pointers is challenging,
for definition of parent classes and objects, they use a
reconfigurable object which is a base for each reconfigurable
group. Each reconfigurable group can have several recon-
figuration candidates. Assigning one of the reconfiguration
candidate objects to a base class of that object, or calling a
function of a specific object can initiate the reconfiguration
process to bring that reconfiguration candidate into action.
They use Fossy tool to synthesize from C++ to VHDL. In
order to do functional simulation of the design after getting
the VHDL output of the Fossy tool, instances of all modules
are included in the design connected with mux/demux to
other parts of the design. For low-level synthesis, they
use EAPR approach to generate partial bitstreams. More
information on details of the tool-chain can be found in [19].

There are some other similar works done in the area of
modeling RTR systems with SystemC in [3], [22], [16], [4].

In [Beierlein2003] which is based on Model Driven Ar-
chitecture, they propose a modeling flow based on UML. In
order to describe both the application and architecture model
they use use-case diagrams, state diagrams, collaboration
and MOCCA (Model Compiler for Configurable Archi-
tectures) language. MOCCA is designed by them which
is similar to Java language. Control and software-friendly
components are mapped to a general purpose processor
and the computation-intensive components are mapped to
a reconfigurable hardware. Output of the synthesis stage
will be VHDL files (for reconfigurable tasks) and C++ or
Java code (for software tasks) [7]. Some components are
decomposed and some of them are composed to map them
to different hardware/software components.

In [26] they proposed a methodology that receives both
the application and platform models as input and produces
bitstream files for FPGA. The application is defined as a
set of communicating components. Communication between
components are shown through ports and behavior of them
is defined with state machines.

The platform components are modeled in the same man-
ner. The mapping stage is done manually using specific
stereotypes called allocate. After the mapping stage, the
translation of the components from UML into software/hard-
ware starts. They use Rhapsody tool to generate hard-
ware/software codes (VHDL and C++). Adding the "Re-
configurable" stereotype to the allocation allows the code
generation part to add reconfiguration calls while generating
the low-level code. It automatically inserts busmacros into
module wrappers. In [25] they have improved their modeling
approach by Design Patterns. They use two common design
patterns for modeling reconfiguration candidates, the strat-
egy design pattern , and state design pattern. The definitions



of these design patterns can be found in [25]. More works
based on UML can be found in [17], [11], [24], [1], [14].

III. CLASH

Hardware Description Languages (HDLs) are proper for
describing detailed hardware, but they can be cumbersome
for describing higher levels of abstraction in larger de-
signs such as polymorphism, higher order functions and
parameterization[5]. Functional HDLs enable us to use
features like polymorphism, higher order functions, and
parametrization that makes it easy to describe larger designs.
They also have the so called denotational semantics which
makes it affordable to prove the equivalency of two designs
and formal verification of hardware designs [5]. Being close
to mathematical and formal description of hardware can
enable us to avoid exhaustive tests of large designs. This
feature makes functional HDLs more valuable these days.

CAES Language for Synchronous Hardware (CLaSH)
is an experimental tool that accepts a subset of Haskell
language as its input language.

A. Haskell

Haskell is a functional programming language in which
computation is similar to the evaluation of mathematical
functions. In contrast to imperative programming, Haskell
is a lazy language and expressions are only evaluated when
they are needed.

In Haskell it is possible to have functions as arguments
of other functions which are called higher-order functions.
Together with polymorphism it is possible to achieve higher
level of generality in descriptions. For example, the fol-
lowing code describes a simple map function that puts
higher-order functions, parametrization, and polymorphism
together.

map :: (t → u) → [t] → [u]
map f [ ] = [ ]
map f (a : x) = f a : map f x

Figure 2. Definition of the map function

It has an input argument of type (t → u) , which is
a function itself with input and output types of t and u
respectively in which u and t can be of any type including
user defined types. The second argument is a list of type t
and the result is a list of type u. The map function simply
applies an operation over a list of of type t and produces a
list of of type u. Describing different applications with such
general functions is easier than describing with functions
specialized for different type such as Int, Char, etc.

In the example shown in Figure 2 specialization of the
general function map to specific types is done during the
compile time in software world. This example employs type-
polymorphism with types t and u, higher-order function with

Figure 3. The basic Mealy machine [5]

fullAdd carryIn (a , b) = (sum , carryOut)
where
(sum1 , carry1) = halfAdd a b
(sum , carry2) = halfAdd carryIn sum1
carryOut = hwxor carry2 carry1

Figure 4. Description of a FullAdder in CLaSH [5]

accepting a function in its input arguments, and parametriza-
tion with accepting any function that matches the input-
output signature of the input function without specifying it
functionality.

Concepts like polymorphism, higher-order functions, and
parametrization are used to create more generality. By mak-
ing the descriptions more general, there is a greater chance
to reuse functions which increases the productivity of the
designer, if it is done in higher levels of abstraction.

B. Modeling With CLaSH

CLaSH is used for modeling synchronous designs. Syn-
chronous hardware can be represented by a Mealy machine
as shown in Figure 3.

The Mealy machine can be described in CLaSH includ-
ing both combinatorial parts and memory elements. It has
been enhanced with state-hiding techniques using Arrows
of Haskell [13]. Memory elements of the design have to
appear in both input and output ports to make next-state
values from present-state values, so the general signature of
state-full modules, without using any state-hiding approach,
will be as the following:
state → inputs → (state , output)
State arguments have the same type (on both sides) and

represent the values of memory elements, but input and
output arguments can have different types. Using state-
hiding techniques, it is possible to describe designs with
memory elements inside, without representing them in input
and output ports of the module, which make it more readable
and easier to deal with. CLaSH generates synthesizable
VHDL code from Haskell code and it supports most of the
high-level functions and operations of Haskell.

A simple example on how to describe a stateless circuit
such as a full-adder in CLaSH is shown in Figure 4.

It is also possible to do a complete simulation with a
regular Haskell compiler because all parts of the simula-



tion including circuit description, simulation code, and test
inputs are valid Haskell. More details on CLaSH compiler
including details, extensions, and applications can be found
in [5],[13], and [6].

In the next session we will see how we extend CLaSH
to support description of RTR systems with higher-order
functions, parametrization, and partial evaluation. We use
specific compiler annotations in our Haskell description
which is discussed in the next session.

IV. PROPOSED APPROACH

In this section we focus on the ideas we used to model
RTR concepts with Haskell. We investigate modeling of RTR
systems using parametrization, partial evaluation, and higher
order functions in Haskell. It is possible to use these high-
level concepts in hardware as well as software. For example
in [19] they exploited polymorphism in the description
language to describe RTR systems in higher levels of ab-
straction. By defining proper candidate objects, it is possible
to model RTR behavior in a high-level language like Sys-
temC. We used higher-order functions and parametrization
as generalization rules to provide higher levels of abstraction
in the design flow of RTR systems. Higher-order functions
in Haskell, are similar to function pointers in SystemC, but
synthesizing pointers is not straightforward.

As a test case, we described two simple filters in Haskell
and switched between them at run-time in real hardware in
a self-reconfigurable system on FPGA. The following figure
shows the block diagram of the FIR and IIR filters used.

(a)

(b)

Figure 5. (a) An FIR filter with constant coefficients. (b) An IIR filter
with constant coefficients.

. . .
do tp1 as bs z = v f o l d l ( + ) z ( vz ipWi th (∗ ) a s bs )
f i r ds r e g s x = ( x +>> regs , do tp1 r e g s ds 0 )
. . .

(a)
. . .
do tp2 as bs z = v f o l d r ( + ) z ( vz ipWi th (∗ ) a s bs )
i i r ds r e g s x = ( ( do tp2 r e g s ds x ) +>> regs ,

do tp2 r e g s ds x )
. . .

(b)

Figure 6. (a) Partial description of the FIR filter [5] . (b) Partial description
of the IIR filter

The main functionality of the IIR and FIR filters are
described in Figure 6 with iir and fir functions respectively.
The rest of the code which is for defining data types and
handling states is not shown for the sake of simplicity. For
more details about details of the hardware design in CLaSH
refer to [5]. Zipwith and fold functions are the main functions
used as the operations on vectors in this example.

Figure 7 shows the description of a simple function named
dsp that selects one of two different filter functions as its
main function, based on the value of the first argument which
is of type Unsigned D4. The returned item is a function
itself and that is either filterIIR or filterFIR. These are not
complete filter descriptions, they only represent the main
combinatorial description for functionality of IIR and FIR
filters. Type (DatainT → DataoutT ) means that it is
applied to an input of type DatainT and returns a value of
type DataoutT. Parametrization and higher-order functions
are exploited in this example. In this example, the dsp

. . .
dsp : : ( Unsigned D4 ) −> ( Data inT −> Dataou tT )
dsp s e l = case s e l of

0 −> f i l t e r I I R
1 −> f i l t e r F I R

. . .

Figure 7. A simple reconfigurable DSP unit

function has a polymorphic place of type (DatainT →
DataoutT ) that can accept any candidate object of this
type. There are two candidate objects here: filterIIR and
filterFIR functions. The polymorphic place is mapped to a
reconfiguration region and each of the candidate objects is
mapped to a reconfiguration candidate. Figure 8 shows both
simulation and implementation models for the dsp function.

As it is shown in Figure 8 the simulation model includes
a MUX to select either filterIIR or filterFIR. Based on the
value of the sel input, either filterIIR or filterFIR function is
evaluated and sent to the output. Since at every moment
only one of these filters is active in the system, instead
of having both of them implemented on hardware, it is
possible to program the active filter between datain and
dataout on hardware at run-time when it is selected. With
any change on sel input, the new choice overwrites the



Figure 8. (a) Simulation model of the dsp function (b) Implementation
model of the dsp module

old one on the hardware. For example when sel has value
’0’, filterIIR is selected as the active filter and programmed
into hardware. When it changes to ’1’, filterFIR is selected
and programmed over filterIIR in hardware. In order to
reconfigure the hardware at run-time we need a dynamic
reconfigurable region which is shown in Figure 8(b). The
process of reconfiguration is done by a processor in the
system that writes bit-streams of selected modules into
corresponding reconfigurable regions which is explained
later in this section. The system is divided into two general
parts, dynamic part that includes all reconfigurable regions
and static part that is the rest of the system. The sel input
is called partial evaluation parameter here since it is used
to partially evaluate the MUX module.

In order to communicate with the rest of the system, every
reconfiguration region should use special communication
structures called busmacros (BM). Busmacros are fixed
communication points between the reconfiguration region
and the rest of the system. Every reconfigurable module
that is programmed to a reconfiguration region must use
busmacros to connect to the static part of the circuit. In each
reconfiguration region, we instantiate as many busmacros
as we need considering the communication ports of the
reconfiguration candidates targeted for the reconfiguration
region. The block diagram of the whole system is shown
in Figure 9 which is our implementation platform. This
is a self-reconfigurable system since there is an embedded
processor on the FPGA that runs Linux and controls the
whole reconfiguration process.

Figure 9. Realization of the DSP unit

Figure 10. Main Design Flow

Configuration bits of every reconfiguration candidate is
stored in the system and is loaded into reconfiguration region
when it is needed. In this example, the dsp function is
partially evaluated with sel input and the corresponding bit-
stream is loaded into the target reconfiguration region. Any
change on sel input leads to a reconfiguration of RR1 which
is done by the embedded processor. The value of the partial
evaluation parameter is kept in partial evaluation register
which is readable by the processor. Any change in its value
will generate an interrupt to embedded processor through
the interrupt generation circuit. During the reconfiguration
process, depending on the value of the register, a proper
bitstream is loaded into the FPGA. In other words, the value
of partial evaluation register, determines which configuration
bitstream should be loaded into the FPGA.

The main design flow of this approach is shown in Figure
10.

After describing the design with high-level Haskell struc-
tures and expressions, all the reconfiguration candidates for
each reconfiguration region is detected and extracted. For
simplicity’s sake we use only one reconfiguration region
in this example. There are several important criteria for
specifying reconfiguration candidates which are discussed in
detail in [15]. After specifying the reconfiguration candidates
(by specifying the partial evaluation parameter), a translation
from Haskell to VHDL starts which translates Haskell func-
tions into synthesizable VHDL entities using CLaSH tool.
After the translation stage, all modules in the design are
synthesized for the targeted FPGA using Xilinx ISE Tool.
Each group of reconfiguration candidates are synthesized
for a specific reconfiguration region inside FPGA, which
is done by specifying special constraints including area and
placement constraints.

Output of CLaSH includes VHDL files together with
a constraint file which is also passed to Xilinx synthesis
tools. The constraint file includes all constraints related to



Figure 11. Simplified reconfiguration state machine

reconfiguration regions such as area constraints, placement
constraints, and constraints related to busmacros. It also
includes some basic information about the partially evaluated
modules and their partial evaluation parameter for every
reconfiguration region.

After generating the configuration bitstream of the design
(including reconfigurable and static modules) configuration
bits of every reconfiguration candidate is stored in a memory
together with the configuration bits of the initial design.
After loading the initial configuration bitstream to FPGA,
any change on the partially evaluated parameter (e.g. sel
input in the DSP example) will initiate a reconfiguration
process. We use a specific C-program ’CLBRead’ to readout
partial bitstreams from a full bitstream. Partial bitstreams are
saved in separate files which are accessible for embedded
processor. Since we run Embedded Linux on the embedded
processor, ICAP drivers for Embedded Linux are used to
read and write partial bitstreams from/to FPGA at run time.

There is a state machine running on embedded processor
on FPGA that controls the reconfiguration process based
on different values of partial evaluation registers. A simple
version of this state machine is shown in Figure 11.

We do not support totally automatic extraction of reconfig-
uration candidates yet. We use specific compiler annotations
in CLaSH for detecting the reconfigurable module and
different reconfiguration candidates. Furthermore, we have
not included timing considerations in this design flow yet,
but it provides a direct connection from high-level software-
like design down to the underlying reconfigurable hardware
which can be used for design space exploration on real
hardware with real and accurate timing.

There are no specific types added to the Haskell de-
scription, so it is possible to use the same description for
simulation and synthesis without any change.

We used Suzaku-sz410 board with Virtex4 FPGA, to test
our ideas. Figure 12 shows the circuit implemented for the
example discussed in this section. For the sake of simplicity
we have only one reconfigurable region implemented on an
FPGA here. The reconfiguration region includes filterFIR
function programmed to it which will be replaced with
filterIIR when it is called. It includes 3 CLB columns and
every CLB column is formed of 16 configuration frames.
Considering each frame to be 1312 bits, the partial bitstream
will be 3*16*1312 = 62976 bits. The static part of the circuit
includes hardcores like PPC, MAC and several controllers
and peripheral circuits for DDR, UART, LCD, etc, which

Figure 12. The DSP module implemented in FPGA

make it possible to run the Embedded Linux on FPGA.

V. CONCLUSIONS AND FUTURE WORK

A modeling approach for run-time reconfigurable sys-
tems using Haskell is proposed. In order to decrease the
productivity gap, we need to challenge higher levels of
abstraction in the design flow. We use a functional HDL
approach which uses Haskell as the description language
to model RTR systems. High-level and abstract concepts
such as parametrization, and higher-order functions together
with partial evaluation implementation technique, are used
for this purpose. Because of the parallelism in functional
programming languages, modeling run-time reconfigurable
systems is much different from imperative high-level lan-
guages. For proof of concept, a simple design is imple-
mented on Suzaku-sz410 board. Including reconfiguration
timing considerations and estimations for power, resource
usage and performance can be useful for design space
exploration in higher levels of abstraction. Since Haskell
represent the mathematical-logical description of a system,
it is also a better foundation for formal verification of run-
time reconfigurable systems. This will be investigated in the
future.
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