Measuring prosodic alignment in cooperative task-based conversations
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Abstract

In this paper, we investigate prosodic alignment in task-based
conversations. We use the HCRC Map Task Corpus and inves-
tigate how familiarity affects prosodic alignment and how task
success is related to prosodic alignment. A variety of existing
alignment measures is used and applied to our data. In particu-
lar, a windowed cross-correlation procedure, that has been used
previously in visual behavior research, is applied to prosodic
features. In addition, we address the issue of how to separate
genuine observed alignment from alignment that is a result from
random coincidental behavior. Using these measures, we find
some indications of prosodic convergence and synchrony in the
map task conversations. Alignment tendencies are strongest for
intensity, and familiarity seems to play a role in convergence.
Finally, weak evidence was found for a correlation between
prosodic alignment measures and task success.

Index Terms: prosodic alignment, convergence, synchrony, fa-
miliarity

1. Introduction

According to the Speech Accommodation Theory [1], people
accommodate their speech behaviors to each other in conversa-
tion. This is presumably (unconsciously) done to create rapport
and a positive harmonious atmosphere. Some studies have also
shown that alignment is positively correlated with task success:
for example, it was found that entrainment in high-frequency
words [2], and lexical and syntactic repetition [3] are predic-
tive of task success. These studies showed that automatic mea-
sures of lexical alignment correlate with task success. Based
on [4], it is assumed that alignment on one level boosts align-
ment on other levels. Hence, we are interested to see whether
there is also prosodic alignment present in task-based conver-
sation. Measuring prosodic alignment requires a somewhat dif-
ferent approach than measuring lexical alignment.

Recent works on (automatically) measuring prosodic align-
ment include the so-called TAMA method, proposed by [5].
It is based on a ‘time-aligned moving average’: by calculat-
ing moving averages of the acoustic features under investiga-
tion, a visual inspection of alignment is facilitated. However, it
was not explained how alignment could be quantitatively mea-
sured. TAMA seems to be a popular measuring method given
that several studies have used this method to quantify speech
alignment. It was used in [6] in combination with a coupled os-
cillators model and the authors concluded that speech similar-
ity changes during social interaction. A similar conclusion was
drawn by [7] who used TAMA in a windowed correlation pro-
cedure. Other studies have used more linguistically meaningful
units instead of windows with a certain size. Prosodic align-
ment was locally quantified in [8] by addressing turn changes,
and by computing alignment measures between each consec-
utive turn. These measures were then successfully used in a

classification task of positive versus negative attitude in married
couples’ interactions. In another study [9], correlations between
acoustic features extracted from adjacent turns were computed
and it was concluded that these features showed ‘proximity’ and
synchrony at the turn level. In [10], it was suggested to use mea-
surement methods that can capture dynamic temporal aspects of
alignment. Alignment of gaps and pauses was measured by first
applying some pre-processing to these features to transform the
discontinuous nature of the durations of gaps and pauses into
continuous feature streams. This process allowed a comparison
between two speakers’ speech features at any possible times-
tamp.

A somewhat scattered view on the evidence of prosodic
alignment processes in conversations and on how to actu-
ally measure prosodic alignment emerges from the studies de-
scribed. Evidence for prosodic convergence and synchrony
were relatively small, and were usually shown for a small num-
ber of conversations. But the evidence was also not conclusive;
for some studies there was strong prosodic alignment found
for a certain feature but not in another study. All studies ac-
knowledge that a dynamic approach to alignment should be
undertaken — most of the studies use a moving window ap-
proach. It would be interesting to combine this moving win-
dow approach with a certain latency to see whether alignment
is led or followed by certain persons, as suggested by e.g., [10].
Another issue that has not frequently been discussed in works
on prosodic alignment is the matter of how to separate ‘real’
speaker-specific speech alignment processes from random co-
incidental speech behaviors. This issue was touched upon
in [9] by pairing a target speaker with another randomly cho-
sen person other than the original interlocutor, and by looking
at whether the acoustic differences between this fabricated pair
would be smaller or larger than the original pair of speakers. Al-
though this is an important issue in alignment research, it seems
to have been much more of a subject of study in bodily and
gestural behavior-based alignment research (see e.g., [11, 12])
than it has been in speech-based alignment research.

We will attempt to address some of the aspects mentioned
in the works reviewed. Particularly, we will focus on a dynamic
approach to measure prosodic alignment, we will address the
‘coincidental alignment’ issue, we will investigate whether fa-
miliarity plays a role in alignment, and we will look at whether
the alignment measures considered here correlate with task suc-
cess. In the remainder of this paper, the word ‘alignment’ will
be used to cover a broad range of phenomena that have some-
thing to do with ‘adapting one’s speaking behavior to another
one’s speaking behavior’. We will also use more specific terms
such as convergence and synchrony which we adopt from [10].

The paper is structured as follows. Section 2 briefly de-
scribes the HCRC Map Task corpus used for this analysis. In
Section 3, we give a description of the alignment measures con-
sidered in this study. The results are presented in Section 4. We



conclude with a discussion and a few words on future research
in Section 5.

2. Data

For our analysis, we used the HCRC Map Task Corpus [13] that
consists of Scottish English spoken task-based dyadic conver-
sations held under various conditions. These conditions involve
whether there is eye contact or not, and whether the partici-
pants in the conversations are familiar (FAM) with each other or
not (UNFAM). We were interested in the familiarity dimension
and decided to use 31 FAM' and 32 UNFAM conversations from
the no-eye-contact condition (out of the 128 available conver-
sations). Since we were interested in vocal alignment, we used
only the no-eye-contact condition and expected that the effect of
vocal alignment would be more apparent when effects of visual
behaviors are ruled out (evidence for this was already found in
[14] where it was illustrated that face-to-face interactions show
more and longer simultaneous speech than in non-face-to-face
interactions, suggesting less synchronicity). Each participant
was assigned a certain role, that of a giver or follower. The task
was to enable the follower to reproduce the giver’s route on the
follower’s map. The maps contain certain landmarks and differ
between each giver and follower. Task success was measured in
terms of how far the route that the follower has drawn deviates
from the route shown on the giver’s map>.

3. Analysis

‘We adopt the concepts of convergence and synchrony as defined
in [10] where the process of convergence is described as ‘two
parameters becoming more similar over time’. Synchrony is
described as ‘parameters/events happening at the same time or
working at the same speed’.

3.1. Feature processing

The first step was to create so-called talkspurts from the con-
tinuous speech stream to have some workable units. The si-
lence/speech classification used was provided by the manual
transcription available in the corpus. Using these classifica-
tions, silences of less than 200 ms were bridged by speech, and
speech events shorter than 100 ms were bridged by silence in
order to create talkspurts. Log Fo and intensity were measured
continuously with a time step of 0.01 s using Praat [15]. For
an analysis of convergence and synchrony, a meaningful pair-
ing between the speakers’ feature values is necessary which is
complicated by the fact that our speech features are discontin-
uous and misaligned between the two speakers. Log Fo and
intensity for speech analysis only make sense when there is
speech involved and this speech usually does not occur at the
same time for both speakers. Therefore, all features were trans-
formed to a continuous feature stream. With respect to Fy and
intensity: averages over each talkspurt were taken, followed by
an overlapping moving window that averages over 6 data points
(i.e., 6 talkspurts or 6 gaps or 6 pauses; this was mainly done
to smooth the contour), followed by a linear interpolation be-
tween the averages obtained. All speech features were trans-
formed to z-scores. For convergence analysis of intensity, we
also report the non-transformed intensity value as we wanted to
see whether people align on intensity in an absolute or relative

!Conversation g3nc3 was discarded due to microphone problems
2These path deviation scores are included in the 2.1 release of the
corpus’ annotations.

way. For synchrony analysis, the z-transformation of intensity
did not change the relative behavior of the non-transformed in-
tensity, so only results from the raw intensity measurements are
reported.

3.2. Convergence

For convergence, we adopt similar procedures and measures as
proposed in [10]. These measures have in common that they
intend to capture the decreasing difference (in time) of a cer-
tain feature between two speakers. The first measure concerns
a simple Pearson correlation between the differences of the two
speakers’ feature values and the time — the more negative the
correlation, the stronger the convergence. For the second mea-
sure, all conversations were divided into equally-sized first and
second halves. The difference between the feature’s mean mea-
sured over these two halves gives an indication of whether the
participants have become ‘closer’ to each other towards the end
of the conversation. For convergence, this difference between
these two halves should be positive (the 2nd halve is subtracted
from the 1st halve), and it should be significantly different be-
tween the two halves.

3.3. Synchrony

For measuring prosodic synchrony, we adopt a windowed cross-
correlation (wcc) procedure, originally proposed by [16] and
which has been applied to visual movement synchrony [16, 12].
This method is suitable for capturing the dynamics and local-
ity of speech synchrony as it takes into account possible lags
in processes of synchrony: it allows an analysis of leading and
following speech behaviors in time. The method is based on
a windowed correlation procedure (i.e., Pearson correlation is
calculated for each overlapping moving window). Extending
this method to a cross-correlation procedure means that during
each window, additional correlations are computed over a pair
of signals that are shifted with respect to each other by certain
lags in time (forward or backward). There are several param-
eters that need to be chosen by the researcher. The window
size (of the window that is moved along the signal) should be
chosen large enough such that correlations can be reliably com-
puted, but small enough to capture the dynamicity. We chose a
window size of 20 s that moved across the signal with a time
step of 10 s. The maximum lag and the increment of this lag
determines how much and how often one of the paired feature
vectors is shifted forward or backward. We chose a maximum
lag of —20 and 20 s and an increment size of 5 s. The results
of this windowed cross-correlation procedure can be given in
a results matrix where each cell represents the correlation be-
tween two signals, of which one of them can have a certain lag,
measured over a certain window size at a specific time. This
matrix can be visualized as shown in Fig. 1. For a more de-
tailed description and the exact computation of the windowed
cross-correlation procedure, readers are referred to [16].

3.4. Coincidence or not?

Several approaches have been proposed in previous research to
rule out the possibility that the amount of convergence or syn-
chrony found is caused by random coincidence. The general
idea behind these approaches is to generate ‘pseudointeractions’
—if the alignment found in real interactions is genuine, it should
be stronger in real interactions than in pseudointeractions. Pseu-
dointeractions can be generated in different ways. In [11], the
following was proposed: in order to generate a pseudointerac-



tion for a real interaction AB between speakers A and B, take A
and B from additional real interactions AC and DB to generate
a ‘fake’ interaction ‘AB’. Unfortunately, for most of the con-
versational speech corpora, this is not a feasible method (due
to the fact that most corpora have speakers that only talk to an
interlocutor once). Therefore, we propose a method that draws
from [11, 12] to generate pseudointeractions that yield more re-
alistic comparisons and conservative testing. Each interaction
is divided into 5 equally-sized segments (proportionally to the
duration of the interaction). Recall that we applied linear in-
terpolation to the moving averaged measurements taken over 6
talkspurts. For a real interaction AB, we select a random speaker
X as ‘fake’ B. We use genuine B’s timestamps of the averaged
measurements prior to interpolation and generate random mea-
surements at those timestamps to produce a ‘fake’ B to be paired
with A. With respect to synchrony, these random measurements
are constrained by the rule that they have to be drawn from the
same time segment as where the real measurement occurred. In
other words, B’s feature value at timestamp ¢ in time segment 2
must be replaced with one of X’s feature values shuffled within
X’s time segment 2. This is done to keep the timing structure
somewhat intact (avoiding A’s data point timed near the begin-
ning to be paired with ‘fake’ B’s value timed in the end of the
conversation for example). Subsequently, linear interpolation
is performed. This procedure is repeated 10 times for each
speaker A and B such that each real interaction can be com-
pared to 20 corresponding pseudointeractions. With respect to
convergence, this timing constraint was discarded because the
ordering structure plays a role in convergence.
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Figure 1: A visual representation of the wcc method applied to
one of the conversations of the HCRC corpus. The top pane
shows the correlations obtained with the wcc procedure: the y-
axis shows the lag and the x-axis the time. Black colors show
positive correlations while red colors show negative correla-
tions. The middle pane shows the smoothed intensity contours.
The bottom pane shows the absolute difference between the two
intensity contours.

4. Results
4.1. Convergence

The results for convergence are shown in Table 1. In general,
the amount of convergence found is relatively low. Absolute
and relative intensity show signs of convergence. There are
no significant differences between the UNFAM and FAM con-
ditions but there are tendencies indicating that people seem to
converge more in the UNFAM situation than in the FAM situa-
tion (given the significant and larger mean differences in inten-
sity and the stronger negative correlations between time and the
absolute differences for the UNFAM condition). One could spec-

ulate that people who are unfamiliar with each other show more
pronounced convergence behavior because they have to get to
know each other while people who are familiar with each other
already have gone through that process.

We compared the measures obtained with the real interac-
tion to the measures obtained with the pseudointeractions. It
seemed that the results obtained with the real interactions are
not significantly different from the pseudointeractions which
makes it difficult to draw conclusive conclusions from these re-
sults although tendencies are visible.

Table 1: Convergence results. * means that the averaged differ-
ences between the 1st and 2nd halves are statistically significant
at p < 0.05 (one-sided paired t-test). Standard deviations are
given in brackets. Numbers in bold mean significantly higher
values than pseudointeractions (p < 0.05)

Feature UNFAM | FAM

Mean diff.: 1st minus 2nd half
Intensity 0.75 (2.25)* 0.53(2.42)
Intensity_z | 0.18 (0.36)* 0.064 (0.22)
Fo_z -0.04 (0.08) -0.06 (0.09)

Correlation between time and abs. diff.
Intensity -0.10 (0.36) -0.05 (0.41)
Intensity_z | -0.18 (0.39) -0.06 (0.41)
Foz 0.11 (0.13) 0.13 (0.16)

4.2. Synchrony

A visual representation of the wcc procedure for one of the con-
versations is shown in Fig. 1. This figure allows for a visual
inspection of the dynamics of alignment, and hence we believe
that such figures can be very useful for a more detailed anal-
ysis. Table 2 shows the results for synchrony. In general, the
strength of synchrony found is relatively low. We can observe
that synchrony is more pronounced for intensity than Fo_z.

Furthermore, there does not seem to be a significant dif-
ference between the UNFAM and FAM condition (except in one
case). The results obtained were compared with pseudointer-
actions. Paired t-tests showed that most of the pseudointer-
actions yielded synchrony levels that were significantly lower
(p < 0.01) than the synchrony levels of the real interactions, in-
dicating that people do show speaker-specific behavior to some
extent.

Table 2: Synchrony results with several measures. * means that
UNFAM differs signifantly from FAM at p < 0.01. Standard
deviation are given in brackets. Numbers in bold mean signifi-
cantly higher values than pseudointeractions (p < 0.05).

feature UNFAM | [ ram
static Pearson
Intensity | 0.23 (0.31) | * | 0.13(0.28)
Fo_z 0.13 (0.24) 0.15 (0.22)
windowed
Intensity | 0.12 (0.19) 0.10 (0.15)
Fo_z 0.07 (0.15) 0.04 (0.20)
wcee max
Intensity | 0.84 (0.06) 0.85 (0.06)
Fo_z 0.86 (0.05) 0.84 (0.07)




4.3. Correlation with task success

In order to see whether task success is influenced by the amount
of convergence and/or synchrony, we looked for correlations be-
tween our measures and the path deviation scores that are an in-
dication of task success: the lower the path deviation score, the
larger the success. The correlations are shown in Table 3. With
respect to convergence, intensity_z shows a relatively weak cor-
relation with path deviation score (note the direction of corre-
lation that points towards a positive relationship between task
success and a certain measure of alignment, indicated by ar-
rows in Table 3). With respect to synchrony, a relatively weak
positive relationship (the more synchrony, the lower the path
deviation score) was found for intensity as well. To see whether
a combination of convergence and synchrony measures would
yield stronger relations between alignment and task success, we
carried out a multiple regression with the convergence and syn-
chrony measures based on intensity_z as the 4 predictor vari-
ables and the path deviation score as the dependent variable —
an R-squared of 0.13 was found.

Table 3: Correlations between convergence and synchrony mea-
sures, and task success (measured over both UNFAM and FAM).
P-values that approach statistical significance are shown in
brackets. Arrows indicate whether a positive or negative cor-
relation indicates a positive relationship between task success
and a certain measure of alignment.

Intensity| Intensity_z| Fo_z
Convergence — mean diff \, | -0.09 -0.22 0.04
(p=0.09)
Convergence — corr. be- | 0.08 0.32 -
(p=0.01) | 0.06

tween time and abs. diff. *

Synchrony — static Pearson -0.19 0.07
N\

Synchrony — windowed -0.06 0.07

Synchrony — wce max Y\ -0.24 (p=0.06) 0.02

5. Discussion and conclusions

We have presented several methods and measures to quantify
prosodic alignment in terms of convergence and synchrony. The
results obtained showed tendencies towards convergence and
synchrony. Alignment effects were more pronounced for in-
tensity than for Fo. Familiarity seems to have an effect on
alignment but this observation needs further investigation. Task
success seems to be weakly related to the alignment of (rela-
tive) intensity. In addition, we proposed a way to rule out the
possibility that the obtained results were due to random coinci-
dence. We believe that these kinds of tests are necessary to show
that the observed alignment is really a result of speaker-specific
adaptation.

The measurement of alignment remains a complicated mat-
ter, partly due to its dynamic nature and the social factors that
influence the amount of alignment. We have tried to capture
these dynamics through a windowed cross-correlation proce-
dure which introduces lags along a moving window. However,
how to represent and quantify these dynamics remains a chal-
lenge. The visualization of the wcc procedure as shown in Fig. 1
presents a start.

Future research should concentrate on the dynamics of
alignment and take time lags into account. Lags were taken into

account in this study but we did not further analyze leading or
following behaviors which could give us insights into the social
dynamics between the speakers.
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