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Summary. The abundance of data available on Wireless Sensor Net-
works makes online processing necessary. In industrial applications, for
example, the correct operation of equipment can be the point of interest.
The raw sampled data is of minor importance. Classi�cation algorithms
can be used to make state classi�cations based on the available data for
devices such as industrial refrigerators.
The reliability through redundancy approach used in Wireless Sensor
Networks complicates practical realizations of classi�cation algorithms.
Individual inputs are susceptible to multiple disturbances like hardware
failure, communication failure and battery depletion. In order to demon-
strate the e�ects of input failure on classi�cation algorithms, we have
compared three widely used algorithms in multiple error scenarios. The
compared algorithms are Feed Forward Neural Networks, naive Bayes
classi�ers and decision trees.
Using a new experimental data-set, we show that the performance under
error scenarios degrades less for the naive Bayes classi�er than for the
two other algorithms.

1 Introduction

Online data processing is an important, but complex, task on Wireless Sensor
Networks (WSNs) [3]. Even on small WSNs the amount of data that can be
sampled by the sensor nodes is considerable. Simple micro-controllers can acquire
samples of rates above 10kHz; far more than what can practically be transmitted
using current WSN radios. For most applications, however, the raw data itself
is not of interest. For example, in domestic �re detection [6] carbon-dioxide
readings never need to reach a human operator. The presence of a �re however,
is important information. In logistics the state of the monitored products is of
importance, while 10-bit temperature readings are of limited value.

Online data processing comes in many forms, ranging from simple schemes to
compress the data, to complex event recognition algorithms that draw intelligent
conclusions. This last group of algorithms can result in considerable reductions



2 On the E�ects of Input Unreliability on Classi�cation Algorithms

in communication by removing the need to transmit raw sensor readings. Con-
sidering that the energy needed to transmit a few bytes of data is signi�cant[10],
it is clear that online intelligent processing is a promising area of research.

1.1 Problem description

Implementing complex intelligent algorithms for WSNs, is a complicated matter.
Unreliability of inputs is not taken into account in traditional research in this
area [26]. For WSNs however, correctly handling input failure is a key require-
ment.

In this paper, we investigate the problems related to unreliable inputs for
three widely used classi�cation algorithms: Feed Forward Neural Networks
(FFNN), decision trees and naive Bayes. The analysis of these problems identi-
�es the algorithm that handles the unreliability of individual inputs on WSNs
best.

The target application for this study is logistics. This application leads to
some assumptions: First of all, we assume that the network consists of relatively
small clusters of sensor nodes collaborating in the detection of local conditions;
second, we assume that all nodes within such a cluster have a bidirectional
communication path to all other nodes in the cluster.

Scenarios in which such a cluster can occur include sensors attached to ma-
chinery, for example a cooling cell for food storage, or sensors inside a container
with products that need to be monitored.

The scope of this research is limited to algorithms that do periodic classi�-
cations, without considering the evolution of data over time. This aspect is left
for further research.

1.2 Related work

Online classi�cation on WSNs has been an area of research for considerable time
now. Event detection [27, 28, 30], context recognition [20], outlier detection [8]
and classi�cation [19] are di�erent techniques to automatically draw conclusions
from sensor data.

Given the limited hardware capabilities of wireless sensor nodes, classi�cation
based on �xed threshold values is often applied [27, 28, 29, 6]. More sophisti-
cated events, however, cannot be detected in this manner. Pattern matching and
machine learning techniques are better suited for these complicated tasks.

Based on the scale of the network and the application requirements and con-
straints, classi�cation algorithms can be executed on the base-station [19, 30],
locally on the sensor nodes [7], or distributed over the network [8, 16, 18, 21, 23].
Distributed execution uses the potential of WSN technology, by providing ro-
bustness for sensor failures, reduced communication and distribution of energy
consumption. On the other hand, distributed execution provides the most chal-
lenges when considering implementation.
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Naive Bayes [7], FFNNs [7] and decision trees [9] all have been used to detect
events locally on individual sensor nodes. Distributed approaches, using collabo-
ration between nodes, range from techniques based on distributed fuzzy engines
[22], map based pattern matching [17], FFNNs, and naive Bayes classi�ers [5].

1.3 Contributions

In this paper, we give the results of a comparison between three algorithms:
FFNNs, naive Bayes classi�ers and decision trees. By analyzing the way the
algorithms handle failing inputs, we demonstrate that, compared to the other
two algorithms, naive Bayes classi�ers shows a superior performance.

A key di�erence of this comparison, compared to other research, is that
we look into the e�ect of failing inputs on the classi�ers without retraining.
Retraining a distributed classi�er every time an input fails, for example due to
a drained battery or a lost connection, would put considerable demands on the
available resources of a WSN.

A part of this research was the gathering of a new experimental data-set
[32]. This data-set consists of 11 streams of data from heterogeneous sensors.
Three di�erent states have been labeled for this data-set. These states di�er on
frequency and randomness of occurrence and can occur simultaneously, thereby
causing interference in the sensor readings. This data-set can be a valuable re-
source for studies into various applications of WSNs and will be made publicly
available.

1.4 Structure of the paper

The remainder of this paper is organized as follows: The approach used to create
the results of this study is described in Section 2. Section 3 describes the actual
results. Directions of future research are handled in Section 4. This paper is
concluded by Section 5.

2 Method

This section describes the method used to create the results of this research.
This section is divided in the method used to gather the experimental data-set
(in Section 2.1), the selection of the algorithms (in Section 2.2) and the method
used to compare the algorithms (in Section 2.3).

2.1 Data-set

The scope of this research is the application of WSNs in the �eld of logistics.
Cold-chain management is an important branch of logistics where WSN tech-
nology can be applied [11, 12, 13]. Situations to be monitored in a cold chain
include the correct functioning of machinery like cooling cells and the human
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interaction with this machinery. Pieces of machinery in cold-chains are usually
not perfectly isolated, which means that sensor readings can be in�uenced by
other machines, humans, etc.

An application where similar conditions occur is the refrigerator in the social
room of our research group. Suitable sensor interference is provided by the co�ee
machine positioned on top of this refrigerator. Because of these similarities, we
have chosen this refrigerator as the environment from which we have created a
new sensor data-set.

2.1.1 Conditions of interest In this research, we focus on the classi�cation
of three di�erent binary conditions for the refrigerator and co�ee machine:

1. Is the cooling system of the refrigerator running? This is a frequent and
predictably occurring condition, without human interaction.

2. Is the co�ee machine running? This is a less frequent condition, triggered by
human interaction.

3. Is the refrigerator open? This is the rarest situation we look at, also triggered
by human interaction.

We chose these conditions because of the variation in event types they provide.
The frequency in which these conditions occur di�ers in orders of magnitude.
Furthermore, there are human-triggered, and automatically initiated conditions.

The fact that the two machines are situated in the social corner of our re-
search group, resulted in frequent and uncontrolled human interaction. Another
aspect of these conditions, is the expected correlation between sensor readings.
Opening the fridge door, for example, results in vibrations on the fridge door.
These vibrations can also be seen on the co�ee machine, but to a lesser extent.
These factors together provide a realistic and challenging environment in which
to do classi�cation.

2.1.2 Set up of the experiment To detect the state of the fridge door, cof-
fee machine and fridge we used Sun SPOT [1] sensor nodes. Sun SPOTs come
equipped with a number of sensors [2]. We used the 3D accelerometer, the light
sensor and the thermometer. Furthermore, we equipped one of the Sun SPOTs
with additional sensors to measure the current through and voltage over the
refrigerator and co�ee machine. The current and voltage for the co�ee machine
and refrigerator were combined on one power outlet.

Table 1 show the placement of the sensor nodes and the sample rates used
in our experiment. We chose this placement to give relevant and redundant
information for the three conditions of interest.

The sample rates were chosen based on the type of sampled data. For ex-
ample, light and temperature are mostly in�uenced by relatively low frequency
phenomena, increasing the sampling rate above 10Hz does not add extra data
about those phenomena. Furthermore, the sample rates are limited by hardware
capabilities. For example, current and voltage samples could only be stored re-
liably at a rate of 160Hz.
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Power outlet - - - 160Hz 160Hz

Inside fridge door 10Hz 10Hz 100Hz - -

Outside fridge door 10Hz 10Hz 100Hz - -

Back co�ee machine 10Hz 10Hz 100Hz - -

Table 1: Sample rates for various sensors

To get a complete data-set, without the risk of losing samples due to in-
terrupted wireless communication, we connected all the Sun SPOTs to a cen-
tral computer using USB cables. This data was stored on the computer using
a MySQL database. Although this means that our experimental setup was no
WSN in a strict sense, data collection was more reliable and resulted in a better
data-set as base for our research. When needed in future work, the e�ects of
wireless communication can be introduced in simulations.

2.1.3 Labeling of the data All human interactions with the co�ee machine
and refrigerator were recorded using two webcams and the open-source motion
detection application �Motion� [25]. Using the captured videos and the data
streams from the sensors, we manually labeled the three conditions of interest
for a period of roughly two weeks.

2.1.4 Data features Since we are targeting WSN architectures, there is a limit
to the number of classi�cations that can be made per unit of time. Therefore we
preprocessed the data to reduce the sample rates. For this research, we chose a
1Hz frequency.

The risk of reducing the sample frequency is the loss of information. In order
to keep valuable information in our data-set, we split the sensor streams into
multiple feature streams. An example of a feature is the RMS value of a signal
over the last second. For voltage and current, this provides a meaningful indica-
tion of the power consumed. A good selection of features can make classi�cation
more straightforward.

In this research, we have used the following features for the various sensor
streams.

3D Acceleration: Peak magnitude without gravity of the last second and mag-
nitude of the resampled signals.

Light: The �rst derivative of the low pass �ltered signal (at a cut-o� frequency
of 1Hz) and the resampled value of the low pass �ltered signal (at a cut-o�
frequency of 1Hz)
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Temperature: The �rst derivative of the low pass �ltered signal (at a cut-o�
frequency of 1Hz) and the resampled value of the low pass �ltered signal (at
a cut-o� frequency of 1Hz)

Voltage: RMS value of the last second.
Current: Peak value of the last second and the RMS value of the last second.

Using these features for the streams shown in Table 1, resulted in 21 new streams.
These 21 streams were used as input for the classi�cation algorithms.

2.2 Selection of algorithms

A comparison of all available classi�cation algorithms is outside the scope of this
research. Therefore, we opted to make a selection of three di�erent algorithms.
For successful WSN implementation the used algorithms need to be computa-
tionally cheap, but able to perform e�cient classi�cations. Based on related work
on WSNs [6, 9, 18, 5] we selected the FFNN algorithm, the naive Bayes algorithm
and the decision tree algorithm. These three algorithms are commonly used and
have been implemented on WSNs before.

2.2.1 Feed Forward Neural Networks An algorithm that is frequently used
for recognition tasks is the FFNNs algorithm[15]. FFNNs can be seen as directed
acyclic graphs where the nodes without predecessors are used to feed information
into the network (the input layer). Nodes without successors give the resulting
output of the FFNN (the output layer). Each node in the graph is a processing
element (neuron) that combines its inputs and generates an output.

Parameters that change the neuron's output include the weights assigned to
the inputs, the transfer function and the bias. Learning algorithms are used to
automatically adapt these parameters to generate a desired output for a given
input.

The simple structure of FFNNs makes them easy to implement and leaves
some options to see how the model works after the learning phase.

2.2.2 Naive Bayes Classi�ers Naive Bayes classi�ers use Bayesian statistics
and Bayes' theorem to �nd the probability P (C|E) that a given input E =
(x(s1, t), x(s2, t), ..., x(sn, t)) belongs to a class C. This probability P (C|E) is
estimated using Equation (1) [31]. In order to make a binary classi�cation, the
naive Bayes algorithm calculates both P (c = 1|E) and P (c = 0|E). The class
with the highest probability is the �nal classi�cation.

P (C|E) =
P (E|C)P (C)

P (E)
(1)

In this case, class C can, for example, be the class of samples where the fridge
is open, x(si, t) is the output of sensor si on time t. The algorithm is called
naive because of the assumption that all the inputs x(si, t) have an independent
contribution to P (C|E).

The most time and resource consuming part of the naive Bayes classi�er is the
computation of P (E|C). Accurately estimating this probability is important for
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the classi�cation result. In current literature of pattern recognition and machine
learning, it is proposed that this probability can be estimated using standard
data distributions, such as the Gaussian or Poisson distribution [4].

Another approach is the use of histograms. In this approach, the input space
is partitioned into several intervals. The number of occurrences of each condition
is counted for each interval. This number is used to determine the probability
that an input will fall in a certain interval given classi�cation C.

2.2.3 Decision trees Decision trees are classi�cation algorithms that use tree
like graphs to model and evaluate discrete functions [28, 27]. The input of a deci-
sion tree can contain either continuous or discrete values. The output, however,
contains only discrete values.

Construction of a decision tree for classi�cation can be done using a training
algorithms like ID3 and C4.5[24]. Training algorithms use a data-set to �nd a
decision tree of minimal depth that performs the classi�cation. The number of
nodes or depth of the decision tree should be minimized to reduce time and
memory complexities. The training algorithms are usually local search greedy
algorithms that result in a locally optimal decision tree.

2.3 Metrics

Rating the performance of classi�cation algorithms is not always a straightfor-
ward task. Calculating the classi�cation accuracy alone does not necessarily give
a good indication for how well a classi�er discriminates between classes. When
classifying rare states, for example, a high accuracy can be reached by never de-
tecting the state. A more complete insight in classi�cation performance can be
given by calculating the sensitivity, speci�city, positive predictive value and neg-
ative predictive value for a classi�er. With this approach however, it is di�cult
to say which metric is the most important.

In order to make a direct comparison between classi�ers, we have used a
technique coming from Receiver Operator Characteristics (ROC) analysis [14].
In ROC analysis, a plot is made of the sensitivity on the Y-axis versus the
False Positive Rate (FPR) on the X-axis. The FPR is de�ned as FPR = 1 −
Specificity. In this plot (Figure 1), the line y = x is called the no discrimination
line, classi�ers on this line are not able to discriminate between the classi�cations
in any way. Each classi�er can be assigned a point in this graph based on the FPR
and the sensitivity. The distance from this point to the no discrimination line is
an indication of how well the classi�er can discriminate between the classes.

In this research we compare the impact of failing inputs on various classi�-
cation algorithms. To make this comparison the absolute value of this distance
is of limited importance. In order to demonstrate the impact of failing inputs
we have normalized over the performance using all inputs. This allows us to
directly compare the relative performance penalty for failing inputs for all the
algorithms.



8 On the E�ects of Input Unreliability on Classi�cation Algorithms

Fig. 1: The distance to the no discrimination line is an indicator for classi�er
performance

2.4 Classi�er training

In this research, we have trained classi�ers using each of the three algorithms,
for each of the three conditions, resulting in a set of nine trained classi�ers. The
classi�ers were trained over a training set and their performance was assessed
using a veri�cation set.

The training sets were selected at random from the complete data-set. The
only non random aspect of the training set selection is the bias between samples
with positive and negative labels. For FFNNs and naive Bayes, this bias was
changed to ensure a su�cient representation of both classi�cation options.

The size of the training-set was 10000 samples for all the training runs, except
for classi�cation of rare conditions. In our case, we had to reduce the number
of training samples for the �fridge open� classi�cations, because of the limited
number of positive samples. The size of the veri�cation set was roughly one
million samples and was formed by all data, except for the training-set.

For each algorithm, the training was repeated 20 times and the classi�er
performing the best on the veri�cation set was selected. The nine resulting clas-
si�ers, one of each type for each condition, are used for the rest of this paper.

2.5 Robustness

In order to be suitable for WSNs, the used algorithms should keep working
without intervention when one or multiple sensors fail. In case of sensor failure,
some loss of performance is unavoidable, but the impact should be minimal for
suitable algorithms.

We have investigated the impact of sensor failure on the three algorithms.
To compare the three algorithms, we analyzed the selected trained classi�ers for
each algorithm and created a ranking of the features in order of in�uence on
the classi�cation result. The analysis of the feature importance for the FFNN
algorithms was done by calculating the weight of each input throughout the
FFNN starting from the output. For naive Bayes, we looked at how much the
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one vs. zero ratios of the intervals deviated from the global one vs. zero ratio. The
feature ranking for the decision tree algorithm was made based on the purity of
the split made by each decision node, weighted over the probability of the node
being used in a classi�cation.

Using this ranking, we ran the classi�ers in scenarios with an increasing
number of failing inputs. We started by running the algorithms with all features
as input and continued by dropping the most important feature until just the
least useful feature was left.

3 Results

This section describes the results gathered during the course of this study.

3.1 Data-set

Data was gathered using the experimental setup over a period of two weeks.
Using the video results and Matlab scripts, the three conditions of interest were
labeled and the feature streams were produced. Figure 2 shows an example where
the fridge is opened, as observed by multiple sensors.

(a) Inside fridge door (b) Power sensor

Fig. 2: Door open event seen by 2 di�erent nodes

As expected, the frequency of occurrence of the three di�erent conditions are
in di�erent orders of magnitude. The �fridge running� condition occurs 23.7% of
the time, the co�ee machine is on 0.65% of the time and the fridge door is open
0.05% of the time.

3.2 Robustness

Figure 3 shows the performance of the algorithms in various scenarios. When
using a FFNN classi�er, it can be seen that more then one failing feature has a
severe impact on the performance.
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The performance of the decision tree algorithm already shows a large drop
when a single feature is dropped. This e�ect can be explained by the way this al-
gorithm works. Decision trees, unlike FFNNs and naive Bayes classi�ers, do not
combine multiple results into an answer where all the inputs have a small in�u-
ence. Only a subset of the inputs are used for sequential binary decisions. If one
of those inputs is left out, entire parts of the decision tree become unreachable.

The naive Bayes classi�er performs quite well, up to a certain point, when
features are dropped. Depending on the condition that is being classi�ed, multi-
ple important features can be dropped without large e�ects on the classi�cation
performance.

Altogether, the naive Bayes classi�er handles the error scenarios best.
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Fig. 3: Performance for various classi�cations

4 Future work

Although this paper highlights some important aspects of the various algorithms
with respect to WSNs, there are many obstacles before a viable implementation
is ready. This section describes some areas with room for further research.

A key aspect of WSNs is their distributed nature. Since radio communi-
cation costs a signi�cant amount of memory, radio usage should be kept to a
minimum. Therefore, the amount of communication involved in the distribution
of classi�cation algorithms is an important consideration. Over the years numer-
ous distributed classi�ers have been developed, but a fundamental investigation
of the properties that allow or limit the distribution of algorithms remains of
interest.

Another direction of research is the maintenance required to keep a classi�er
working. With respect to classi�cation algorithms, maintenance costs provide
some interesting areas of research. The complexity of adding new nodes to a
network running a classi�er, for example, could increase the Total Cost of Own-
ership (TCO) for dynamic applications. Another example is the reprogramming
of the network to do an additional classi�cation. If this is a very time consum-
ing process, the involved man-hours could cost a signi�cant amount of money.
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Investigating the e�ects of these two aspects on the TCO, for various algorithms
is a promising direction for further research.

5 Conclusion

When looking into the e�ects of unreliable inputs, FFNN and decision tree clas-
si�ers show clear drawbacks. The high dependence on individual inputs and the
inherently discrete nature of decision trees make this algorithm sensitive to in-
put failure. Although naive Bayes is also in�uenced by sensor failure, we �rmly
believe that this algorithm overall shows the best compatibility with WSN ar-
chitectures.

With respect to the problem of classi�cation on WSNs in general, we be-
lieve that careful consideration of the compatibility of algorithms with WSN
architectures can prevent complications during implementation.

A �nal note is on the data-set created for this research. The fact that this
data-set was created in an uncontrolled environment and was labeled for events
visible on multiple sensors makes it an excellent resource for simulations based
on real data. Therefore, we believe that it can be valuable for other researchers.
We will make it publicly available [32].
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