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Treating random phenomena in concurrency theory has a long tradition.
Petri nets [18,10] and process algebras [14] have been extended with proba-
bilities. The same applies to behavioural semantics such as strong and weak
(bi)simulation [1], and testing pre-orders [5]. Beautiful connections between
probabilistic bisimulation [16] and Markov chain lumping [15] have been found.
A plethora of probabilistic concurrency models has emerged [19]. Over the
years, the focus shifted from covering discrete to treating continuous stochastic
phenomena [12,13].

We argue that both aspects can be elegantly combined with non-determinism,
yielding the Markov automata model [8]. This model has nice theoretical
characteristics. It is closed under parallel composition and hiding. Conservative
extensions of (bi)simulation are congruences [8,4]. It has a simple process
algebraic counterpart [20]. On-the-fly partial-order reduction yields substantial
state-space reductions [21]. Their quantitative analysis largely depends on
(efficient) linear programming and scales well [11].

More importantly though: Markov automata serve an important practical
need. They are the obvious choice for providing semantics to the Architec-
ture Analysis & Design Language (AADL [9]), an industry standard for the
automotive and aerospace domain. As experienced in several ESA projects,
this holds in particular for the AADL annex dealing with error models [3].
They provide a compositional semantics to dynamic fault trees [6], a key
model for reliability engineering [2]. Finally, they give a natural semantics
to every generalised stochastic Petri net (GSPN [17]), a prominent model in
performance analysis. This conservatively extends the existing GSPN semantics
that is restricted to “well-defined” nets, i.e., nets without non-determinism [7].
Powerful software tools support this and incorporate efficient analysis and
minimisation algorithms [11].

This substantiates our take-home message: Markov automata bridge the gap be-
tween an elegant theory and practical engineering needs.
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