
Low-Cost Guaranteed-Throughput Communication
Ring for Real-Time Streaming MPSoCs

Berend H.J. Dekens, Philip Wilmanns, Marco J.G. Bekooij, Gerard J.M. Smit
University of Twente, Department of EEMCS

Enschede, The Netherlands

Abstract—Connection-oriented guaranteed-throughput mesh-
based networks on chip have been proposed as a replacement
for buses in real-time embedded multiprocessor systems such
as software defined radios. Even with attractive features like
throughput and latency guarantees they are not always used
because their hardware cost tends to be higher than buses.

In this paper we present a communication ring that provides
throughput and latency guarantees. This ring is an attractive
communication network as replacement for buses for small to
medium scale embedded multiprocessor systems for real-time
stream processing because of its relatively low hardware cost.

We show that the data serialization of our ring makes it
contention free and enables sharing of buffers which reduces the
hardware cost. A further cost reduction is achieved by imple-
menting end-to-end flow-control in software and by supporting
only writes over the network. Data-flow analysis techniques
are used to prove that throughput and latency guarantees
can be given despite that the proposed communication ring is
connectionless.

We evaluated the performance and hardware cost of our
communication ring using a 16 core multiprocessor system and
a real-time PAL video decoder application. This design was
implemented on a Virtex 6 FPGA and the ring was found to
use roughly 2% of the logic cells used for the complete MPSoC
design. Such a low hardware cost can justify the use of the ring in
systems with low bandwidth utilization, as is the case for our PAL
video decoder application which uses only 3% of the available
bandwidth.

I. INTRODUCTION

An Multiple Processor System on Chip (MPSoC) for real-
time processing is usually used for Software Defined Radio
(SDR) applications. The network used with these designs
should be able to provide guarantees at the application level.

In this paper we distinguish between connection oriented
networks and connectionless networks. We define connection
oriented as having separate connections between masters and
slaves where properties can be specified for each individual
connection [1]. In a connectionless network, communications
are not separate and as such can influence each other which
makes it hard to provide real-time guarantees [2]. Connection
oriented networks tend to have dedicated buffers per con-
nection at the edges of the network while in connectionless
networks buffers at the edge of the network can be shared.

We distinguish two switching policies that are used
in Networks on Chip (NoCs): circuit switched or packet
switched [3]. The first policy is commonly associated with

This work is supported in part by the SenSafety project in the Dutch
COMMIT program (commit-nl.nl)

for example buses and cross bars. Routers in the interconnect
are set up to provide a dedicated channel for communication
between end points [4], [5]. While suitable for use in a real-
time system, without detailed knowledge of communication
within applications at design time, contention can cause the
set up of a communication channel to fail.

The second and more actively studied [3] switching policy
is packet switching. In these networks packets move from
router to router based on routing information embedded into
the data packet. While this type of network might share links
for packets to different recipients, this sharing can also result
in contention. As with circuit switched networks, without
detailed knowledge of communication within applications at
design time, it is impossible to know how many buffers will
be required. Since buffering requires expensive memories,
the amount of hardware for these buffers can become a
considerable part of the total cost.

In this paper we present a low-cost ring interconnect as
a replacement for buses for small to medium scale real-time
multiprocessor systems. Despite that the ring is connectionless
we show with a Synchronous Data Flow (SDF) model that
useful throughput guarantees can be given at the application
level. Guarantees can be given by reserving slots for each
master. Reserved but empty slots can be claimed by other
masters which makes the network work conserving. Under
the assumption that slaves always accept data we show that
only one FIFO buffer in the Network Interface (NI) is needed
because this buffer can be shared between streams. Because
buffers can be shared, the ring supports all-to-all communi-
cation. Furthermore, there is no need for FIFO buffers in the
routers because no contention or head-off-line blocking can
occur inside the ring network.

The organization of this paper is as follows. We discuss
various networks and their topologies and relate them to
our ring network in section II. In section III we present an
architecture for stream processing where our ring interconnect
provides all-to-all communication. We evaluate the resulting
system by means of an application and evaluate the hardware
in section IV. We will present the conclusions of our paper in
section V.

II. RELATED WORK

Multi-layer buses or buses in general are commonly used
in industry. Buses are a form of circuit switched intercon-
nects [6], [7]. Compared to buses, our ring interconnect uses

a small two port multiplexer per connection instead of an M -
port multiplexer per slave to select between M masters. To
support all-to-all communication, each multiplexer in a bus
needs as many input ports as there are slaves, resulting in
high resource usage and high wire count.

When a lot of bandwidth between masters and slaves is
required and buses are no longer viable, a possible solution
is to resort to using cross bars which are often fully con-
nected, circuit switch matrices [8]. This topology is usually
constructed from a large number of multiplexers and therefore
can also become quite expensive in terms of number of wires,
power and area. This will result in a much higher resource
usage compared to our ring network.

SoCBUS [4] is a solution which tries to combine the
low and fixed latency of a bus with the flexibility of a
mesh network. Along with relatively high hardware usage,
SoCBUS locks a dedicated route through its mesh topology
for each connection making it circuit switched. This means
that connections can fail to complete when all channels on a
critical router are in use and as such there is always contention
for capacity. Our ring provides automatic serialization due to
its topology and as a result there is no contention within the
network.

Another mesh based network with virtual channels is pre-
sented by Wolkotte et al. [5]. This network can be used both in
packet switched and circuit switched mode. While the circuit
switched version lowers hardware requirements because less
buffering in routers is required, all packet decoding and flit
routing still requires a significant amount of logic and buffers.
In contrast, our ring network uses packets consisting of a single
word and destination address which makes routing trivial and
requires no address decoding.

Æthereal [9] is a packet switched network which also
employs a mesh topology where all buffering for Guaranteed
Throughput (GT) traffic is done in the NIs. When used for
Best Effort (BE) traffic, buffering is needed in all routers. The
network uses a pre-calculated Time Division Multiplex (TDM)
schedule to provide GT where both bandwidth and/or latency
can be guaranteed. The amount of buffering required for each
connection in the NIs results in more hardware compared to
our ring.

Smaller and faster than Æthereal is its successor called
dAElite [10]. In this version the support for BE traffic is
removed which results in less buffers in the routers. The NIs
still contain a buffer per connection. We will show that despite
being connectionless, our packet switched ring network can
also support GT traffic. Unlike dAElite, our arbitration policy
for the ring interconnect not only provides guarantees but
makes it work conserving as well. This means that we can use
the interconnect whenever it has capacity available instead of
just using a fixed transmission schedule.

The use of a ring network as interconnect in a multi-core
system is not new; it has been used in the Cell processor from
IBM [11] and more recently by Intel in the Nehalem processor
architecture [12]. The difference between our ring and existing
implementations are the guarantees that our ring interconnect

Fig. 1. Overview of our MPSoC architecture

provides while keeping hardware costs low.
However, while a small ring results in low latency commu-

nication, increasing the ring size also increases the maximum
latency. Increasing the latency usually is less of an issue
in stream processing applications as the use of pipelining
can hide most if not all latency. In case of a large design,
the number of nodes might become too large for a single
ring network. A potentially interesting solution is to use a
hierarchical topology to promote locality while being able to
service a large number of peripherals [13].

In the next section we will present our ring in more detail.

III. PROPOSED ARCHITECTURE

In this section we will present the architecture of our
connectionless communication ring. It has a low hardware
cost while still being able to provide the guarantees needed
for real-time stream processing. In Figure 1 an overview of
our architecture is depicted where multiple tiles are connected
by the ring interconnect.

A. Ring Interconnect

For multiprocessor systems that are designed without pre-
cise knowledge of the applications which will run on these
systems, it is often desirable that all masters can communicate
with all slaves. However, the support of all-to-all communi-
cation can result in an expensive communication network if
buffers at the edges cannot be shared between different data
streams. In contrast, input and output buffers can be shared in
our NIs, reducing the required amount of buffering and thereby
the costs.

In order to reduce network complexity, we do not have
support for back-pressure: whenever a packet enters the ring,
it will travel one hop per cycle until it reaches its destination.
As such we require that the receiving slave has to accept
the packet in the same cycle it is delivered. This guaranteed
acceptance also means we can determine the number of hops
a packet will travel and therefore how much time is required
to reach its destination. The concept of this guaranteed write
acceptance is similar to what is required for many multi-layer
buses.

Our ring interconnect is write-only: there is no support
for remote reads. If remote data is required from a specific
peripheral, this peripheral must act like a master and respond
to a request by sending data.

NI 0

Slot ID: 1

Destination:
-

Data:
-

NI 1

Slot ID: 2

Destination:
-

Data:
-

NI 2

Slot ID: 0

Destination:
-

Data:
-

Write: 0x123 to NI 1

T=0

NI 0

Slot ID: 0

Destination:
-

Data:
-

NI 1

Slot ID: 1

Destination:
-

Data:
-

NI 2

Slot ID: 2

Destination:
0

Data:
0x123

T=1

NI 0

Slot ID: 2

Destination:
-

Data:
-

NI 1

Slot ID: 0

Destination:
-

Data:
-

NI 2

Slot ID: 1

Destination:
-

Data:
-

Received: 0x123

T=2

Fig. 2. Ring slot arbitration example for a word write

The ring is unidirectional which has various advantages over
other alternatives. Routing decisions are trivial as packets on
the ring cannot be stalled or deflected [13]. When a new packet
arrives and the ring is available, a packet is injected into the
ring. This is further explained in subsection III-B.

Unserialized multiple master to one slave communication
usually requires memory port arbitration. As the topology
of our ring interconnect provides automatic serialization, no
memory port arbitration is required if a dedicated memory port
is used such that data can be written at the same speed as the
network can produce data.

B. Ring Slotting

To prevent deadlock and starvation we implement a band-
width reservation algorithm. We call our algorithm “ring
slotting”: we consider the information contents of each NI
a “slot”. Each clock cycle, the content of all NIs is passed to
their neighbors. This way, slots are cycled around the ring. By
numbering these slots, we can uniquely identify each one.

By numbering the NIs themselves as well, we introduce the
concept of “owned” slots: a slot which has an identifier which
matches the NI it currently resides in, is owned by the NI. We
now present the first rule of our arbitration:
Rule 1: If a slot identifier matches the identifier of the NI it
currently resides in, it is “owned” by that NI. NIs can always
use their own slot to inject data onto the ring.

Figure 2 shows an example of our slot based arbitration. In
this example a write is stalled one cycle until its “own” slot
comes up. The data is in transit the next cycle and delivered
in the third cycle.

It is clear from Rule 1 that waiting time, i.e. the time
between emitting the data to the input of the NI and the actual
injection into the ring, is limited to N − 1 where N is the

Fig. 3. Overview of a single processing tile

number of peripherals on the ring. Similarly, as each N cycles
one slot is available to the peripheral, the available bandwidth
is exactly 1

N .

C. System Architecture

We will now introduce our system architecture which con-
sists of multiple interconnected tiles.

Figure 3 shows an overview of a processing tile. We have
multiple processing tiles connected to the ring. Each contains a
RISC MicroBlaze CPU, timer for interrupts and local memory
for instructions and data. The local data memory is dual ported
and is connected to the output port of the NI in order to deliver
data directly to it. All the memories are capable of single
cycle reads or writes and as such adhere to the guaranteed
acceptance required for the ring network. We expand the
address to not only address data to a specific ring peripheral
but also use some bits to denote a specific remote memory
location at said peripheral.

See Figure 4 for a schematic overview of a single NI. Our
ring network does not have distinct routers; by chaining a
number of NIs together the ring topology is formed. The
“Arbitration Control” block contains only combinatorial logic.

At the local input port of the network interface there is a
small FIFO. This FIFO contains tuples consisting of a network
address and a data word. The depth of the FIFO is configurable
at design time. To prevent confusion with the distributed FIFO
from subsection III-D we will refer to this hardware FIFO
simply as “buffer” for the remainder of this paper. Whenever
it is full, any further writes to the network will stall the CPU.

Arbitration
Control

FIFO

prev slotid

prev addr

prev valid

prev data

in data

in valid

in addr

next slotid

next addr

next valid

next data

in accept

out data

out valid

out addr

Fig. 4. Schematic overview of a single NI

Increasing the buffer depth will allow for larger write bursts
without incurring stall cycles. However increasing the buffer
depth will also increase the worst case waiting time as with
a full buffer a single data word is dispatched every N cycles.
Therefore, with a buffer of depth δ in the worst case a new
word has to wait N · δ cycles before it is dispatched.

The ring interconnect allows core to core communication
and synchronization. We run applications from the local mem-
ories at each processing tile and stream data over the ring
interconnect.

D. Distributed FIFO

Despite only supporting remote writes our ring network
can be used for a distributed FIFO implementation, based on
C-HEAP [14]. This FIFO provides support for back-pressure
at the application level using the ring interconnect. These
FIFOs are used for the communication between parallel tasks
in stream processing applications that are described by task
graphs.

The FIFO uses data containers which are an arbitrary
number of words in size and works by means of distributing
read and write pointers. These pointers are used in a round-
robin on the containers of the FIFO instance. At the FIFO
input the local write pointer is compared with the read pointer
to determine whether there is space to write data. When the
pointers are the same, a special bit on both pointers, called a
wrap flag [14], is used to distinguish between an empty and
a full FIFO. This wrap flag is toggled every time a pointer
rolls over: when the pointers and their wrap flags are identical
the FIFO is empty, otherwise its full. The C-HEAP algorithm
does not require locks, mutexes or atomic read-modify-write
support.

The read pointer at the FIFO writer is a copy of the read
pointer from the output of the FIFO: it is only updated by the
“remote” peripheral. See Figure 5b for an example for writing
a container into a FIFO between two cores. Whenever data is
written, it is sent to the allocated FIFO memory at the remote
peripheral (1). After the data is written, the write pointer is
updated (2) and the update is written to the remote peripheral
as well (3). Note that posted writes to a remote memory are
always guaranteed to be received in the same order; as such
the pointers are always modified after the data is written. Our
hardware supports streaming memory consistency [15] which
guarantees that reads and writes from a specific processor
arrive in the same order that they were issued.

At the reader of the FIFO the copy of the write pointer is
compared to the read pointer to determine if data is available.
If this is the case (the read and write pointer differ), the data
is already stored in the local data memory of the peripheral.
As such, reads from the FIFO are always from local memory
which also means every read is performed in a single cycle.

See Figure 5c for an example for reading a container from a
FIFO. After a data container is consumed from the FIFO (1),
the read pointer is updated to reflect this (2). The read pointer
is then written to the memory of the remote peripheral (3) to
update the state of the FIFO.

Writer
Write: 0

Read (copy): 0

Reader
Write (copy): 0

Read: 0
Data: -,-,-,-

(a) Empty FIFO

Writer
Write: 1

Read (copy): 0

Reader
Write (copy): 1

Read: 0
Data: 0x123,-,-,-

1

2 3

(b) Write data to remote memory, update local write
pointer and update remote write pointer

Writer
Write: 1

Read (copy): 1

Reader
Write (copy): 1

Read: 1
Data: -,-,-,-

1

2

3

(c) Read from local memory, update local read pointer
and update remote read pointer

Fig. 5. Examples for a distributed FIFO with capacity 3

E. Throughput Analysis Model

As explained we can use the write-only scheme from the
interconnect for a software FIFO channel where the read and
write pointers are placed in the memories of both the producer
and consumer. This is similar to a credit based handshake
system which can be modeled as an SDF graph [16].

An SDF model is a directed graph GS(E, V) consisting of
actors v ∈ V and directed edges e ∈ E. Each edge describes
a directed connection between two actors: e = (vi, vj). The
edges represent an unbounded FIFO queue to store tokens.

Actors have a firing rule: when at least a specific number of
tokens, called quanta, at the input queue or queues of an actor
are available, the actor fires. This means that the required input
tokens are consumed instantly and after the execution time
of that actor has elapsed a specified number of tokens are
instantly produced. When enough input tokens are available,
an actor can fire multiple times simultaneously. To prevent
parallel execution where this is not desired, we can use self
edges with one token to prevent overlapping firings of actors.

We model our software FIFO with capacity α as an SDF
graph as is depicted in Figure 6. This graph is an abstract
model describing both hard- and software where an actor does
not need to describe a single hardware or software component.
In this model we have a producing actor P and consuming
actor C with their corresponding execution times: ρ

P
and ρ

C
.

The sharing of a small hardware input buffer, as depicted in
Figure 4, with capacity δ by multiple tasks can be modeled
by incorporating the waiting time into the execution time. We
use the same δ for all NIs in the rest of this paper. Each
write can cause a wait time β of at most β = δ ·N cycles if
the hardware input buffer is full. Our operating system uses
a TDM scheduler with time slice length ξ and as such, a
single execution of a task will be preempted dρξ e times. In
the worst case the input buffer is full each time our task starts
or resumes. Therefore, the total maximum wait time ϕ during

the write of a complete container is:

ϕ = β · dρ
ξ
e = δ ·N · dρ

ξ
e (1)

We now incorporate this wait time into the original execution
time: ρ+ ϕ = ρ̂.

As ϕ directly influences the execution time of the producer
and consumer in this model, it should be kept small. This can
be done by increasing the length of time slice ξ or decreasing
capacity δ. Reducing buffer capacity δ lowers ϕ but potentially
increases the occurrence of processor stall cycles.

Latency from the network is based on the number of hops
ω that a word travels from the master to the slave with a
maximum of N − 1. The total transit time of a single write is
the sum of the waiting time β and the number of hops ω:

L = β + ω = δN + ω (2)

The communication between actors P and C is rate limited
to 1

N which is modeled by actor RD. The number of hops
needed to get from P to C is defined as K. We use two
separate actors to model latency and rate between P and C
where we need to subtract the execution time of the rate limiter
from the execution time of the latency actor. The latency actor
LD from P to C has execution time:

LD = (δN + ω)−N = δN +K −N (3)

After S tokens have been received and consumed by the
consumer, a credit token can be sent back to the producer.
The communication between C and P is again rate limited
to 1

N which is modeled by actor RC . As the number of hops
between P and C was K hops, the credit token will travel
N −K hops from C to P as the total number of hops from
P to C and back will always be N . Together with waiting
time β we can model the total credit token latency as:

LC = β + (N −K)−N = δN −K (4)

We will now give the definition of the Cycle Mean (CM) of
an Homogeneous Synchronous Data Flow (HSDF) graph [17].
Let GH denote an HSDF graph and let C denote a cycle
in GH . The weight w(C) of C is defined as the sum of all
execution times of the actors on cycle C. The number of tokens
on cycle C is called τ . The mean between the execution times
of the actors on the cycle and the number of tokens on the
edges of it is the CM:

λ(C) =
w(C)

τ
(5)

The CM of C gives a weighed average rate between the
execution times of all actors in that cycle and the number
of tokens on that cycle. This average also describes the
throughput of that individual cycle. The Maximum Cycle
Mean (MCM) of GH is defined as:

λ∗ = max
∀C∈G

{λ(C)} (6)

The throughput of an HSDF graph is the inverse of its
MCM. In order to calculate the MCM for the SDF graph

P LD RD C

LCRC

ρ̂
P δN +K −N N ρ̂

C

δN −KN

S 1 1 1 1 S

1

1111

1 1

α

1 1

1

Fig. 6. SDF graph for a task with core-to-core communication

from Figure 6 we transform it into an HSDF graph [18], [19],
[20]. In the transformation to an HSDF graph, the actors and
edges between P and C are duplicated to S parallel paths
with quanta 1. The self-cycle on vRD

becomes a single cycle
c1 across all copies of vRD

with a single token on it:

c1 = ((vRD1
, vRD2

), ..., (vRDS
, vRD1

)) (7)

The CM of all cycles from the transformed SDF graph from
Figure 6 can now be determined. We define the cycle c2 as
the sending of a complete container from actor P to C and
the credit from C to P . This simple cycle is denoted by:

c2 = ((vP , vLD1
), (vLD1

, vRD1
), ..., (vRC

, vP)) (8)

We denote the CM of cycle c1 as CM(c1):

CM(c1) =
SN

1
= SN (9)

Similarly we derive the CM of cycle c2:

CM(c2) =

ρ̂
P
+ δN +K −N + SN + ρ̂

C
+ δN −K +N

α

=
ρ̂

P
+ ρ̂

C
+ 2δN + SN

α

=
ρ

P
+ ϕ+ ρ

C
+ ϕ+ 2δN + SN

α

=
ρ

P
+ ρ

C
+ 2δNdρξ e+ 2δN + SN

α

(10)

We can now consider the throughput of the entire HSDF
graph by deriving the MCM as is shown in Equation 11.

λ∗ = max
∀C∈G

(CM(c1),CM(c2), ρ̂P
, ρ̂

C
, N) (11)

From Equation 11 we can see that as long as CM(c2) is
the largest component in λ∗, increasing the FIFO capacity α
directly lowers CM(c2) and thus the MCM. We can also see
that when α is sufficiently large, it is no longer the largest
component in λ∗ and as such no longer influences the MCM.
At this point we can say that the network latency no longer
influences application throughput as the execution time of
actors P or C or the rate limiters RD and RC will limit
throughput.

Note that increasing the capacity α of the FIFO placed at
C increases the initial number of tokens on the edge between
actor RC and P but it does not influence the execution time of

any of the actors. This means that the latency resulting from
the ring interconnect and the FIFO algorithm does not change
by altering the FIFO instance capacity.

For most stream processing applications latency require-
ments are usually less tight than throughput and as such
using buffers with sufficient capacity can often be used to
compensate for latency.

F. Work Conserving

The use of unique slots on the ring interconnect provides
strict latency and bandwidth guarantees required for real-time
applications. However just like most GT networks it is not
work conserving as unused slots remain empty which we will
now change with a small modification to our arbitration policy.

Since we know when a slot reaches the rightful owner,
who may or may not use the slot, we can use an empty
slot to address peripherals up to and including the owner
of the slot. This would allow the use of otherwise wasted
bandwidth without interfering with the GT packets and thus
without interfering with all guarantees. We now define the
second rule in our arbitration policy:
Rule 2: If a NI is ready to send data, the current slot is empty
and the owner of the slot is not reached before the destination
NI is reached, data can be injected into that slot.

This small addition adds a little bit of hardware to the in-
jection logic but makes the ring interconnect work conserving.
By making more slots available we increase the upper bounds
of the bandwidth based on the distance a packet has to travel
on the ring.

We define the GT bandwidth as γ = 1
N . We use Mhops

to denote the number of hops a packet has to travel between
peripherals. As we are not allowed to use any of the slots be-
longing to NIs between the source and destination peripheral,
we can potentially use N −Mhops slots out of N slots. We
can now derive the upper bound on the available bandwidth,
called γ̂ for traffic between two NIs:

γ̂ = γ +
N −Mhops

N
=

N −Mhops + 1

N
(12)

We can see from Equation 12 that when the distance data
has to travel on the ring increases, the upper bandwidth bound
decreases proportionally.

G. External Memory

As long as the stream processing can exploit data locality
the use of local memories suffices while containers are rela-
tively small. When this is not the case, larger memory buffers
might be required. An example of this is a video deinterlacer
which requires the buffering of at least half a frame. For 32-bit
color at VGA resolution this already requires more than 600
kB.

To this end, we share the external memory between all cores
using a latency bounded tree shaped interconnect [21]. By
adding instruction and data caches to the CPUs, we can lower
the contention for the external memory. We have used this

Complete Design Ring Ratio
CPUs Sl.Regs: LUTs Sl.Regs: LUTs Sl.Regs: LUTs

2 5746 7905 115 119 2.0% 1.5%
4 11492 15810 237 241 2.1% 1.5%
8 22984 31620 481 452 2.1% 1.4%

16 45968 63240 977 1006 2.1% 1.6%
32 91936 126480 1985 1975 2.2% 1.6%

TABLE I
LOGIC USAGE ON A VIRTEX-6 FPGA SHOWING A LINEAR SCALE IN

RESOURCE USAGE FOR OUR RING INTERCONNECT.

memory for the video deinterlacer task and the DVI controller
frame buffer, as explained in section IV.

In theory this memory can be used to store data for our
FIFO channels. However, experiments with our test application
showed that this communication method can reduce through-
put by a factor 2, as discussed in more detail in section IV.

In the next section we will describe how we mapped a
streaming video decoder application onto a 16 core system
with our ring interconnect in order to evaluate our design.

IV. EVALUATION

In this section we will describe the used hardware instance
for evaluation and mapping of a video decoding application.

We will evaluate the hardware usage for the ring intercon-
nect compared to the rest of the system and the suitability of
the interconnect for the implemented video decoding applica-
tion. We will also look into the utilization of the bandwidth
provided by the ring. We end this section by comparing the
ASIC synthesis results with another interconnect.

A. Hardware Costs

We implemented our ring interconnect for an MPSoC with
16 CPU cores on a Xilinx ML-605 prototyping board.

See Table I for more details on hardware usage. These
results indicate that the hardware usage of our ring scales
linearly with the number of CPUs. The minor increase in
hardware usage is due to the increasing width of the address
bus for addresses on the ring itself when the number of NIs
increase. We can see that the ring interconnect accounts for
only ∼2% of the total hardware costs which is small compared
to other components in the design.

B. Case Study: PAL Video Decoder

In order to evaluate the performance of the proposed ar-
chitecture we implemented a Phase Alternating Line (PAL)
decoder in software on a 16 core design. The PAL standard
describes a field interlaced, 25 frames per second color video
signal, usually in combination with FM modulated audio [22].
The signal consists of a Amplitude Modulation (AM) lumi-
nance signal (Y) and a quadrature modulated color difference
signal (R-Y and B-Y) at 4.43 MHz from the luminance carrier.
During decoding, the color signal has to be removed from the
original signal before the luminance can be extracted.

In our demonstrator we only process the luminance and
ignore the color signal. The luminance signal contains 625
lines per frame, two fields per frame and 25 frames per second.

As such, the vertical resolution is fixed to the number of
lines whereas the horizontal resolution is directly related to
the sample rate. By sampling the signal at a lower speed and
using the appropriate filters, we eliminated interference from
the color signals. The horizontal resolution is not high enough
at this sample rate to produce the native 4:3 aspect ratio from
the PAL standard and as such has to be upscaled to obtain the
correct aspect ratio.

Every line is separated by a sync pulse which uses a lower
signal value than the rest of the inverted luminance signal,
as shown in Figure 7. It is customary to normalize the input
format so that the luminance ranges from 0.0 to 1.0 where
0.3 and lower are used for line syncs. Each frame consists of
two interleaved fields. All fields are separated by a number of
special synchronization pulses.

Our parallel decoding algorithm is depicted as an SDF graph
in Figure 8. The actors in this SDF graph correspond with tasks
where each task is using a dedicated CPU. After acquiring
I/Q samples at baseband, the AM signal is reconstructed
from the magnitude of the I/Q pairs. The resulting intensity
of the luminance signal is recorded and used in the field
synchronization detection. At the beginning of a field, the field
type is detected: one field type is used for even lines, the other
for odd lines. At this point, the signal is normalized to obtain
a range suitable for displaying. The field alignment is used to
calculate the start of each line and the deinterlacer generates
complete 2D frames. When a frame is complete, a 1D scaler
is used to scale the horizontal resolution to obtain the 4:3
display ratio. A resulting test picture is shown in Figure 9
which corresponds with the input signal from Figure 7.

Where the detection of field synchronization is required, a
state machine is used to detect the edges in the luminance
signal in combination with the signal levels. A similar state
machine is used to detect the field type right after a field
sync was found. These two tasks contain state machines and
as such execute sequentially and cannot be duplicated to
benefit from parallelism. Other, arithmetic intensive tasks like
AM demodulation, Automatic Gain Control and Upscaling
can work on small chunks of data individually and as such
are duplicated to improve throughput. The bottleneck of the
application are the sync and type detect tasks which each use
a dedicated CPU.

This algorithm uses 16 cores at 100 MHz and processes
PAL video real-time at 3 MS/s or 12 MB/s which corresponds
to a horizontal resolution of 192 pixels1.

1Commercial grade PAL decoders require a sample rate of at least 12 MS/s
which would result in a horizontal resolution of 768 pixels

Fig. 7. Complete PAL line with low valued synchronization pulses

ADC AM
Demod

Level
Detect

Field
Sync

Field
TypeAGCDeintScaler

[4]

[3][4]

64 64 64 64 64 64

64
64

646464646464

Fig. 8. Data flow graph for PAL decoding application. Duplicated tasks for
data level parallelism are denoted by the numbers in brackets.

As we use four byte wide data words and a NI transfers
a complete word per clock tick, the total bandwidth between
two NIs is 4 ·100 = 400 MB/s. The structure from Figure 8 is
a processing pipeline and by using this structure as a mapping
to our platform, we can derive that each connection between
two NIs on the ring will transfer 12 MB/s. This is a mere
3% of the total available bandwidth; commercial grade PAL
would require 12% load per connection.

When we consider the longest distance data streams have to
travel through the ring network, we see that data travels four
hops down the ring. By using Equation 12 we find the best
case bandwidth of 13

16 = 81.25% of 400 MB/s. Our minimum
guaranteed bandwidth is 1

16 = 6.25%, which is sufficient for
our application. We conclude that the ring capacity could be
halved for this particular application but this is of little value
as the ring occupies only 2% of the complete design.

Our ring communication is handled by a library to abstract
various system aspects. This library can also be used to
perform FIFO communication using the external SDRAM
memory. However, if all synchronization and data are placed
in external memory, we would have 16 cores contending for
access. Results showed that the PAL decoder performs more
than a factor two slower when the ring network is not used.

C. Synthesis Results and Power Estimates for ASICs

As stated before, the structure of the ring results in low
hardware costs. While we demonstrated this by presenting the
hardware resource usage for a Virtex-6 FPGA, we also synthe-
sized our ring interconnect to a standard cell implementation

Fig. 9. Complete deinterlaced PAL video frame

Voltage Area Speed 3% Load 100% Load
V µm2 GHz mW mW

1.0 GP3 1100 2.0 1.24 (5%) 1.60 (6%)
1.2 LP4 1107 1.0 0.79 (0.09%) 1.00 (0.07%)

TABLE II
POST-SYNTHESIS RESULTS OF 65 NM ST IMPLEMENTATION IN ASIC

LOGIC, LEAKAGE IS SPECIFIED AFTER POWER.

used to describe ASIC logic. We used the Synopsys synthesis
tooling using the low power and low leakage 65 nm library
from STmicroelectronics.

Synthesis results indicate that for every NI 1100 µm2 of
silicon is required, see Table II. While wiring and the small
input buffer are not included, we can compare this rough
estimate to specified area of routers of other interconnects.
Compared to the latest version of Æthereal light, our NI2 is
20 times smaller than their smallest GS router (0.07 mm2) [9].

V. CONCLUSION

In this paper we presented a low cost communication ring
for real-time multi-core stream processing architectures as
used in the SDR domain. Our ring interconnect realizes low
hardware cost by sharing buffers within a NI. This is possible
because the ring provides automatic serialization and requires
guaranteed acceptance at the slaves. Despite being connec-
tionless, our ring provides bandwidth and latency guarantees
by reserving slots for each master. The work conserving
scheduling policy of the ring interconnect allows tasks to
use the slack of other tasks which can improve the average
throughput at the application level.

We demonstrated that the write-only property of the ring
interconnect is sufficient to implement a FIFO with split
administration. We use the guaranteed ordering of writes for
our FIFO implementation to provide application level back-
pressure.

We derived an SDF model for the communication channel
between a master and slave which can be used to determine
the required capacity in order to reduce the effects of network
latency on application throughput.

We implemented our design of the ring interconnect in an
MPSoC on an FPGA and in ASIC logic. On the FPGA we
found that our interconnect scales linearly and occupies 2%
of the resources used in the design.

We evaluated our design by means of a PAL video decoder
application, using 16 cores in parallel. The low hardware
cost of the ring can justify the use in systems with low
bandwidth utilization, as is the case for our PAL video decoder
application which uses only 3% of the available bandwidth.
The presented results indicate that the described communica-
tion ring interconnect is an attractive candidate for medium
scale multiprocessor systems for real-time stream processing
applications.

2Including all logic and registers, without the optional small input buffer
3General Purpose Logic, Low Voltage: 1.00V, 25◦C
4Low Power Logic, Nominal Voltage: 1.20V, 25◦C

REFERENCES

[1] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerber-
gen, P. Wielage, and E. Waterlander, “Trade offs in the design of a router
with both guaranteed and best-effort services for networks on chip,” in
Design, Automation & Test in Europe, no. c. IEEE Comput. Soc, 2003,
pp. 350–355.

[2] M. Harmanci, N. Escudero, Y. Leblebici, and P. Ienne, “Providing
QoS to connection-less packet-switched NoC by implementing diffserv
functionalities,” in International Symposium on System-on-Chip, 2004,
pp. 37–40.

[3] E. Salminen, A. Kulmala, and T. D. Hamalainen, “Survey of Network-
on-chip Proposals,” White Paper, OCP-IP, no. Mar., pp. 1–13, 2008.

[4] D. Liu, D. Wiklund, and E. Svensson, “SoCBUS: The solution of high
communication bandwidth on chip and short TTM,” in Real-Time and
Embedded Computing Conference, 2002.

[5] P. Wolkotte, G. Smit, G. Rauwerda, and L. Smit, “An Energy-Efficient
Reconfigurable Circuit-Switched Network-on-Chip,” in IEEE Interna-
tional Parallel and Distributed Processing Symposium, vol. 19, no. c.
Denver, Colorado, USA: IEEE, 2005, pp. 155a–155a.

[6] IBM, 128-Bit Processor Local Bus Architecture Specifications - Version
4.7, 2007.

[7] ARM, AMBA AXI and ACE Protocol Specification, 2011.
[8] A. G. C. Koppelaar, A. Burchard, and W. Tang, “Concurrent Viterbi

decoding for dual-channel ITS communication on a SDR platform,” in
WIC Symposium on Information Theory in the Benelux, vol. 33, Boekelo,
2012, pp. 149–156.

[9] K. Goossens and A. Hansson, “The Aethereal network on chip after
ten years: Goals, evolution, lessons, and future,” in Design Automation
Conference, Anaheim, California, USA, 2010, pp. 306–311.

[10] R. Stefan and A. Molnos, “A TDM NoC supporting QoS, multicast,
and fast connection set-up,” in Design, Automation & Test in Europe,
Dresden, Germany, 2012, pp. 1283–1288.

[11] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor Communi-
cation Network: Built for Speed,” IEEE Micro, vol. 26, no. 3, pp. 10–23,
May 2006.

[12] S. Kottapalli and J. Baxter, “Nehalem-EX CPU Architecture,” Hot chips,
pp. 1–19, 2009.

[13] C. Fallin, X. Yu, G. Nazario, and O. Mutlu, “A high-performance
hierarchical ring on-chip interconnect with low-cost routers,” Computer
Architecture Lab (CALCM), Carnegie Mellon University, Tech. Rep.
SAFARI No. 2011-007, 2011.

[14] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Busá,
K. Goossens, R. P. Llopis, and P. Lippens, “C-heap: A heterogeneous
multi-processor architecture template and scalable and flexible protocol
for the design of embedded signal processing systems,” Design Automa-
tion for Embedded Systems, vol. 7, no. 3, pp. 233–270, 2002.

[15] J. W. Van den Brand and M. Bekooij, “Streaming consistency: a model
for efficient mpsoc design,” in EUROMICRO Conference on Digital
System Design, vol. 10, 2007, pp. 27–34.

[16] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij,
“Enabling application-level performance guarantees in network-based
systems on chip by applying dataflow analysis,” IET Computers &
Digital Techniques, vol. 3, no. 5, p. 398, 2009.

[17] A. Dasdan and R. Gupta, “Faster maximum and minimum mean cycle
algorithms for system-performance analysis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 17,
no. 10, pp. 889–899, 1998.

[18] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[19] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synchronization. CRC Press, 2000, vol. 3.

[20] R. de Groote, J. Kuper, H. Broersma, and G. J. M. Smit, “Max-
plus algebraic throughput analysis of synchronous dataflow graphs,”
in EUROMICRO Conference on Software Engineering and Advanced
Applications, vol. 38, 2012, pp. 29–38.

[21] J. H. Rutgers, M. J. Bekooij, and G. J. Smit, “Evaluation of a Connec-
tionless NoC for a Real-Time Distributed Shared Memory Many-Core
System,” in EUROMICRO Conference on Digital System Design, vol. 15.
IEEE, Sep. 2012, pp. 727–730.

[22] ITU-R, “Rec. ITU-R BT.470-6: Conventional Television Systems,” Tech.
Rep., 1998.

