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1 INTRODUCTION

Input/output time delays arise naturally in numerous control
application, both from physical delays in processes and con-
trol interfaces and from the use of delays to model compli-
cated high-frequency dynamics. Optimal control of time-
delay systems has been an active research area since the late
60’s, first in the H2 (LQG) setting (Kleinman, 1969; Soli-
man and Ray, 1972) and then in the H∞ setting (Foias et al.,
1996; Mirkin and Tadmor, 2002).

Time-delay systems can in principle be treated in the frame-
work of the general theory of infinite-dimensional systems,
both in the time (van Keulen, 1993) and in the frequency
(Foias et al., 1996) domains. These approaches, however, re-
sult in rather abstract results (i.e., in terms of operator Riccati
equations), from which it might not be clear what the struc-
tures of solvability conditions and controllers are and how
(if) they can be computed and implemented. This motivated
researchers to seek for more problem-oriented approaches
that exploit the special structure of the delay operator, see
the review paper (Mirkin and Tadmor, 2002) and the refer-
ences therein.

Although substantial progress has been made in this direc-
tion during the last two decades, the vast majority of the
results (in both H2 and H∞ settings) is still limited to sys-
tems with a single delay. On the other hand, in MIMO sys-
tems different input/output channels might have different de-
lays, so that multiple delay results are of great importance.
Earlier treatments of multiple-delay systems are either pro-
duced quite complicated solutions (Soliman and Ray, 1972;
Foias et al., 1996) or were heavily based on the simplify-
ing assumption that the delay operator commutes with the

∗This research was supported by THE ISRAEL SCIENCE FOUN-
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plant (Grimble and Hearns, 1998) which limits the scope of
their applicability. An exception to this is a recent work by
Kojima and Ishijima (Kojima and Ishijima, 2001), who de-
rive explicit H∞ solution for the case when the disturbance
and/or control inputs are delayed. Yet in (Kojima and Ishi-
jima, 2001) only input delays are considered and it is as-
sumed that the controller has access to the full plant state.
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In this paper the
H∞ control problem
of systems with in-
put/output delays is
studied. The setup that
we shall address is de-
picted in Fig. 1, where
P is a given finite-
dimensional plant,
KΛ is a controller to
be determined, and
Λu and Λy are given
delay operators. When
Λu = e−shu I and Λy = e−shy I, such a setup corresponds to
the single-delay problem. In our case the delay operators
are more general block-diagonal matrices (see Section 2
for details). This enables to deal with different delays in
different control and measurement channels.

The central idea of this paper is to split the multiple-delay
problem to a nested sequence of simpler problems which we
call adobe problems. The adobe problem is a problem with
a single delay in a part of input or output channels. We
sometimes distinguish adobe input delay and adobe output
delay problems. These are apparently the simplest nontrivial
generalizations of the single delay case. We show that both
input and output adobe delay problems can be solved in an
unified fashion using the approach developed in (Meinsma et



al., 2002) (though with some nontrivial modifications). The
solutions to the adobe problems are then tailored to consti-
tute the solution to the original problem.

The advantage of the proposed approach is twofold. First,
the split of the problem to elementary adobe problems (apart
from the fact that this allows us to find the solution) clar-
ifies how additional delays in certain channels affect the
performance. Second, the approach results in a transpar-
ent controller structure. The controller consists of a finite-
dimensional system with a feedback/feedforward part that,
though infinite dimensional, can be easily implemented ow-
ing to the fact that its components may be chosen to be
FIR. This structure is reminiscent of that of the single-delay
H∞ dead-time compensators (DTC) in (Meinsma and Zwart,
2000; Mirkin, 2003), though the presence of feedforward in-
terchannel interconnections is unique to the multiple delay
case.

It is worth stressing in this respect that there appears to be no
natural generalization of single-delay Smith predictor (dead-
time compensator) schemes to the case of multiple delays,
see, e.g., the discussion in (Jerome and Ray, 1986). We be-
lieve that a byproduct of our solution might be a suggestion
of a possible form of the multiple delay DTC.
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Notation Through-
out the paper we
frequently use scat-
tering representations
such as in Fig. 2. The
arrows here can be
confusing: what is
meant in this figure
is that

[

ζ
η

]

= G
[ u

y

]

and u = Ky. If the
dimensions of η and y

are the same then generically there corresponds to each K a
unique mapping Q from η to ζ, denoted as Q = Cr(G, K).
It is easy to verify that

Cr(G, K) = (G11 K + G12)(G21 K + G22)
−1.

Once in a while we use the conventional lower linear
fractional transformations (LFT’s). For example the LFT
Fl(P,Λu KΛΛy) means by definition the mapping from w

to z in the system in Fig. 1.

We say that K(s) is proper if supRe s>ρ ‖K(s)‖ < ∞ for some
large enough ρ ∈

�
. As shown in (Weiss, 1994), an LTI

system has a causal implementation iff its transfer matrix is
proper. If G(∞) = I then properness of K implies proper-
ness of Q

.
= Cr(G, K), and since K = Cr(G−1, Q) we in fact

have that then the mapping is causally invertible.

Borrowing from (Mirkin, 2003) we define the completion
operator πh, which “analytically completes” the impulse re-
sponse of an h-delay system to a delay-free system. The “an-
alytic completion” for delayed systems of the form e−sh P =

e−shC(sI − A)−1 B is defined formally as

πh(e−sh P) =

[

A B
Ce−Ah 0

]

− e−sh
[

A B
C 0

]

(h > 0). For finite dimensional P, the sum of e−sh P an its
completion πh(e−sh P) is again finite dimensional.

A mapping Q ∈ H∞ is γ-contractive if ‖Q‖∞ < γ (when
γ = 1 we simply say “contractive”). A transfer matrix Q is
bistable if Q, Q−1 ∈ H∞. The number of entries of a vector-
valued signal w is denoted as nw, for example u(t) ∈

� nu .

2 PROBLEM FORMULATION

As mentioned in the Introduction, we study the feedback
setup in Fig. 1. We assume that that the plant P there has
the realization

P(s) =





A B1 B2

C1 D11 D12

C2 D21 D22



 (1)

and that the following standard assumptions hold:

A 1: (C2, A, B2) is stabilizable and detectable;

A 2:
[

A − jω I B2
C1 D12

]

has full column rank ∀ω ∈
�

∪ ∞;

A 3:
[

A − jω I B1
C2 D21

]

has full row rank ∀ω ∈
�

∪ ∞.

Note that assumptions A 2 and A 3 imply that D′
12 D12 > 0

and D21 D′
21 > 0, respectively. Note also that we do not as-

sume that D11 and D22 are zero as these assumptions hardly
simplify the results to come and, moreover, in delay systems
nonzero D22 may appear naturally.

The delay elements are assumed to be of the diagonal form

Λu(s) = diag{e−hu,q s Imq , · · · , e−hu,1 s Im1 , Im0 } (2a)

with 0 < hu,1 < · · · < hu,q (
∑

mi = nu) and

Λy(s) = diag{Ip0 , e−hy,1 s Ip1 , · · · , e−hy,r s Ipr } (2b)

with 0 < hy,1 < · · · < hy,r (
∑

pi = ny). In other words, we
assume that there are q different input delay channels, r dif-
ferent output delay channels, and, possibly, two delay-free
channels; m0 = 0 ( p0 = 0) implies that there is no delay-free
input (output) channel. Moreover, all delay channels are or-
dered (from large to small in Λu and from small to large
in Λy). The latter assumption can be made without loss of
generality; otherwise, a simple channel permutation is to be
applied.

The problem studied in this paper is formulated as follows:

SHP: Given the system in Fig. 1 with the generalized plant
P as in (1) satisfying A 1–3 and the delays Λu and Λy

as in (2). Determine whether there exists a proper KΛ

so that K
.
= Λu KΛΛy internally stabilizes the system

and guarantees that

‖Fl(P,Λu KΛΛy )‖∞ < γ (3)

for a given γ > 0, and then characterize all such KΛ

if one exists.

This problem is a nontrivial generalization of the single-
delay H∞ problem extensively studied in the control liter-
ature for the last two decades (Mirkin and Tadmor, 2002).

3 EQUIVALENT ONE-BLOCK REFORMULATION

It is clear that the problem is solvable only if so is its delay-
free counterpart (delays just impose additional constraints
on the controller). Following (Mirkin, 2003), we exploit this
fact to reduce the four-block H∞ problem with multiple de-
lays to an equivalent one-block H∞ problem with multiple
delays. To this end we first need the standard solution, i.e.,
the solution for the situation that there are no delays.
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3.1 Review of the standard delay-free solution

The solution to the standard delay-free H∞ problem is cur-
rently well understood (Green and Limebeer, 1995; Kimura,
1996), so we only present here its features that are relevant
for our development. Also, hereafter we assume without loss
of generality that γ is such that the delay-free version of SHP
is solvable.

We start with some nomenclature related to the H∞ solu-
tion. Let X ≥ 0 and Y ≥ 0 be the stabilizing solutions to
the standard H∞ Riccati equations; Z

.
= (I − γ−2Y X)−1

(well-defined by the solvability assumption); F1 and F2 be
the H∞ gains associated with the state-feedback problem
whereas L1 and L2 be the corresponding filtering gains;
AF

.
= A + B1 F1 + B2 F2 and AL

.
= A + L1C1 + L2C2 be

the (stable) “closed-loop” matrices associated with state-
feedback and filtering, respectively. Introduce also the fol-
lowing transfer matrix,

G∞(s)
.
= D∞

[

AL B∞

C∞ Z−1 I

]

, (4)

where B∞
.
=

[

B2 + L1 D12 + L2 D22 −L2

]

and

C∞
.
=

[

F2

C2 + D21 F1 + D22 F2

]

,

and D∞ is a nonsingular matrix obtained by the J-factor-
ization of a matrix constructed from the feedthrough term of
P(s). It can be shown (Kimura, 1996) that

G∞(s)−1 =

[

AF −Z B∞

C∞ I

]

D−1
∞ ,

so that G∞ is bistable. With these definitions, the standard
solution then goes to show that the SHP is equivalent to find-
ing a (proper) K for which

Q
.
= Cr(G∞, K) (5)

is contractive. In the delay-free case this settles the problem
completely because the mapping K → Q is invertible,

K = Cr(G−1
∞ , Q), (6)

and K is proper for almost every contractive Q. This yields
the well known parameterization of all solutions K to the
SHP: simply take any contractive Q and the resulting K does
the job.

3.2 Including the delays

In our situation K = Λu KΛΛy and we cannot invert the map-
ping (5) because the resulting K in (6) would simply cancel
the delays in Λu KΛΛy and hence the resulting KΛ would not
be proper.

Still we may begin the analysis with the simplified problem
of finding contractive Q as in (5) so that the SHP is recast
as the (one-block) problem of finding a proper KΛ guaran-
teeing that the mapping η → ζ in Fig. 3 is contractive, i.e.,
that ‖Cr(G∞,Λu KΛΛy)‖∞ < 1. This reduction has a cou-
ple of advantages over a direct treatment of the SHP. First,
it separates the delay-free problem from the delay problem
thereby clarifying what part of the problem may be con-
tributed purely to the delays. Moreover, it is useful to adopt
chain-scattering representations rather than the more com-
mon LFT’s since it reveals some extra structure. For exam-
ple, the fact that G∞ is bistable simplifies the further analysis
considerably. Furthermore it allows us to consider the input
and output delays on an equal footing. To see this, let us de-
fine the joint delay operator Λ = diag{Λu,Λ

−1
y } (mind the

inverse Λ−1
y ). Then

Cr(G∞,Λu KΛΛy ) = Cr(G∞Λ, KΛ),

see Fig. 4. The so defined joint delay operator generally has
advance elements (negative delays). Yet this is not an obsta-
cle as Λ may be multiplied by a scalar operator α without
affecting the mapping Cr(G∞Λα, K). We choose α to be the
maximal delay term e−hy,r s in Λy that results in

Λ
.
= e−hy,r s diag

{

Λu,Λ
−1
y

}

= diag{e−hq+r s Inq+r , · · · , e−h1s In1 , In0 } (7)

(note that the input and output delay-free channels are
united). Here hq+r > · · · > h1 > 0 so that hq+r = hu,q + hy,r

is the maximal delay between any two channels ui and y j in
the system in Fig. 1. Note also that that n0 6= 0.

It will be useful to perform another simplification at this
stage: to replace G∞ with a transfer matrix having the iden-
tity feedthrough term. The given direct feedthrough term
in (4) is D∞. A special D∞ can be constructed as follows.
Note that SHP is solvable only if so is its finite-horizon
version at any interval [0, τ]. Therefore, SHP must also
be solvable at [0, τ] for τ → 0. In the delay-free case the
latter is equivalent to the existence of a matrix DK so that
Fl(P(∞), DK ) is γ-contractive. Yet delayed loops do not
participate in such finite-horizon problem (they are open on
[0, τ] whenever τ is small enough). Hence, SHP is solvable
only if there exists a matrix D0 ∈

� m0 ×p0 so that

‖Fl(P(∞), Eu D0 E ′
y)‖ < γ, (8)

where the matrices

Eu
.
=

[ 0
Im0

]

∈
� nu ×m0 and Ey

.
=

[ Ip0
0

]

∈
� ny ×p0

are the directions of the delay-free input and output chan-
nels, respectively. Using D0 it is now possible to construct a
special D∞ of the form

D∞ = V

[

I −Eu D0 E ′
y

0 I

]

, V is lower triangular.

(Proof omitted due to lack of space.) This D∞ has the prop-
erty that Λ−1 D∞Λ is bi-causal, bi-stable and the mapping
mapping KΛ → K = Cr(Λ

−1 D∞Λ, KΛ) is causally invert-
ible. If we define

G(s)
.
= G∞(s)D−1

∞ =

[

AL B∞ D−1
∞

D∞C∞ Z−1 I

]

(9)



then G has a identity direct feedthrough term and
Cr(G∞Λ, KΛ) = Cr(GΛ, K) with K = Cr(Λ

−1 D∞Λ, KΛ).

We thus end up with the following one-block H∞ problem:

OBP: Given the system in Fig. 4 with G and Λ as in (9)
and (7), respectively, determine whether there exists
a proper K which guarantees that

‖Cr(GΛ, K)‖∞ < 1, (10)

and then characterize all such K if one exists.

The following lemma, which was actually proved above, es-
tablishes that SHP can be solved in terms of the simpler
problem OBP:

Lemma 1. SHP is solvable only if so is its delay-free coun-
terpart and there exists a matrix D0 such that (8) holds. If
these conditions hold, then SHP is solvable iff OBP is solv-
able. Moreover, a proper K solves the latter problem iff

KΛ
.
= Cr(Λ

−1 D−1
∞ Λ, K)

solves the former.

4 ADOBE DELAY PROBLEM

By adobe delay we mean the case that the joint delay opera-
tor is of the form

Λ =

[

e−sh Iµ 0
0 Iρ

]

(11)

for some µ < nu + ny and ρ = nu + ny − µ. These adobe
problems serve as building blocks from which the general
OBP will be solved later.

Note that the dimensions (µ, ρ) do not necessarily match
the dimensions of the input and output signals. In fact, the
case of µ = nu (and, consequently, ρ = ny) corresponds to
the single-delay problem treated in (Meinsma et al., 2002).
Indeed, for the single-delay problem

Λu = e−hu s Inu and Λy = e−hy s Iny ,

that results in Λ = diag{e−hs Inu , Iny } with h = hy + hu. The
case µ > nu can then be thought of as resulting from

Λu = Inu and Λy = diag
{

Iny−ρ, e−hy s Iρ
}

. (12)

We thus call the corresponding adobe problem the adobe
plant output delay problem. Similarly, µ < nu may corre-
spond to

Λu = diag
{

e−hu s Iµ, Inu−µ

}

and Λy = Iny , (13)

so we call it the adobe plant input delay problem. It is worth
stressing that in the last two cases controller structures and
interpretations are quite different (see below). On the other
hand, the formulae in all cases above are in a sense the same.

4.1 The main result

Let us rewrite the realization of G from (9) as follows:

G(s) =





AL Bµ Bρ

Cµ Iµ 0
Cρ 0 Iρ



 , (14)

where the partitioning is compatible with (11). Throughout
this section we denote J

.
= diag{Inu ,−Iny } and also intro-

duce the following two signature matrices:

Jµ
.
=

[

Iµ 0
]

J

[

Iµ
0

]

and Jρ
.
=

[

0 Iρ
]

J

[

0
Iρ

]

Denote now the symplectic matrix function

Σ(t) =

[

Σ11(t) Σ12(t)
Σ21(t) Σ22(t)

]

.
= eHt , (15)

where H is the following Hamiltonian matrix,

H
.
=

[

AL − BρCρ −Bρ Jρ B′
ρ

−C ′
µ JµCµ −A′

L + C ′
ρ B′

ρ

]

(16)

(note that H does not depend on Bµ). To simplify the nota-
tions, we write Σ instead of Σ(h). Then the main result of
this section is as follows:

Theorem 1. OBP with joint delay operator (11) is solvable
iff Σ22(t) is nonsingular ∀t ∈ [0, h]. In that case K solves
OBP iff

K = Cr

([

I 0
Π I

]

G̃−1, Q̃
)

where

G̃ =





AL Σ′
22 Bµ + Σ′

12C ′
µ Jµ Bρ

JµCµΣ−′
22 Iµ 0

Cρ − Jρ B′
ρΣ

−1
22 Σ21 0 Iρ





is bistable,

Π = πh







e−sh





H11 H12 Bµ

H21 H22 −C ′
µ Jµ

Cρ Jρ B′
ρ 0











is FIR, and ‖Q̃‖∞ < 1 but otherwise arbitrary.

The following corollary of Theorem 1 will be used in the
sequel:

Corollary 1. Let the condition of Theorem 1 hold. Then K
solves the adobe OBP iff

Cr

(

G̃,Cr

([

I 0
−Π I

]

, K
))

,

is a contraction.

The proof of Theorem 1 follows the steps in (Meinsma et al.,
2002), though the proofs of some of these steps are nontriv-
ially different.

4.2 Necessity: finite-horizon problem

Consider the finite-horizon version of OBP. If Λu,Λy are
given by (13), then then delayed channels of u are zero
∀t ∈ [0, h]. Hence, these channels can be safely eliminated
on this finite horizon. The system then can be equivalently
described as

[

ζ

η

]

= Gρ

[

uρ

yρ

]

, uρ = Kρ yρ. (17)

Here

Gρ(s)
.
=





AL Bρ

Cµ 0
Cρ Iρ





.
=

[

AL Bρ

Cg Dρ

]

,

uρ : [0, h] 7→
�

µ−nu and yρ : [0, h] 7→
� ny . Thus, the finite-

horizon version of OBP with delays as in (13) is solvable
only if there exists a causal Kρ such that

sup
‖ζ‖L2[0,h]

‖η‖L2[0,h]
< 1, (18)

where the supremum is taken over all η and ζ satisfying (17).

The above is a finite horizon closed loop argument. Now
if the delays Λu,Λy are given by (12) then dually a finite-
horizon open-loop argument applies. In this case the last ρ
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Fig. 5: Controller structure

channels of y are delayed. Hence for y of the form y =
[ 0

yρ

]

we do not get any response u on [0, h] whatever K is (a long
as it is causal). Therefore for any such y Eqn. (17) holds with
uρ and Kρ void. It may be verified that every y of the form
y =

[ 0
yρ

]

: [0, h] 7→
[ � ny−ρ

� ρ

]

is possible by proper choice of
input η. Hence also in this case the finite-horizon version of
the OBP is solvable only if (18) holds over all possible ζ, η

of the form (17). The two finite-horizon necessary require-
ments (closed-loop and open-loop) have a joint characteriza-
tion.

We start with the following technical result:

Lemma 2. The operator G∗
ρ JGρ : L2[0, t] 7→ L2[0, t] is sin-

gular iff det Σ22(t) = 0.

Proof. Can be deduced from (Gohberg and Kaashoek,
1984). Details are omitted because of space limitations.

Now we are in the position to formulate our main result:

Lemma 3. Let Λ be as in (11). There exists a causal K such
that (18) holds only if det Σ22(t) 6= 0 for all t ∈ [0, h].

Proof. Assume to the contrary that Σ22(t) is singular for
some t ∈ [0, h]. By Lemma 2 this means that

ξ◦ .
=

[

u◦
ρ

y◦
ρ

]

6= 0

exists such that G∗
ρ JGρξ

◦ = 0. Now for any such ξ◦ define
the “worst” signals

[

ζ◦

η◦

]

.
= Gρ ξ◦

(notice that (ζ◦, η◦) 6= 0 because Dρ has full column rank,
and that by construction, ‖ζ◦‖L2[0,t] = ‖η◦‖L2[0,t]). In what
follows all mappings and inner products are over [0, t]. Take
η = η◦ as input to the system of Fig. 4. Then given any
causal K the resulting closed loop signals

[ uρ
yρ

]

: [0, h] 7→
�

ρ

are unique and they are such that
[

Hη◦

η◦

]

= Gρ

[

uρ

yρ

]

, H
.
= Cr(G, K).

Hence

〈Hη◦, ζ◦〉 − 〈η◦, η◦〉 =
〈[

H
I

]

η◦, J
[

ζ◦

η◦

]〉

=
〈

Gρ

[ uρ
yρ

]

, JGρξ
◦
〉

= 0.

This together with the fact that 〈ζ◦, ζ◦〉 = 〈η◦, η◦〉 shows that

〈Hη◦, ζ◦〉 = 〈η◦, η◦〉 = 〈ζ◦, ζ◦〉.

Cauchy-Schwartz inequality yields then that ‖H‖L2[0,t] ≥

1 (and equality holds only if Hη◦ = ζ◦, in which case
‖Hη◦‖2 = ‖η◦‖2, hence the name “worst disturbance” for
η◦). The proof is complete on noting that ‖H‖L2[0,t] ≤

‖H‖L2[0,h] , ∀t ≤ h.

It is worth noting that the condition of Lemma 3 is actually
also sufficient (in fact it is a byproduct of Theorem 1). We,
however, do not need this fact in the proof of Theorem 1.

4.3 Controller structure

For implementation of the controller in Theorem 1 it is con-
venient to repartition

[

I 0
Π I

]

compatibly with the dimensions
of u and y in Fig. 3.

In the adobe plant output delay case (µ ≥ nu) we have:

[

Iµ 0
Π Iρ

]

=





Inu 0 0
0 Iµ−nu 0

Πb Πf Iρ



 .

The structure of the controller K from Theorem 1 hence is
as shown in Fig. 5(a). It consists of the rational (bistable)
part G̃, a free contractive parameter Q̃, and two irrational
stable (FIR) blocks: Πb and Πf. The former FIR block is in
fact the internal feedback in the controller reminiscent the
classical dead-time compensators (DTC) or Smith predic-
tors. The only difference from the DTC that appears in the
single-delay H∞ control is that Πb acts only on a part of the
measurement channels, namely, on the delayed channel. On
the other hand, Πf acts as an interchannel feedforward part
of the controller and has no direct counterpart in the Smith
predictor literature.

In the adobe plant input delay case (µ ≤ nu) we have:

[

Iµ 0
Π Iρ

]

=





Inu 0 0
Πf Iρ−ny 0
Πb 0 Iny



 .

The structure of this controller is shown in Fig. 5(b). As in
the output delay case, the DTC part of the controller con-
tains two different FIR blocks. The first one, Πb , acts as
an internal feedback from the delayed control channel to the
measured signal, while the second one, Πf, acts as an inter-
channel feedforward from the delayed control channel to the
delay-free one.

5 DECOMPOSITION

Now we are in a position to address the decomposition of
OBP to a series of adobe problems. We return to the general
joint delay operator Λ in (7), which contains q + r descen-
dant ordered delay blocks and for that reason we refer to it as
a (q + r)-delay operator. In the future references, we denote
OBP with the data G and Λ as OBP(G,Λ). Also, given two
equally dimensioned joint delay operators Λα and Λβ of the
form (7), we write Λα � Λβ (or, equivalently, Λβ ≺ Λα) if
the last (delay-free) block of Λα has strictly larger dimen-
sion than that of Λβ.

It is readily verified that the (q + r)-delay operator can be
decomposed as follows:

Λ = Λ1Λ̃, (19)



where

Λ1
.
=

[

e−h1s Iµ1 0
0 Iρ1

]

(with ρ1 = n0)

is the joint delay operator of the adobe problem, cf. (11), and
Λ̃ is actually a (q + r − 1)-delay operator with the (n0 + n1)-
dimensional delay-free channel (i.e., Λ̃ � Λ) and the small-
est delay h2 − h1. Thus,

Cr(GΛ, K) = Cr

(

GΛ1,Cr(Λ̃, K)
)

.

As the delay block Λ̃ above just imposes additional con-
straints on K, OBP(G,Λ) is solvable only if so is the adobe
delay problem OBP(G,Λ1). According to Corollary 1, the
latter problem is solvable iff the condition of Theorem 1
holds and

Q̃
.
= Cr

(

G̃
[

I 0
−Π I

]

,Cr(Λ̃, K)
)

is a contraction in H∞, where G̃ and Π are defined in Theo-
rem 1. It is important to note now that any nonsingular lower
triangular matrix “causally commutes” with joint delay op-
erators of form (7) in the sense that Λ−1 OLΛ is bi-causal.
Thus, K is proper iff

K̃
.
= Cr

(

Λ̃−1
[

I 0
−Π I

]

Λ̃, K
)

is proper and, consequently, Q̃ is a contraction iff there exists
a proper K̃ so that

‖Cr(G̃Λ̃, K̃)‖ < 1.

Yet this is just another one-block problem, OBP(G̃, Λ̃).
Moreover, since Λ̃ � Λ, the latter problem has reduced com-
plexity comparing with the original problem OBP(G,Λ).
We thus just proved the following result:

Lemma 4. Let G be as in (14) and Λ as in (19). Then
OBP(G,Λ) is solvable iff the adobe problem OBP(G,Λ1)
and the reduced complexity OBP(G̃, Λ̃) are both solvable.
Furthermore, in that case a proper K solves OBP(G,Λ) iff

K = Cr

(

Λ̃−1
[

I 0
Π I

]

Λ̃, K̃
)

with K̃ a solution of OBP(G̃, Λ̃) (here G̃ and Π are as de-
fined in Theorem 1).

Now, we can proceed with the (q + r − 1)-delay operator
exactly the same way as with the (q + r)-delay operator be-
fore. More precisely, let us substitute G̃ → G, Λ̃ → Λ, and
K̃ → K. Then, repeating arguments from the beginning of
this section, the solvability of the one-block problem with
the (q + r − 1)-delay operator can be shown to be equiva-
lent to the solvability of a adobe problem with

Λ2
.
=

[

e−(h2−h1 )s Iµ2 0
0 Iρ2

]

(ρ2 = n0 + n1)

and a one-block problem with a (q + r − 2)-delay operator.
This procedure can obviously be repeated q + r times, each
time resulting to an OBP with a “smaller” delay operator,
until we end up with a one-block problem with (0)-delay
operator, the solution for which consists simply on the inver-
sion of its “G” transfer function.

OBP (and therefore SHP) can thus be solved iteratively, in
q + r iterations. The ith iteration consists on solving the
adobe delay problem OBP(Gi,Λi), where

Λi
.
=

[

e−(hi−hi−1 )s Iµi 0
0 Iρi

]

(ρi =
∑i−1

j=0 n j) (20a)

and (bistable) Gi is generated by the following sequence:

Gi = G̃i−1 [with G1 = G as defined by (9)], (20b)

where G̃i−1 implies the “G̃” matrix appearing in the solu-
tion of the adobe problem OBP(Gi−1,Λi−1). The solutions
of all iterations are then tailored to constitute the solution
to the original multiple delay problem. The following theo-
rem, which is the main result of this paper, summarizes the
reasoning above.

Theorem 2. OBP is solvable iff so are all OBP(Gi,Λi), i =

1, . . . , q + r. In this case, all solutions to the former are
parameterized as

K = Cr

(

ΠΛG−1
Λ , QΛ

)

,

where GΛ
.
= G̃q+r is bistable and finite dimensional,

ΠΛ
.
= Λ−1

q+r
∏

i=1

Λi

[

I 0
Πi I

]

is bistable, and QΛ is an arbitrary contraction.
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