
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 173 – 187, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MCC: A Model Transformation Environment

Anneke Kleppe

University Twente, Netherlands
a.kleppe@utwente.nl

Abstract. In the model driven software development process, software is built
by constructing one or more models and transforming these into other models.
In turn these output models may be transformed into another set of models until
finally the output consists of program code that can be executed. Ultimately,
software is developed by triggering an intricate network of transformation
executions.

An open issue in this process is how to combine different transformation
tools in a flexible and reliable manner in order to produce the required output.
This paper presents a model transformation environment in which new
transformation tools can be plugged in and used together with other available
transformation tools. We describe how transformations can be composed.
Furthermore, in the cause of answering the question where and how transfor-
mations can be successfully applied, we created a language-based taxonomy of
model transformation applications.

Keywords: MDA, QVT, model driven development, model transformation,
transformation taxonomy.

1 Introduction

Model Driven Architecture (MDA) [1, 2, 3] and Model Driven Engineering (MDE)
[4] propose a software development process in which the key notions are models and
model transformations. In this process, software is build by constructing one or more
models, and transforming these into other models. The common view on this process
is that the input models are platform independent and the output models are platform
specific, and that the platform specific models can be easily transformed into a format
that is executable. In other words, the model driven process is commonly viewed as a
code generation process.

There is also a more generic view on model driven development [1, 5, 6], in which
the difference between platform independent and platform specific is not dominant.
The key to this more generic view is that the software development process is
implemented by an intricate network of transformation executions, combined in
various ways. This makes model driven development much more open and flexible.

For example, in figure 1 at the start there are two models, one that describes the
functionality of the system (M1) and one that describes the security aspects of the
system (M2). Because we require code that has a certain package structure, consisting
of interfaces for each class in the main package and a subpackage containing
the implementations, the first transformation we apply is one that changes M1 into the

174 A. Kleppe

Functional Model
(M1)

Security Model
(M2)

Functional Model
with Package Structure

(M3)

Functional Model
with Package Structure
and Security (M4)

JSP Code
(M6)

Java Code
(M7)

SQL Code
(M8)

User Interface View
(M5)

transformation1

transformation3

transformation5transformation4

transformation6

transformation2

Fig. 1. Example of a combination of transformations

required structure. The resulting model is M3. The second transformation merges M3

with M2, thus creating a model M4 that has the right package structure and the
required security aspects. Next we generate a model M5

that contains all classes from
M

4
that are directly visible to a certain actor named in the use cases in M1. From this

model we generate a platform specific model of the user interface (M6). Meanwhile,
we take M4 as input to a transformation that generates a database model for the
system (M7), and we use M4

again as input to a transformation to generates the middle
tier of our system (M8). Even in this fairly simply example, we can recognise six
separate transformations.

In this paper we describe an open environment for model transformations in which
users may combine the available tools that implement transformations, at will and
apply them to models in various languages. Transformation tools may be added or
removed, and are thereby available (or not) for composition. Language definitions
may be added or removed thus enabling/disabling transformation of certain categories
of models. The inclusion of separate language definitions also enables us to formalise
and check the types of transformation tools, and the compositions of transformations
that are allowed in the environment. We are working towards a model of MDA that
makes the input/output relationship of transformations more explicit, and doing so
makes transformation scripting look like expressions in functional languages.

We will often use a comparison with compiler technology to explain our ideas,
because this comparison helps to illuminate the similarities and differences between
traditional compilers and transformers, which are sometimes called model compilers.

 MCC: A Model Transformation Environment 175

Please note however, that not all knowledge of compiler construction can be
transposed onto the field of model transformation directly. This is due to the fact that
the languages in which the models are written are often visual and therefore
multidimensional. (See [7]). Another difference is that transformers must be able to
handle models in multiple languages. Whereas compilers work with multiple repre-
sentations of the same program, from parse tree through several stages of abstract
syntax tree, transformers work with multiple representations of multiple programs or
models.

The paper is structured as follows. Section 2 explains why we have set out to
implement an open model driven development environment. Section 3 gives a
linguistically based taxonomy of transformations that is used in Section 4, which
describes the formalisation of the units that are recognised in our environment. In
section 5 the implementation of the environment is outlined. Section 6 contains
references to related work and Section 7 concludes the paper with a short summary.

2 Rationale

This section explains the reasons for our approach to transformation composition.
Key is the difference between internal and external composition. The environment
that we describe in this paper is focused on external composition.

2.1 Internal Versus External Composition of Transformations

There are various approaches for model transformation that offer forms of compo-
sitionality, either based on sceduling, reuse, or logical composition of transformation
rules. (See [6] for an overview.) For instance, the upcoming QVT standard [8]
specifies a language in which one is able to express transformation definitions that
consist of a number of mapping rules. The mapping rules may be combined by
calling, or by using the refines or extends mechanisms.

We call this the internal composition of transformations, whereas the combination
of transformation tools is called the external composition of transformations. The
latter must tackle tool interoperability as well as the logical composition of transfor-
mation rules. In the following, the set of transformation rules that is implemented by a
single execution of a single transformation tool will be called a transformation
definition.

A special concern with interoperability of transformation tools is that not all trans-
formation tools are ready to execute any transformation definition. Some are what we
call specialized transformation tools, in which the transformation definition is hard-
coded, in contrast to the general transformation tools, which are able to execute any
transformation definition written in a given transformation language.

We focus on external composition of transformations, because it offers the user
more flexibility, such as enabling the user to combine transformation tools from
different sources. For example, open source transformation tools could be combined
with vendor specific tools, and specialized transformation tools could be combined
with general transformation tools.

176 A. Kleppe

2.2 Towards an Open Model Driven Development Environment

In our view there is ample reason for creating tool support for external composition of
transformations. The user of transformation tools could very much benefit from a tool
chain of transformation engines, each executing small parts of the transformation
execution network. This gives the user full control over the process, thus enabling her
or him to be most productive.

An open environment for model driven development should offer multiple
transformation tools, multiple transformation definitions in various transformation
languages, and multiple tools for other model-related services, such as model
creation, or even model checking tools like SPIN [9]. The environment should
take care of the concrete interoperability between the tools, and it must provide a
means to specify the network of transformation executions that is necessary to
produce the required outcome. To prove the feasibility of this approach we have build
an open tool environment for transformation execution, which will be described in
section 5.

3 Taxonomy of Model Transformation Applications

In this section we present a taxonomy of model transformations based on a linguistic
approach. This taxonomy is needed for the formalisation of transformation compo-
sition in section 4. The transformations are categorised according to the part of its
source and target language definition it addresses. In order to clearly define this
taxonomy we first need to formalise our notion of language.

3.1 Language Definitions

Because a model transformation always relates the language of its source model with
the language of its target model, one has to be aware of the structure of the definition
of these languages in order to understand the different applications of model
transformations. The formalisation of language given by Chen e.a. in [10] is a simple
and elegant one. They define a language to be a 5-tuple L = < A, C, S, M

S
, M

C
>

consisting of abstract syntax (A), concrete syntax (C), syntax mapping (MC), semantic
domain (S), and semantic mapping (MS).

However, for our purposes this formalism is too simple. We need to take into
account languages that have multiple concrete syntaxes. For instance, one could argue
that the visual diagrams of an UML model and the textual XMI format of that model
are representations of the same abstract syntax graph1 in two different concrete
syntaxes. (The latter is called the serialization syntax in [11].) Another example is
OCL, for which we have defined a second concrete syntax that resembles SQL [12].
Therefore, we extend the given formalism into the following.

1 Instead of using the more common term abstract syntax tree, we use the term abstract syntax

graph to stress the fact that such a representation can be made for also languages that are
context-free or type 0 in the Chomsky hierarchy.

 MCC: A Model Transformation Environment 177

Definition 1: (Language) A language is a 5-tuple L = < A, SC, S, MS, SMC> consist-
ing of an abstract syntax (A), a set of concrete syntaxes (SC), a set of syntax map-
pings (SMC), a semantic domain (S), and a semantic mapping (MS). For each element
Cn in SC, there is an element MCn in SMC, which is a mapping between Cn

and the
abstract syntax A.

Most of the times the mapping between a concrete syntax and the abstract syntax will
be bi-directional, but this is not necessarily so. Sometimes a concrete syntax is used
only to visualize a model, not to edit it or create it. The syntax mapping may be
defined in either way; from abstract to concrete syntax, or from concrete to abstract
syntax, or bi-directional. In section 4.1 we will look into this in more detail.

Another observation that needs to be made is that the semantics of some languages
are not defined by giving a direct mapping of the abstract syntax to the semantic
domain, instead they are defined by mapping the abstract syntax to the abstract syntax
of another language of which the semantics are known. This type of semantics is
known as translational semantics. We formalise this as follows.

Definition 2: (Translational semantic mapping) A translational semantic mapping for
language Li with the use of language Lj is a semantic mapping TransMSi = MAij

° Msj,
where MAij is a mapping of the abstract syntax Ai of Li to the abstract syntax Aj of Lj.

3.2 Types of Transformations

In this section we present our taxonomy of transformations based on the formalisation
of language in the previous section. An overview of the various types of
transformations can be found in table 1, an overview of the relation between the trans-
formation types and elements of the source and target language definition can be
found in figure 2. Note that although the arrows in the figure indicate a bi-
directionality, not all transformations need to be defined bi-directionally. The arrows
indicate that transformations in both directions are possible.

Table 1. A taxonomy of transformations

Name Category Maps .. to ..
Syntax transformation Intra-language Ai -> Ci and/or Ci -> Ai

Semantic definition Intra-language Ai -> Si

Refactoring Intra-model Ai -> Ai

View transformation Intra-model Ai -> Ai

Structure transformation Inter-model Ai* -> Aj*

Stream-based transformation Inter-model Ci -> Cj

Hybrid syntax transformation Inter-model Ai -> Cj

Intra-language transformations. The first category of transformations is formed by
the intra-language transformations. Transformations in this category are used to

178 A. Kleppe

syntax
transformation

semantic
definition

transformation

stream-based
transformation

view
transformation

refactoring

hybrid
 sy

nta
x

tra
nsfo

rm
atio

n

structure
transformation

Concrete syntax
Cn1

Abstract syntax
A1

Semantic domain
S1

Concrete syntax
Cn2

Abstract syntax
A2

Semantic domain
S2

syntax
transformation

semantic
definition

transformation

Fig. 2. The relation between transformations and language definition

define a language. They either specify one of the syntax mappings (MCn), or the
semantic mapping (M

S
). A transformation that implements a syntax mapping is called

syntax transformation. An example of a syntax transformation is the MOF to text
standard [13]. A transformation that implements a semantic mapping is called
semantic definition transformation2. An example can be found in [14]. Note that in
the case of a translational semantic mapping, either or both of the constituting
mappings may be defined by an automated transformation.

Intra-model transformations. The second category of transformations is formed by
the intra-model transformations. In this case the transformation is applied to a single
model. Logically, the source and target model of the transformation are one and the
same, and therefore the source and target language are the same as well. Again, we
can recognise two subtypes in this category. The first subtype consists of the
transformations that change the source model, which are also called refactorings, or
in-place transformations. A refactoring is a mapping from the abstract syntax Ai of
language Li to the same abstract syntax Ai.

The second type of intra-model transformations are transformations that generate
views. View transformations, like refactorings are mappings from abstract syntax Ai
of language Li to the same abstract syntax Ai, but they serve a different purpose. View
transformations will never make changes in the source model, which is the purpose of
a refactoring. Views present the same system from a different viewpoint, using
different criteria. Views are always dependent upon their source model. If the source
model changes the view should change. If the source model is removed, the view

2 The word ‘definition’ is added here in order to avoid confusion with the term semantic

transformation, which is often being used to indicate a transformation that is semantics
preserving.

 MCC: A Model Transformation Environment 179

should be removed. We therefore consider the view to be part of the original source
model, hence its category. The close link between source model and view also makes
traceability a key issue to view transformations.

Inter-model transformations. The last category contains the transformations that are
commonly considered to be the essence of model driven development: the inter-model
transformations. Here, one model is transformed into another model, where the output
model is often written in another language. Again, we can recognise a number of
subtypes of this category. The first is very well-known in practise, namely the change
of a textual representation of a model (or program) into another textual format. This is
a mapping of a concrete syntax to another concrete syntax. We call this type of
transformations stream-based transformations. The name indicates that these transfor-
mations are focused on textual, i.e. one-dimensional languages, which are handled
sequentially, i.e. one token after another. Examples of this type of transformation are
templates written in languages like AWK.

The second type of inter-model transformations maps an abstract syntax graph into
a different abstract syntax graph. We call them structure transformations. Note that
there is a difference between refactorings and structure transformations, even when
the language of the source and target models are the same. A refactoring makes in-
place changes in a model, therefore the input and output model is the same. A
structure transformation produces a new model; the source and target model are two
separate models. This might seem a minor difference from a theoretical viewpoint,
but from the point of tool interoperability it is important.

What is making matters more complex is that structure transformations may take
multiple input models and produce multiple output models. We describe in more
detail how we handle this in section 4.3. In essence, the latest version of the QVT
standard [15] focuses on structure transformations, although - as its name suggests - it
should also provide a solution for defining views.

A third, very special case of inter-model transformations are the transformations
that take an abstract syntax graph in one language as source and produce text in
another language as output. Examples are transformations implemented in Velocity
[16] templates. In this case the structure of the source model is available in the form
of an abstract syntax graph, but the output is a character stream. We call this type of
transformations hybrid syntax transformations. These transformations map the
abstract syntax of one language upon the concrete syntax of another.

4 Elements in a Transformation Environment Architecture

This section describes the elements that constitute an open model driven development
transformation environment.

4.1 Executable Units: Creators, Transformers, and Finishers

Because we focus on automation, the basic building blocks in our MDA environ-
ment are the tools that are able to execute transformations. The environment defines

180 A. Kleppe

three tool types: the creator, the transformer, and the finisher, which are defined as
follows.

Definition 3: (Creator) A creator is a tool that implements for some language L a
mapping MCn in the direction from the concrete syntax to the abstract syntax.

A creator is able to produce the abstract syntax graph of a model based on some
concrete syntax, in other words, it implements a unidirectional syntax transformation.
In traditional compiler terminology the creator would encompass the lexical analysis
(scanning), syntax analysis (parsing), and semantic analysis (type checking, amongst
other things). However, the creator concept is broader than the traditional parser
concept. Because it is well-known that the complexity of parsing visual languages is
in general NP-complete (see [7] for an overview of approaches to parsing visual
languages), the creation of an abstract syntax graph is often automated using a syntax-
directed editor. Such an editor is also considered to be a creator. Multiple creators
may be defined for one language.

Definition 4: (Finisher) A finisher is a tool that implements for some language L a
mapping MCn in the direction from the abstract syntax to the concrete syntax.

A finisher is able to take an abstract syntax graph of a model and to create some
concrete syntax representation of this model. It could, for instance, write the model to
file. Finishers, like creators, implement syntax transformations, but they may also
implement hybrid syntax transformations. In traditional compiler terminology the
finisher would be called a deparser. Again, the concept finisher is broader than the
concept deparser. For instance, a syntax directed editor could provide a diagram
generating option that implements the finisher functionality. Multiple finishers may
be defined for the same language. Although in general the mapping M

Cn
will be bi-

directional, there is no need in the MDA environment to have a corresponding
finisher for each creator, or vice versa.

Definition 5: (Transformer) A transformer is a tool that implements the mapping
Ai*

-> Aj*.

A transformer is able to take one or more abstract syntax graphs and to transform
them into different abstract syntax graphs. It implements either a refactoring, a view
transformation, or a structure transformation, in other words, it implements a model-
to-model transformation.

4.2 Non-executable Units: ModelTypes or Languages

The fourth building block in our MDA environment specifies the type of the models
to be transformed. This is an essential unit though it is not executable. It is defined as
follows.

Definition 6: (ModelType) The type A m of a model m is the abstract syntax of the
lan-guage in which M is written.

We use the term ModelType instead of language to distinguish between the speci-
fication of a language and a certain implementation of this language. The relation

 MCC: A Model Transformation Environment 181

between a model and its ModelType is called the instanceOf relationship in [17],
whereas the relation between a model and its language is called the modelOf
relationship.

Because transformations may take multiple input models and produce multiple
output models, we define the following.

Definition 7: (Input types). Each executable unit (creator, transformer, or finisher) T
defines an m-tuple of its input types TinTypes = {Ai .. Am}.

Definition 8: (Output types). Each executable unit T defines an m-tuple of its output
types ToutTypes = {Ai .. Am}.

Note that in the above definitions we focus on the abstract syntax, therefore CinTypes
of creator C will be the empty sequence, and likewise, for finisher F, FoutTypes will be
the empty sequence.

Not present in the model driven development environment are semantic definition
transformations or stream-based transformations. The reason to exclude the latter is
that model driven development focuses on structure instead of streams. Semantic
definition transformations are excluded because their nature does not permit their use
in a chain of transformation executions.

4.3 Combinations of Executable Units

Using the definitions from the previous section, it is easy to see that the functionality
provided by a traditional compiler would be represented by a simple creator-
transformer-finisher combination. The challenge of model driven development,
how-ever, is not to rebuild compilers in a different fashion, but to use a network of
trans-formers and (intermediate) models to produce the desired output. Therefore, in
this section we present a means to define this network.

We propose to use the following three commonly known combinatorial operators
which have proven to be successful in the history of computing.

• Sequence: a combination of two executable units; one is executed before the
other, and the output of the first is the input of the second.

• Parallel: a combination of many executable units; the input to all of them is the
same (set of) input model(s), the output is the combination of all the outputs of all
of them.

• Choice: a combination of an ordered list of executable units; the first unit is
executed if the conditions posed by this unit are met by its input, else the next unit
is tried, until finally one of them is executed, or it is clear that the input does not
meet the conditions of any of the units.

In order to formalise these operators, we need to introduce the following definitions.

Definition 9: (Transformer type) The type of transformer T is the type of the function
FUNT: TinTypes ->

 ToutTypes
.

Definition 10: (Creator type) The type of a creator C is the type of the function
FUNC

: Sempty -> CoutTypes, where Sempty represents the empty sequence.

182 A. Kleppe

Definition 11: (Finisher type) The type of a finisher F is the type of the function

FUNF: FinTypes -> Sempty.

Definition 12: (Transformer condition) The condition CONDT of transformer T is the

type of the function CONDT: TinTypes -> Boolean.

Using the types of the basic elements and the combinatorial operators, we define a
language of transformation expressions, according to the following rules.

1. The application of transformer T, denoted by T(m1, .., mn), is allowed when every
mi represents a model, and the n-tuple of types of these models {Am1, .., Amn} is
equal to TinTypes.

2. The conditional application of a transformer T, denoted by Tcond(m1, .., mn), is
allowed when the application of T is allowed and CONDT(m1, .., mn) = true.

3. The sequence of unit T1 followed by unit T2, denoted by [T1 ; T2] , is allowed
when T1.outTypes is equal to T2.inTypes. Each unit can be either a creator, trans-
former, or finisher. The type of the combination is FUNT1 ° FUNT2: T1.inTypes
-> T 2.outTypes

.

4. Unit T1

and unit T2 may always be combined in parallel, denoted by [T1 || T2]. The
type of the combination is T1.inTypes Δ T2.inTypes -> T2.outTypes + T2.out-Types , where +
denotes the concatenation of both tuples, and Δdenotes a right tuple overwrite. A
right tuple overwrite creates a tuple with the union of all the elements of the two
tuples. Whenever both tuples have a given element, the value of the leftmost
argument tuple is taken. Note that the output models of both participating units
are separate; T1 and T2 do not generate parts of the same model, both produce
their own output models.

5. A ‘choice’ combination of transformer T1 and transformer T2, denoted by [T1

or T2], is always allowed. The type of the combination is T1.inTypes Δ T2.inTypes ->

T2.outTypes +T2.outTypes, where + denotes the concatenation of both tuples, and

Δdenotes a right tuple overwrite. The difference with the parallel operator is that

both participating transformations will be applied conditional, as define in rule 2.

Compositions of transformers can be regarded as transformers themselves, thus
allowing compositions to be used as part of another combination. The combinatorial
operators defined above are higher order functions known amongst others from
functional programming languages like Haskell [18].

5 The MDA Control Center Implementation

In section 2.1 we explained why a model driven development environment should be
open to the addition of new transformation tools and why it should provide a means to
combine the execution of transformation tools in a tool execution chain. In sections 3
and 4 we described the types of elements that can be part of such a development
environment. In this section we describe how we have implemented such an
environment.

 MCC: A Model Transformation Environment 183

5.1 The MCC Eclipse Plug-In

To implement our MDA environment we have created an Eclipse plug-in called MDA
Control Center (MCC). This environment uses the Eclipse extension point mechanism

[19] to recognise the available units. It defines four extension points, each of which
specifies a certain type of (Eclipse) plug-in.

 5.2 Extension Points for the Executable Units

Three MCC extension points specify the three types of executable units defined in
section 4.1: Creator, Transformer, and Finisher. Note that from the point of view of
the MCC a transformer, creator, or finisher does not represent the actual tool, instead
it represents the service offered by the tool. This also means that it is possible that a
single plug-in implements multiple extension points. For example, the same plug-in
may function both as a creator and as a transformer. In fact, one could build a plug-in
that implements all extension points. In the following we will use the term MCC
service to indicate either a creator, transformer, or a finisher.

An example of the declaration of a plug-in that implements both the transformer and
the creator extensions points can be found in figure 3. In this example the creator reads
resources of type “file” that have “.alan” as file extension, and produces models of type
“IAlanModel”, whereas the transformer takes as input an “IAlanModel” and produces
as output an “OJPackage”. (Alan is one of the languages for which we have defined a
number of MCC services, see for more information [20], and “OJPackage” is part of
our implementation of the Java metamodel, which is part of the Octopus tool [21].)

Note that each transformer may define multiple inputs and multiple outputs. In that
case the order in which the outputs appear in the declaration determines the order of
the elements of the tuples TinTypes and ToutTypes, as defined in section 4.3.

 5.3 Extension Point for the Non-executable Unit

The fourth extension point specifies the type of the models to be transformed as
defined in section 4.2: the ModelType. The fact that the MCC deals with in-memory
representations of models, i.e the abstract syntax graphs, means that resources like
files are not considered to be models. Another consequence of the focus on abstract
syntax graphs, is that it is necessary to handle implementations of languages. A
ModelType plug-in defines an implementation of the metamodel of a language.

For instance, it is not enough to claim that a certain model is a UML model as
specified by the UML 2.0 superstructure [17], instead we need to know from which
set of classes that implement the UML 2.0 superstructure, this model is an
instantiation. There can be large differences between a model that is an instantiation
of one UML implementation and another. For example, the Eclipse UML2 project
[22] defines an implementation in Java based on EMF [23], but many other
implementations —in other languages— are possible.

184 A. Kleppe

 <plugin
id="com.klasse.alan.alan2java"

<extension

 point="com.klasse.mdacontrolcenter.creator">
<creator

 resource="file"
 filter=".alan"
 output="com.klasse.alan.abstractsyntax.IAlanModel"
 label="Alan Model Creator"
 class="com.klasse.alan.MCCCreator">

</creator>
</extension>

 <extension
 point="com.klasse.mdacontrolcenter.transformer">

<transformer
 output="com.klasse.javametamodel.OJPackage"
 input="com.klasse.alan.abstractsyntax.IAlanModel"
 label="Alan to Java Transformer"
 class="com.klasse.alan.javagen.MCCTransformer">

</transformer>
</extension>

</plugin>

Fig. 3. Example extension point implementations

5.4 Executing Transformations

The MCC offers its users the possibility to run simple Creator-Transformer-Finisher
combinations without using any complex composition facilities. Each resource is
associated with certain extra properties. Using these properties the user can indicate
for each resource separately which creator should be used, and which transformer
and/or finisher should be used to work on the thus created in-memory representation.
Next to the properties view the MCC offers a button and a resource menu item called
Run Transformer. By clicking this button or selecting the menu, the user can initiate a
run of the service combination given by the properties of the given resource.

In order to make the combinations of executable units as defined in section 4.3
available to MCC users, we have created a small scripting language for trans-
formation combinations. Each script itself defines a new transformer, which is
available for use in another script or in a creator-transformer-finisher combination as
defined by the resource properties. An example of an MCC script can be found in
figure 4. It implements the example given in figure 1 in section 1.

transformer kleppe.myFirstScript (in m1: FuncModel,
 m2: Security)

{
m4 := T2(T1(m1), m2)->first();
T4 (T3(m4)) || T5(m4) || T6(m4)

}

Fig. 4. An example transformer script

 MCC: A Model Transformation Environment 185

5.5 Type Checking

The interoperability between the executable units in MCC is taken care of by the
Eclipse environment. However, MCC performs extra type checks on (the composition
of) the executable units. A first type check that is performed by the MCC, is a check
on the plug-in declarations. For each plug-in that declares input and output types, the
types are matched against the types known in the MCC.

Additional type checking in MCC is implemented by dedicated operations that
compare the type of each element in the list of inputs of the transformation with the
required inputs (TinTypes). If the types do not match, the user is issued an error
message.

6 Related Work

We have found that the work of Xavier Blanc e.a. [24, 25] is closely related to the
work described in this paper. Their Model Bus tackles the same problems in the
manner of OMG’s CORBA. There are however, a few differences, the most important
one being that the MCC offers a scripting language to define new services.

Other work that has resemblance to our work is [26]. The differences between their
ToolBus approach and MCC are that the ToolBus uses a common data representation
whereas MCC offers more generality and flexibility because it uses several data
representations, which are determined by the ModelTypes that are available in the
environment. Furthermore, the ToolBus enables communication between processes
other than data exchange, using messages or notes. The MCC does not offer this
possibility.

The UMLAUT transformation toolkit [27] is build with the same intension as
MCC: to provide the model designer with a freedom of choice with regard to
combinations of transformations to be executed. The differences are that UMLAUT is
limited to transforming UML models whereas MCC is able to handle models written
in various languages. Furthermore, although UMLAUT provides a transformation
library and a pluggable architecture, the composition of transformations in UMLAUT
is internal rather than external.

7 Summary and Future Work

In this paper we have defined the elements that should be present in an open model
driven development environment. In the process we have established the difference
between internal and external composition of transformations, and we have developed
a linguistically based taxonomy of transformations. Furthermore, we have described
an implementation of the open model driven development environment, which
includes a scripting language that enables the user to define his own transformations
based on the transformation tools that are available.

186 A. Kleppe

To support the interoperability of transformation tools, every unit must be defined
as Eclipse plug-in, but no further restrictions apply. This makes the MCC one of the
most generic MDA environments. What is new in our approach is the application of
knowlegde from the fields of compiler construction and functional programming to
the area of model transformations. Our research has shown that the well-known
concepts from the area of compiler construction have a limited application in the area
of model transformation. In this paper we have extended these concepts to fit them to
the new challenges of model driven development. In the future, our work will focus
on taking into account performance or optimization (i.e., not model) parameters to
transformations.

References

[1] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[2] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled, Principles of
Model_Driven Architecture. Addison-Wesley, 2004.

[3] David Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.
John Wiley & Sons, 2003.

[4] Stuart Kent. Model driven engineering. In Proceedings of IFM2002, volume 2335 of
LNCS. Springer-Verlag, 2002.

[5] Colin Atkinson and Thomas Kühne. A generalized notion of platforms for model-driven
development. Model-driven Software Development - Volume II of Research and Practice
in Software Engineering, pages 139–178, 2005.

[6] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation appro-
aches. In Jorn Bettin, Ghica van Emde Boas, Aditya Agrawal, Ed Willink, and Jean
Bezivin, editors, Proceedings of the 2nd OOPSLA Workshop on Generative Technique in
the Context of the Model Driven Architecture, Anaheim, October 2003. ACM Press.

[7] R. Bardohl, M. Minas, A. Schurr, and G. Taentzer. Application of graph transformation
to visual languages, 1999.

[8] Revised submission for MOF 2.0 Query/Views/Transformations RFP. Technical Report
ad/2005-03-02, OMG, March 2005.

[9] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[10] Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, and Ethan Jackson. Semantic
anchoring with model transformations. In Alan Hartman and David Kreische, editors,
Model Driven Architecture – Foundations and Applications, volume 3748 of LNCS.
Springer-Verlag, November 2005.

[11] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories, Assem-
bling Applications with Patterns, Models, Frameworks, and Tools. John Wiley & Sons,
2004.

[12] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[13] MOF Model to Text Transformation Language RFP. Technical Report ad/04-0407,
OMG, 2004.

 MCC: A Model Transformation Environment 187

[14] H. Kastenberg, A. Kleppe, and A. Rensink. Engineering objectoriented semantics using
graph transformations. Technical Report, University of Twente, December 2005. Pre-
final version available at http://www.cs.utwente.nl/rensink/papers/taaldraft.pdf.

[15] MOF QVT final adopted specification. Technical Report ptc/05-11-01, OMG, 2005.
[16] Velocity. http://jakarta.apache.org/velocity/.
[17] Ivan Kurtev Ivanov. Adaptability of Model Transformations. PhD thesis, University

Twente, Enschede, The Netherlands, May 2005.
[18] Simon Peyton Jones and John Hughes (editors). Haskell 98: A non-strict, purely func-

tional language. Technical report, February 1999.
[19] Erich Gamma and Kent Beck. Contributing to Eclipse, Principles, Patterns, and Plug-

Ins. Addison-Wesley, 2004.
[20] Anneke Kleppe. Towards general purpose high level software languages. In Alan

Hartman and David Kreische, editors, Model Driven Architecture – Foundations and
Applications, volume 3748 of LNCS. Springer-Verlag, November 2005.

[21] Octopus: Ocl tool for precise UML specifications. http://www.klasse.nl/octopus.
[22] Eclipse uml 2 project. http://www.eclipse.org/uml2.
[23] The eclipse modeling framework. http://www.eclipse.org/emf.
[24] Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich. Model bus: Towards the

interoperability of modelling tools. In Proceeding of the Workshop on Model Driven
Architecture - Foundations and Applications 2004, Linkping, Sweden, June 2004.
Linkping University.

[25] Xavier Blanc, Marie-Pierre Gervais, Maher Lamari, and Prawee Sriplakich. Towards an
integrated transformation environment (ITE) for model driven development (MDD). In
Proceedings of the Invited Session "Model Driven Development", 8th World Multi-
Conference on Systemics, Cybernetics and Informatics (SCI’2004), Orlando, USA, July
2004.

[26] J.A. Bergstra and P. Klint. The discrete time toolbus – a software coordination architect-
ture. Science of Computer Programming, 31:205–229, 1998.

[27] Jean-Marc Jézéquel, Wai-Ming Ho, Alain Le Guennec, and Franccois Pennaneac’h.
UMLAUT: an extendible UML transformation framework. In Robert J. Hall and Ernst
Tyugu, editors, Proc. of the 14th IEEE International Conference on Automated Software
Engineering, ASE’99. IEEE, 1999.

	Introduction
	Rationale
	Internal Versus External Composition of Transformations
	Towards an Open Model Driven Development Environment

	Taxonomy of Model Transformation Applications
	Language Definitions
	Types of Transformations

	Elements in a Transformation Environment Architecture
	Executable Units: Creators, Transformers, and Finishers
	Non-executable Units: ModelTypes or Languages
	Combinations of Executable Units

	The MDA Control Center Implementation
	The MCC Eclipse Plug-In
	Extension Points for the Executable Units
	Extension Point for the Non-executable Unit
	Executing Transformations
	Type Checking

	Related Work
	Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

