
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 173 – 187, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

MCC: A Model Transformation Environment  

Anneke Kleppe  

University Twente, Netherlands  
a.kleppe@utwente.nl 

Abstract. In the model driven software development process, software is built 
by constructing one or more models and transforming these into other models. 
In turn these output models may be transformed into another set of models until 
finally the output consists of program code that can be executed. Ultimately, 
software is developed by triggering an intricate network of transformation 
executions.  

An open issue in this process is how to combine different transformation 
tools in a flexible and reliable manner in order to produce the required output. 
This paper presents a model transformation environment in which new 
transformation tools can be plugged in and used together with other available 
transformation tools. We describe how transformations can be composed. 
Furthermore, in the cause of answering the question where and how transfor-
mations can be successfully applied, we created a language-based taxonomy of 
model transformation applications. 

Keywords: MDA, QVT, model driven development, model transformation, 
transformation taxonomy. 

1   Introduction  

Model Driven Architecture (MDA) [1, 2, 3] and Model Driven Engineering (MDE) 
[4] propose a software development process in which the key notions are models and 
model transformations. In this process, software is build by constructing one or more 
models, and transforming these into other models. The common view on this process 
is that the input models are platform independent and the output models are platform 
specific, and that the platform specific models can be easily transformed into a format 
that is executable. In other words, the model driven process is commonly viewed as a 
code generation process. 

There is also a more generic view on model driven development [1, 5, 6], in which 
the difference between platform independent and platform specific is not dominant. 
The key to this more generic view is that the software development process is 
implemented by an intricate network of transformation executions, combined in 
various ways. This makes model driven development much more open and flexible. 

For example, in figure 1 at the start there are two models, one that describes the 
functionality of the system (M1) and one that describes the security aspects of the 
system (M2). Because we require code that has a certain package structure, consisting 
of interfaces for each class in the main package and a subpackage containing  
the implementations, the first transformation we apply is one  that changes M1 into the 
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Fig. 1. Example of a combination of transformations  

required structure. The resulting model is M3. The second transformation merges M3 

with M2, thus creating a model M4 that has the right package structure and the 
required security aspects. Next we generate a model M5 

that contains all classes from 
M

4 
that are directly visible to a certain actor named in the use cases in M1. From this 

model we generate a platform specific model of the user interface (M6). Meanwhile, 
we take M4 as input to a transformation that generates a database model for the 
system (M7), and we use M4 

again as input to a transformation to generates the middle 
tier of our system (M8). Even in this fairly simply example, we can recognise six 
separate transformations. 

In this paper we describe an open environment for model transformations in which 
users may combine the available tools that implement transformations, at will and 
apply them to models in various languages. Transformation tools may be added or 
removed, and are thereby available (or not) for composition. Language definitions 
may be added or removed thus enabling/disabling transformation of certain categories 
of models. The inclusion of separate language definitions also enables us to formalise 
and check the types of transformation tools, and the compositions of transformations 
that are allowed in the environment. We are working towards a model of MDA that 
makes the input/output relationship of transformations more explicit, and doing so 
makes transformation scripting look like expressions in functional languages. 

We will often use a comparison with compiler technology to explain our ideas,  
because this comparison helps to illuminate the similarities and differences between 
traditional compilers and transformers, which are sometimes called model compilers. 
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Please note however, that not all knowledge of compiler construction can be 
transposed onto the field of model transformation directly. This is due to the fact that 
the languages in which the models are written are often visual and therefore 
multidimensional. (See [7]). Another difference is that transformers must be able to 
handle models in multiple languages. Whereas compilers work with multiple repre-
sentations of the same program, from parse tree through several stages of abstract 
syntax tree, transformers work with multiple representations of multiple programs or 
models. 

The paper is structured as follows. Section 2 explains why we have set out to 
implement an open model driven development environment. Section 3 gives a 
linguistically based taxonomy of transformations that is used in Section 4, which 
describes the formalisation of the units that are recognised in our environment. In 
section 5 the implementation of the environment is outlined. Section 6 contains 
references to related work and Section 7 concludes the paper with a short summary. 

2   Rationale 

This section explains the reasons for our approach to transformation composition. 
Key is the difference between internal and external composition. The environment 
that we describe in this paper is focused on external composition.  

2.1   Internal Versus External Composition of Transformations  

There are various approaches for model transformation that offer forms of compo-
sitionality, either based on sceduling, reuse, or logical composition of transformation 
rules. (See [6] for an overview.) For instance, the upcoming QVT standard [8] 
specifies a language in which one is able to express transformation definitions that 
consist of a number of mapping rules. The mapping rules may be combined by 
calling, or by using the refines or extends mechanisms.  

We call this the internal composition of transformations, whereas the combination 
of transformation tools is called the external composition of transformations. The 
latter must tackle tool interoperability as well as the logical composition of transfor-
mation rules. In the following, the set of transformation rules that is implemented by a 
single execution of a single transformation tool will be called a transformation 
definition.  

A special concern with interoperability of transformation tools is that not all trans-
formation tools are ready to execute any transformation definition. Some are what we 
call specialized transformation tools, in which the transformation definition is hard-
coded, in contrast to the general transformation tools, which are able to execute any 
transformation definition written in a given transformation language.  

We focus on external composition of transformations, because it offers the user 
more flexibility, such as enabling the user to combine transformation tools from 
different sources. For example, open source transformation tools could be combined 
with vendor specific tools, and specialized transformation tools could be combined 
with general transformation tools. 
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2.2   Towards an Open Model Driven Development Environment  

In our view there is ample reason for creating tool support for external composition of 
transformations. The user of transformation tools could very much benefit from a tool 
chain of transformation engines, each executing small parts of the transformation 
execution network. This gives the user full control over the process, thus enabling her 
or him to be most productive. 

An open environment for model driven development should offer multiple 
transformation tools, multiple transformation definitions in various transformation 
languages, and multiple tools for other model-related services, such as model 
creation, or even model checking tools like SPIN [9]. The environment should  
take care of the concrete interoperability between the tools, and it must provide a 
means to specify the network of transformation executions that is necessary to 
produce the required outcome. To prove the feasibility of this approach we have build 
an open tool environment for transformation execution, which will be described in 
section 5. 

3   Taxonomy of Model Transformation Applications  

In this section we present a taxonomy of model transformations based on a linguistic 
approach. This taxonomy is needed for the formalisation of transformation compo-
sition in section 4. The transformations are categorised according to the part of its 
source and target language definition it addresses. In order to clearly define this 
taxonomy we first need to formalise our notion of language.  

3.1   Language Definitions  

Because a model transformation always relates the language of its source model with 
the language of its target model, one has to be aware of the structure of the definition 
of these languages in order to understand the different applications of model 
transformations. The formalisation of language given by Chen e.a. in [10] is a simple 
and elegant one. They define a language to be a 5-tuple L = < A, C, S, M

S
, M

C
> 

consisting of abstract syntax (A), concrete syntax (C), syntax mapping (MC), semantic 
domain (S), and semantic mapping (MS).  

However, for our purposes this formalism is too simple. We need to take into 
account languages that have multiple concrete syntaxes. For instance, one could argue 
that the visual diagrams of an UML model and the textual XMI format of that model 
are representations of the same abstract syntax graph1 in two different concrete 
syntaxes. (The latter is called the serialization syntax in [11].) Another example is 
OCL, for which we have defined a second concrete syntax that resembles SQL [12]. 
Therefore, we extend the given formalism into the following.  

                                                           
1  Instead of using the more common term abstract syntax tree, we use the term abstract syntax 

graph to stress the fact that such a representation can be made for also languages that are 
context-free or type 0 in the Chomsky hierarchy.  
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Definition 1: (Language) A language is a 5-tuple L = < A, SC, S, MS, SMC> consist-
ing of an abstract syntax (A), a set of concrete syntaxes (SC), a set of syntax map-
pings (SMC), a semantic domain (S), and a semantic mapping (MS). For each element 
Cn in SC, there is an element MCn in SMC, which is a mapping between Cn 

and the 
abstract syntax A.  

Most of the times the mapping between a concrete syntax and the abstract syntax will 
be bi-directional, but this is not necessarily so. Sometimes a concrete syntax is used 
only to visualize a model, not to edit it or create it. The syntax mapping may be 
defined in either way; from abstract to concrete syntax, or from concrete to abstract 
syntax, or bi-directional. In section 4.1 we will look into this in more detail.  

Another observation that needs to be made is that the semantics of some languages 
are not defined by giving a direct mapping of the abstract syntax to the semantic 
domain, instead they are defined by mapping the abstract syntax to the abstract syntax 
of another language of which the semantics are known. This type of semantics is 
known as translational semantics. We formalise this as follows.  

Definition 2: (Translational semantic mapping) A translational semantic mapping for 
language Li with the use of language Lj is a semantic mapping TransMSi = MAij 

° Msj, 
where MAij is a mapping of the abstract syntax Ai of Li to the abstract syntax Aj of Lj. 

3.2   Types of Transformations  

In this section we present our taxonomy of transformations based on the formalisation 
of language in the previous section. An overview of the various types of 
transformations can be found in table 1, an overview of the relation between the trans-
formation types and elements of the source and target language definition can be 
found in figure 2. Note that although the arrows in the figure indicate a bi-
directionality, not all transformations need to be defined bi-directionally. The arrows 
indicate that transformations in both directions are possible.  

Table 1. A taxonomy of transformations  

Name Category Maps .. to ..
Syntax transformation Intra-language Ai -> Ci and/or Ci -> Ai

Semantic definition Intra-language Ai -> Si

Refactoring Intra-model Ai -> Ai

View transformation Intra-model Ai -> Ai

Structure transformation Inter-model Ai* -> Aj*

Stream-based transformation Inter-model Ci -> Cj

Hybrid syntax transformation Inter-model Ai -> Cj  

Intra-language transformations. The first category of transformations is formed by 
the intra-language transformations. Transformations in this category are used to 
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Fig. 2. The relation between transformations and language definition  

 
define a language. They either specify one of the syntax mappings (MCn), or the 
semantic mapping (M

S
). A transformation that implements a syntax mapping is called 

syntax transformation. An example of a syntax transformation is the MOF to text 
standard [13]. A transformation that implements a semantic mapping is called 
semantic definition transformation2. An example can be found in [14]. Note that in 
the case of a translational semantic mapping, either or both of the constituting 
mappings may be defined by an automated transformation.  

Intra-model transformations. The second category of transformations is formed by 
the intra-model transformations. In this case the transformation is applied to a single 
model. Logically, the source and target model of the transformation are one and the 
same, and therefore the source and target language are the same as well. Again, we 
can recognise two subtypes in this category. The first subtype consists of the 
transformations that change the source model, which are also called refactorings, or 
in-place transformations. A refactoring is a mapping from the abstract syntax Ai of 
language Li to the same abstract syntax Ai.  

The second type of intra-model transformations are transformations that generate 
views. View transformations, like refactorings are mappings from abstract syntax Ai 
of language Li to the same abstract syntax Ai, but they serve a different purpose. View 
transformations will never make changes in the source model, which is the purpose of 
a refactoring. Views present the same system from a different viewpoint, using 
different criteria. Views are always dependent upon their source model. If the source 
model changes the view should change. If the source model is removed, the view 

                                                           
2  The word ‘definition’ is added here in order to avoid confusion with the term semantic 

transformation, which is often being used to indicate a transformation that is semantics 
preserving. 
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should be removed. We therefore consider the view to be part of the original source 
model, hence its category. The close link between source model and view also makes 
traceability a key issue to view transformations.  

Inter-model transformations. The last category contains the transformations that are 
commonly considered to be the essence of model driven development: the inter-model 
transformations. Here, one model is transformed into another model, where the output 
model is often written in another language. Again, we can recognise a number of 
subtypes of this category. The first is very well-known in practise, namely the change 
of a textual representation of a model (or program) into another textual format. This is 
a mapping of a concrete syntax to another concrete syntax. We call this type of 
transformations stream-based transformations. The name indicates that these transfor-
mations are focused on textual, i.e. one-dimensional languages, which are handled 
sequentially, i.e. one token after another. Examples of this type of transformation are 
templates written in languages like AWK.  

The second type of inter-model transformations maps an abstract syntax graph into 
a different abstract syntax graph. We call them structure transformations. Note that 
there is a difference between refactorings and structure transformations, even when 
the language of the source and target models are the same. A refactoring makes in-
place changes in a model, therefore the input and output model is the same. A 
structure transformation produces a new model; the source and target model are two 
separate models. This might seem a minor difference from a theoretical viewpoint, 
but from the point of tool interoperability it is important.  

What is making matters more complex is that structure transformations may take 
multiple input models and produce multiple output models. We describe in more 
detail how we handle this in section 4.3. In essence, the latest version of the QVT 
standard [15] focuses on structure transformations, although - as its name suggests - it 
should also provide a solution for defining views.  

A third, very special case of inter-model transformations are the transformations 
that take an abstract syntax graph in one language as source and produce text in 
another language as output. Examples are transformations implemented in Velocity 
[16] templates. In this case the structure of the source model is available in the form 
of an abstract syntax graph, but the output is a character stream. We call this type of 
transformations hybrid syntax transformations. These transformations map the 
abstract syntax of one language upon the concrete syntax of another.  

4   Elements in a Transformation Environment Architecture  

This section describes the elements that constitute an open model driven development 
transformation environment.  

4.1   Executable Units: Creators, Transformers, and Finishers  

Because we focus on automation, the basic building blocks in our MDA environ-
ment are the tools that are able to execute transformations. The environment defines 
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three tool types: the creator, the transformer, and the finisher, which are defined as 
follows.  

Definition 3: (Creator) A creator is a tool that implements for some language L a 
mapping MCn in the direction from the concrete syntax to the abstract syntax.  

A creator is able to produce the abstract syntax graph of a model based on some 
concrete syntax, in other words, it implements a unidirectional syntax transformation. 
In traditional compiler terminology the creator would encompass the lexical analysis 
(scanning), syntax analysis (parsing), and semantic analysis (type checking, amongst 
other things). However, the creator concept is broader than the traditional parser 
concept. Because it is well-known that the complexity of parsing visual languages is 
in general NP-complete (see [7] for an overview of approaches to parsing visual 
languages), the creation of an abstract syntax graph is often automated using a syntax-
directed editor. Such an editor is also considered to be a creator. Multiple creators 
may be defined for one language.  

Definition 4: (Finisher) A finisher is a tool that implements for some language L a 
mapping MCn in the direction from the abstract syntax to the concrete syntax.  

A finisher is able to take an abstract syntax graph of a model and to create some 
concrete syntax representation of this model. It could, for instance, write the model to 
file. Finishers, like creators, implement syntax transformations, but they may also 
implement hybrid syntax transformations. In traditional compiler terminology the 
finisher would be called a deparser. Again, the concept finisher is broader than the 
concept deparser. For instance, a syntax directed editor could provide a diagram 
generating option that implements the finisher functionality. Multiple finishers may 
be defined for the same language. Although in general the mapping M

Cn 
will be bi-

directional, there is no need in the MDA environment to have a corresponding 
finisher for each creator, or vice versa.  

Definition 5: (Transformer) A transformer is a tool that implements the mapping  
Ai* 

-> Aj*.  

A transformer is able to take one or more abstract syntax graphs and to transform 
them into different abstract syntax graphs. It implements either a refactoring, a view 
transformation, or a structure transformation, in other words, it implements a model-
to-model transformation.  

4.2   Non-executable Units: ModelTypes or Languages  

The fourth building block in our MDA environment specifies the type of the models 
to be transformed. This is an essential unit though it is not executable. It is defined as 
follows.  

Definition 6: (ModelType) The type A m of a model m is the abstract syntax of the 
lan-guage in which M is written.  

We use the term ModelType instead of language to distinguish between the speci-
fication of a language and a certain implementation of this language. The relation 
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between a model and its ModelType is called the instanceOf relationship in [17], 
whereas the relation between a model and its language is called the modelOf 
relationship.  

Because transformations may take multiple input models and produce multiple 
output models, we define the following.  

Definition 7: (Input types). Each executable unit (creator, transformer, or finisher) T 
defines an m-tuple of its input types TinTypes = {Ai .. Am}.  

Definition 8: (Output types). Each executable unit T defines an m-tuple of its output 
types ToutTypes = {Ai .. Am}.  

Note that in the above definitions we focus on the abstract syntax, therefore CinTypes 
of creator C will be the empty sequence, and likewise, for finisher F, FoutTypes will be 
the empty sequence.  

Not present in the model driven development environment are semantic definition 
transformations or stream-based transformations. The reason to exclude the latter is 
that model driven development focuses on structure instead of streams. Semantic 
definition transformations are excluded because their nature does not permit their use 
in a chain of transformation executions.  

4.3   Combinations of Executable Units  

Using the definitions from the previous section, it is easy to see that the functionality 
provided by a traditional compiler would be represented by a simple creator-
transformer-finisher combination. The challenge of model driven development,  
how-ever, is not to rebuild compilers in a different fashion, but to use a network of 
trans-formers and (intermediate) models to produce the desired output. Therefore, in 
this section we present a means to define this network.  

We propose to use the following three commonly known combinatorial operators 
which have proven to be successful in the history of computing.  

• Sequence: a combination of two executable units; one is executed before the 
other, and the output of the first is the input of the second.  

• Parallel: a combination of many executable units; the input to all of them is the 
same (set of) input model(s), the output is the combination of all the outputs of all 
of them.  

• Choice: a combination of an ordered list of executable units; the first unit is 
executed if the conditions posed by this unit are met by its input, else the next unit 
is tried, until finally one of them is executed, or it is clear that the input does not 
meet the conditions of any of the units.  

In order to formalise these operators, we need to introduce the following definitions.  

Definition 9: (Transformer type) The type of transformer T is the type of the function 
FUNT: TinTypes ->

 ToutTypes
.  

Definition 10: (Creator type) The type of a creator C is the type of the function  
FUNC

 
: Sempty -> CoutTypes, where Sempty represents the empty sequence. 
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Definition 11: (Finisher type) The type of a finisher F is the type of the function 

FUNF: FinTypes -> Sempty. 

Definition 12: (Transformer condition) The condition CONDT of transformer T is the 

type of the function CONDT: TinTypes -> Boolean.  

Using the types of the basic elements and the combinatorial operators, we define a 
language of transformation expressions, according to the following rules.  

1. The application of transformer T, denoted by T(m1, .., mn), is allowed when every 
mi represents a model, and the n-tuple of types of these models {Am1, .., Amn} is 
equal to TinTypes.  

2. The conditional application of a transformer T, denoted by Tcond(m1, .., mn), is 
allowed when the application of T is allowed and CONDT(m1, .., mn) = true.  

3. The sequence of unit T1 followed by unit T2, denoted by [T1 ; T2] , is allowed 
when T1.outTypes is equal to T2.inTypes. Each unit can be either a creator, trans-
former, or finisher. The type of the combination is FUNT1 ° FUNT2: T1.inTypes 
-> T 2.outTypes

. 
 

4. Unit T1
 

and unit T2 may always be combined in parallel, denoted by [T1 || T2]. The 
type of the combination is T1.inTypes Δ T2.inTypes -> T2.outTypes + T2.out-Types , where + 
denotes the concatenation of both tuples, and Δdenotes a right tuple overwrite. A 
right tuple overwrite creates a tuple with the union of all the elements of the two 
tuples. Whenever both tuples have a given element, the value of the leftmost 
argument tuple is taken. Note that the output models of both participating units 
are separate; T1 and T2 do not generate parts of the same model, both produce 
their own output models.  

5. A ‘choice’ combination of transformer T1 and transformer T2, denoted by [T1
  

or T2], is always allowed. The type of the combination is T1.inTypes Δ T2.inTypes -> 

T2.outTypes +T2.outTypes, where + denotes the concatenation of both tuples, and 

Δdenotes a right tuple overwrite. The difference with the parallel operator is that 

both participating transformations will be applied conditional, as define in rule 2.  

Compositions of transformers can be regarded as transformers themselves, thus 
allowing compositions to be used as part of another combination. The combinatorial 
operators defined above are higher order functions known amongst others from 
functional programming languages like Haskell [18].  

5   The MDA Control Center Implementation  

In section 2.1 we explained why a model driven development environment should be 
open to the addition of new transformation tools and why it should provide a means to 
combine the execution of transformation tools in a tool execution chain. In sections 3 
and 4 we described the types of elements that can be part of such a development 
environment. In this section we describe how we have implemented such an 
environment.  
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5.1   The MCC Eclipse Plug-In  

To implement our MDA environment we have created an Eclipse plug-in called MDA 
Control Center (MCC). This environment uses the Eclipse extension point mechanism  

[19] to recognise the available units. It defines four extension points, each of which 
specifies a certain type of (Eclipse) plug-in.  

 5.2   Extension Points for the Executable Units  

Three MCC extension points specify the three types of executable units defined in 
section 4.1: Creator, Transformer, and Finisher. Note that from the point of view of 
the MCC a transformer, creator, or finisher does not represent the actual tool, instead 
it represents the service offered by the tool. This also means that it is possible that a 
single plug-in implements multiple extension points. For example, the same plug-in 
may function both as a creator and as a transformer. In fact, one could build a plug-in 
that implements all extension points. In the following we will use the term MCC 
service to indicate either a creator, transformer, or a finisher.  

An example of the declaration of a plug-in that implements both the transformer and 
the creator extensions points can be found in figure 3. In this example the creator reads 
resources of type “file” that have “.alan” as file extension, and produces models of type 
“IAlanModel”, whereas the transformer takes as input an “IAlanModel” and produces 
as output an “OJPackage”. (Alan is one of the languages for which we have defined a 
number of MCC services, see for more information [20], and “OJPackage” is part of 
our implementation of the Java metamodel, which is part of the Octopus tool [21].)  

Note that each transformer may define multiple inputs and multiple outputs. In that 
case the order in which the outputs appear in the declaration determines the order of 
the elements of the tuples TinTypes and ToutTypes, as defined in section 4.3. 

 5.3   Extension Point for the Non-executable Unit  

The fourth extension point specifies the type of the models to be transformed as 
defined in section 4.2: the ModelType. The fact that the MCC deals with in-memory 
representations of models, i.e the abstract syntax graphs, means that resources like 
files are not considered to be models. Another consequence of the focus on abstract 
syntax graphs, is that it is necessary to handle implementations of languages. A 
ModelType plug-in defines an implementation of the metamodel of a language.  

For instance, it is not enough to claim that a certain model is a UML model as 
specified by the UML 2.0 superstructure [17], instead we need to know from which 
set of classes that implement the UML 2.0 superstructure, this model is an 
instantiation. There can be large differences between a model that is an instantiation 
of one UML implementation and another. For example, the Eclipse UML2 project  
[22] defines an implementation in Java based on EMF [23], but many other 
implementations —in other languages— are possible.  
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 <plugin
id="com.klasse.alan.alan2java"

   ....
<extension

         point="com.klasse.mdacontrolcenter.creator">
<creator

           resource="file"
           filter=".alan"
           output="com.klasse.alan.abstractsyntax.IAlanModel"
           label="Alan Model Creator"
           class="com.klasse.alan.MCCCreator">

</creator>
</extension>

   <extension
         point="com.klasse.mdacontrolcenter.transformer">

<transformer
           output="com.klasse.javametamodel.OJPackage"
           input="com.klasse.alan.abstractsyntax.IAlanModel"
           label="Alan to Java Transformer"
           class="com.klasse.alan.javagen.MCCTransformer">

</transformer>
</extension>

</plugin>
 

Fig. 3. Example extension point implementations 

5.4   Executing Transformations  

The MCC offers its users the possibility to run simple Creator-Transformer-Finisher 
combinations without using any complex composition facilities. Each resource is 
associated with certain extra properties. Using these properties the user can indicate 
for each resource separately which creator should be used, and which transformer 
and/or finisher should be used to work on the thus created in-memory representation. 
Next to the properties view the MCC offers a button and a resource menu item called 
Run Transformer. By clicking this button or selecting the menu, the user can initiate a 
run of the service combination given by the properties of the given resource.  

In order to make the combinations of executable units as defined in section 4.3 
available to MCC users, we have created a small scripting language for trans-
formation combinations. Each script itself defines a new transformer, which is 
available for use in another script or in a creator-transformer-finisher combination as 
defined by the resource properties. An example of an MCC script can be found in 
figure 4. It implements the example given in figure 1 in section 1.  

transformer kleppe.myFirstScript (in m1: FuncModel, 
  m2: Security)

{
m4 := T2( T1( m1 ), m2 )->first();
T4 ( T3(m4) ) || T5(m4) || T6(m4)

}
 

Fig. 4. An example transformer script  
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5.5   Type Checking  

The interoperability between the executable units in MCC is taken care of by the 
Eclipse environment. However, MCC performs extra type checks on (the composition 
of) the executable units. A first type check that is performed by the MCC, is a check 
on the plug-in declarations. For each plug-in that declares input and output types, the 
types are matched against the types known in the MCC.  

Additional type checking in MCC is implemented by dedicated operations that 
compare the type of each element in the list of inputs of the transformation with the 
required inputs (TinTypes). If the types do not match, the user is issued an error 
message.  

6   Related Work  

We have found that the work of Xavier Blanc e.a. [24, 25] is closely related to the 
work described in this paper. Their Model Bus tackles the same problems in the 
manner of OMG’s CORBA. There are however, a few differences, the most important 
one being that the MCC offers a scripting language to define new services.  

Other work that has resemblance to our work is [26]. The differences between their 
ToolBus approach and MCC are that the ToolBus uses a common data representation 
whereas MCC offers more generality and flexibility because it uses several data 
representations, which are determined by the ModelTypes that are available in the 
environment. Furthermore, the ToolBus enables communication between processes 
other than data exchange, using messages or notes. The MCC does not offer this 
possibility.  

The UMLAUT transformation toolkit [27] is build with the same intension as 
MCC: to provide the model designer with a freedom of choice with regard to 
combinations of transformations to be executed. The differences are that UMLAUT is 
limited to transforming UML models whereas MCC is able to handle models written 
in various languages. Furthermore, although UMLAUT provides a transformation 
library and a pluggable architecture, the composition of transformations in UMLAUT 
is internal rather than external.  

7   Summary and Future Work 

In this paper we have defined the elements that should be present in an open model 
driven development environment. In the process we have established the difference 
between internal and external composition of transformations, and we have developed 
a linguistically based taxonomy of transformations. Furthermore, we have described 
an implementation of the open model driven development environment, which 
includes a scripting language that enables the user to define his own transformations 
based on the transformation tools that are available.  
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To support the interoperability of transformation tools, every unit must be defined 
as Eclipse plug-in, but no further restrictions apply. This makes the MCC one of the 
most generic MDA environments. What is new in our approach is the application of 
knowlegde from the fields of compiler construction and functional programming to 
the area of model transformations. Our research has shown that the well-known 
concepts from the area of compiler construction have a limited application in the area 
of model transformation. In this paper we have extended these concepts to fit them to 
the new challenges of model driven development. In the future, our work will focus 
on taking into account performance or optimization (i.e., not model) parameters to 
transformations.  
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