
Selection of Tests for Outlier Detection
Harm C.M. Bossers, Johann L. Hurink, Gerard J.M. Smit

Department of Electrical Engineering, Mathematics and Computer Science
University of Twente, Enschede, The Netherlands
{h.c.m.bossers, j.l.hurink, g.j.m.smit}@utwente.nl

Abstract—Integrated circuits are tested thoroughly in order to
meet the high demands on quality. As an additional step, outlier
detection is used to detect potential unreliable chips such that
quality can be improved further. However, it is often unclear
to which tests outlier detection should be applied and how the
parameters must be set, such that outliers are detected and yield
loss remains limited. In this paper we introduce a mathematical
framework, that given a set of target devices, can select tests for
outlier detection and set the parameters for each outlier detection
method. We provide results on real world data and analyze the
resulting yield loss and missed targets.

I. INTRODUCTION

In the semiconductor test industry, outlier detection methods
are used more and more in order to achieve (close to) zero
dppm (defective parts per million). An outlier is defined as
a measurement which differs significantly from an expected
pattern of behavior, even if the measurement is within its spec-
ification limits [1]. The rationale for outlier detection is that
deviating behavior is probably caused by some latent defect
and entails reliability risks. This is also supported by empirical
evidence [2]. Therefore, a lot of outlier detection methods
have been developed in recent years. However, applying outlier
detection immediately raises some problems:
• Which outlier detection method should be used?
• On which tests should outlier detection be applied?
• How to set the parameters of the outlier detection

method?
• What is the impact on yield loss?

Hereby, the last question is of crucial importance. In the past
decade, a wide range of different outlier detection methods
have been developed, all with their strengths and weaknesses.
So, choosing one or a few outlier detection methods is not a
trivial task. And after the choice of method(s) is made, the
second and third problem pop up: on which tests to apply
outlier detection and how to set the parameters of the method.
If just blindly all tests are selected with strict tolerance levels,
probably dppm will go down to zero, but at the cost of a very
high yield loss. In our experience, manufacturers aiming at
near-zero dppm are willing to accept an additional yield loss
caused by outlier detection of at most 1%.

One way to tackle these problems is to develop new
multivariate outlier detection methods that cover all test pa-
rameters at once. For example, [3] proposes a multivariate
kernel density approach and [4] describes a support vector
machine approach. Because estimation errors grow rapidly
with increasing dimension, these methods also must select

the most important tests on which outlier detection is based.
A problem with these advanced methods is that it is much
more difficult to understand what is going on and why certain
devices are rejected. Therefore, our objective is to provide a
framework that can help answering the posed questions and
in which each user can still use his favorite outlier detection
method(s).

In this framework we use a defect-oriented approach; we
want to select tests for outlier detection such that the same
failures are detected as if all tests are executed with spec-
ification limits. This results in a set-cover-type problem as
for example is discussed in [5]. This works because a lot
of tests are related and a failure in one test can often be
predicted by deviating behavior in other tests as is shown
in for example [6]. However, at the same time we enforce
that yield loss (caused by outlier detection) remains limited
to some small percentage. Finally, the resulting yield loss has
apparently similar behavior as failing devices which could be
an indication for lower reliability.

The rest of this paper is organized as follows. First, we
present a general framework in Section 2. In Section 3, we
show an example of an application of our framework. Exper-
imental results of this application are presented in Section 4,
after which Section 5 concludes the paper.

II. GENERAL FRAMEWORK

In this section we introduce a general framework for the
outlier test selection problem. This model can be used to select
tests for outlier detection, and set parameters for the outlier
detection methods. The model might also be used for Test
Time Reduction by selecting a combination of parametric tests
and outlier detection tests, such that other parametric tests can
be skipped. Note that we aim to develop a general framework,
such that it can be used for different purposes. This also means
that some parts of the model may not be necessary in specific
cases, but are included for generality.

Key part of the model are the so called outlier screens.
We define an outlier screen as a combination of an outlier
detection method, the test(s) on which it is applied and the
corresponding parameter settings. This means that if one
outlier detection method is applied on different tests, these
are considered as different outlier screens in our model. So,
especially with multivariate outlier detection methods, the
number of outlier screens in our model can grow very fast if
we consider all possible outlier screens. Hence, it is essential
to use (heuristic) solution approaches which are able to deal

2013 IEEE 31st VLSI Test Symposium (VTS)

!

978-1-4673-5543-8/13/$31.00 ©2013 IEEE

!

with this large number of outlier screens. In our model we
only consider the result of the outlier detection method, this
can either be a score indicating the outlyingness or a binary
variable indicating acceptance or rejection of each device.
Hence, our model can handle any outlier detection method,
so each user can use his own favorite method(s).

Another important element of the model is the target set.
The target set is a subset of devices, which must be detected
with outlier detection. This can for example be the set of
devices failing specification limits, or devices that are failing
during a later test stage (for example burn-in). This target set
is necessary for steering the test selection process. Without
such a set, it is from mathematical perspective very difficult to
determine which tests are good candidates for outlier detection.

Finally, we also introduce a bonus set. This set can be used,
if there are devices which are not directly targets, but do not
need to be included in yield loss computation. For example,
in case we only want to consider a specific type of failures.

In the following subsections, we first describe the required
input and the objectives and constraints. Then in the third
subsection we present our mathematical framework.

A. Input

As input for the model we use parametric test data of a large
number of devices. This test data should be continue-on-fail
test data, meaning that testing of a failing device is continued
when a device fails in one test. Normally, testing is stopped
as soon as one test fails in order to save test time. Continue-
on-fail data is required because otherwise the tests early in the
sequence are almost always selected, because failures in these
tests cannot be found with tests later in the sequence.

Furthermore, we need a target set of devices. This target set
contains the devices that should be detected. For example, the
devices that fail the hard specification limits. However, this
target set can also consist of other devices; how the target set
is determined does not matter for the test selection model.

Finally, the model requires a set of outlier detection methods
that can be performed on the parametric tests. From an abstract
perspective, an outlier detection method is just a function of
one or more parametric tests, which gives scores on which
thresholds can be set to detect outliers. The function can be
influenced with some parameters, depending on the outlier
detection method. From these outlier detection methods, the
outlier screens are computed as a pre-processing step. In this
pre-processing, we can control the number of outlier screens,
and during the optimization, we also can add additional outlier
screens and remove others if necessary.

B. Objectives and Constraints

Based on the described input, the model has to choose
outlier screens and corresponding parameters such that the
number of detected target devices with the selected tests and
methods is maximized while satisfying some constraints. The
constraints are:
• Yield loss is limited (detected devices not belonging to

the target or bonus set). We implement this constraint per

wafer (or lot or batch), in order to obtain a stable solution
over different wafers.

• A parametric test is not used in too many outlier screens.
Otherwise the influence of a single test may be too high.

• The total number of used parametric tests is limited, this
constraint is especially relevant in case the aim is to
reduce test time. Another reason is to reduce complexity
of the solution; the user can easily check if indeed
technically relevant tests are selected.

• The total number of used outlier screens is limited, in
order to restrict total computation time and complexity.
This constraint can also be generalized, such that total
required computation time for all the outlier screens is
limited.

C. Mathematical Framework

This section contains all the mathematical notations and
definitions, which are used in our framework. The required
input consists of the sets and the input parameters. In the
framework we have decision variables and state variables.
The decision variables are the real variables on which we
can decide, state variables are completely determined by the
decision variables.

Sets
• T : {t1, . . . , tm} : set of parametric tests
• W : {w1, . . . , ws} : set of different wafers (or lots of

batches)
• Da: set of devices of wafer wa ∈W
• TDa ⊂ Da : set of target devices of wafer wa ∈W
• BDa ⊂ Da : set of bonus devices of wafer wa ∈W
• D =

⋂
wa∈W

Da : set of all devices

• TD =
⋂

wa∈W
TDa, set of all targets

• BD =
⋂

wa∈W
BDa : set of all bonus devices

• M : {m1, . . . ,mr} : Set of outlier screens
• for each mk ∈M :

– Pk: {p1, . . . , pnk
} : Set of parameter vectors

(pl ∈ Pk can consist of multiple parameters)
– Tk ⊂ T : the parametric tests on which the outlier

screen mk is based
Input Parameters
• vij : measurement value of device di ∈ D on test tj ∈ T
• sik(pl): score of device di ∈ D on outlier screen mk ∈
M with parameters pl ∈ Pk

• bik(pl): binary score of device di ∈ D on outlier screen
mk ∈M with parameters pl ∈ Pk indicating if device di
is rejected

• ck: computation time of using outlier screen mk ∈M
• ujk: binary parameter indicating if parametric test tj is

used in outlier screen mk. (ujk = 1 if tj ∈ Tk, 0 else)
Decision Variables
• xk(pl): binary variable, xk(pl) = 1 indicates that outlier

screen mk ∈M is used with parameter vector pl ∈ Pk

!

!

State Variables (variables determined by decision variables)
• Oa: Set of detected outlier devices in wafer wa ∈ W

(Oa ⊂ Da), by the selected outlier screens and pa-
rameters. There are different options how this set is
determined; for the moment we add all the the devices
that are once detected as outlier, but this can easily be
extended to more sophisticated rules

• O =
⋂

wa∈W
Oa : set of all detected outliers

• Y La = |Oa \ (TDa ∪BDa)|
yield loss in wafer wa ∈ W , number of outliers that are
not target or bonus device

• HT = |TD ∩O| : number of hit targets
• HB = |BD ∩O| : number of hit bonus devices
• CT =

∑
mk∈M

ck
∑

pl∈Pk

xk(pl)

total computation time for all selected outlier screens
• UOT =

∑
mk∈M

∑
pl∈Pk

xk(pl)

total number of used outlier screens
• Uj =

∑
mk∈M

ujk
∑

pl∈Pk

xk(pl)

number of times test j is used
Constraints
• Y La ≤ α ∗ |Da|

Yield loss per wafer must be limited to some small
percentage of total number of devices, so usually 0 <
α ≤ 0.01

• CT ≤ β
Total computation time must be limited

•
∑

pl∈Pk

xk(pl) ≤ 1 ∀mk ∈M

Each outlier screen can only be used with one parameter
setting

• UOT ≤ γ
A limited number of outlier screens can be selected

• Uj ≤ δ ∀tj ∈ T
Each test can only be used a limited number of times, to
avoid that a single test can have too much impact

Objective: max (wHHT − wY Y L+ wBHB − wUCT)

The first part of the objective is to maximize the number
of target devices in the set of outlier devices. As this is the
primary objective, this part should have a high weight wH .
The other three components are side objectives, which can be
added to the objective with smaller weights. For example, if
we have maximized the number of hit targets, then afterwards
we can look how to minimize yield loss while still attaining
the same number of hit targets. We might also include an
incentive to find bonus devices with the third part of the
objective. Note that wB should be smaller than wH and wY ,
otherwise it does not make sense to distinguish between
bonus and target devices. Finally, the total computational
effort is expressed by the fourth part of the objective. The
weights (wH , wY , wB and wU) must be set, such that the
objectives are optimized in the desired order.

This problem is a variant of (the training phase of) the
classical classification problem. In our case we set a constraint

on the number of false positives (yield loss) and minimize
the number of false negatives (missed targets). Furthermore,
we restrict ourselves to certain outlier detection methods as
classification rules, since the classification rules must make
sense in practical applications. In this way, we also aim to
avoid the overfitting risk. Another important observation is
that the problem is expected to be very sparse in the sense that
the number of detected outliers per test is usually very low,
otherwise we would not consider the test as a good candidate
for outlier detection.

Furthermore, note that the outcome of the model on the
given data set is in practice not the most important outcome;
the performance of the resulting selection on other data sets is
crucial. So robustness of the outcome is more important than
achieving optimal solutions. Finally, we want to remark that
the selected tests are a proposal to the user, and the user may
modify the given solution.

III. APPLICATION

In this section we give an application of the general frame-
work presented in the previous section. In this application we
make some modeling choices in order to simplify the problem
and do not use all aspects of the more general framework. Fur-
thermore, we consider one specific outlier detection method,
which is described in [7]. This method is an online method
which updates a robust mean and standard deviation in order
to set limits based on deviation from the mean measured in
the number of standard deviations. This method has several
parameters, but we only let the model choose the tolerance
parameter among three options, for the other parameters we
use the default values proposed in [7]. Note that the specific
choice of outlier detection method is not the scope of this
paper and that any method could have been used. The reason
for our choice is just that we have an implementation available
of that method.

We implemented our model as an Integer Linear Program
(ILP) and used the solver CPLEX 12.4 to solve the problem.
For the moment we do not consider the use of heuristics for
solving the model, since we are mainly interested in the results.
Afterwards, we may look at heuristics in order to avoid the
use of advanced commercial solvers. The ILP formulation
is presented below. In order to simplify the notation we
consider each outlier screen with different parameter settings
as a different outlier screen. In this model, xj is the decision
variable indicating that outlier screen j is used. As a result
of the values for xj , the variable counti counts how often
a device is detected and the binary variable deti indicates
if device i is detected by the selected outlier screens. The
parameter bij indicates if device i is detected by outlier screen
j.

max wH

∑
i∈TD

deti − wY

∑
i/∈TD∪BD

deti

+ wB

∑
i∈BD

deti − wU

∑
j∈M

xj (1)

!

!

subject to: ∑
j∈M

xj ≤ γ (2)∑
i∈Dk\(TDk∪BDk)

deti ≤ α|Dk| ∀k ∈ L (3)

∑
j∈M

bijxj = counti ∀i ∈ D (4)

counti − deti ≥ 0 ∀i ∈ D (5)
counti − detiγ ≤ 0 ∀i ∈ D (6)

xj , deti ∈ {0, 1} ∀j ∈M,∀i ∈ D (7)

The objective function (1) consists of four parts with their
corresponding weights: the number of hit targets, the amount
of yield loss, the number of hit bonus devices and the number
of used screens. Constraint (2) limits the number of selected
outlier screens, and Constraint (3) is used to set limits on yield
loss per production lot. Constraint (4) is used to compute the
state variable counti, which counts the number of times each
device is detected. Constraints (5) and (6) are used to ensure
that the binary variable deti is set correctly:
• If counti = 0, device i is not detected by the selected

methods. Then constraint (5) ensures that deti = 0 and
constraint (6) is always satisfied.

• If counti > 0, device i is detected by at least one selected
outlier screen. Then, constraint (5) is always satisfied, but
we have to ensure that deti = 1. Note that counti can
attain at most γ, the maximum number of used screens.
So, if deti = 1, then detiγ ≥ counti and hence constraint
(6) is only satisfied if deti = 1.

In all our experiments, we set γ = 100 and we set the weights
such that we are sure that the different objectives are optimized
in the desired order: wH = 107, wY = 104, wB = 100 and
wU = 1.

IV. RESULTS

In this section we describe some results we obtained with
the model presented in the previous section. We applied our
model on a real-world continue-on-fail dataset of 10 wafers
of in total approximately 60,000 devices. We split this data
into a training set of five wafers and an evaluation set of
the remaining five wafers. The training set is used to select
the outlier screens, after which we apply this selection on the
evaluation set in order to check if these results are repeatable.

A. Pre-processing

The dataset contains data of 644 tests. We removed 29 tests
because these are not suitable for outlier detection with our
method due to their distribution, for example distributions with
long tails or discrete values. We also removed the devices
failing only in these unsuitable tests from the target set and
add these to the bonus set, because we cannot expect to find
all those type of failures with outlier detection on the other
tests.

Next, we compute outlier detection results on all remaining
tests, each with three possible settings for the tolerance level

(4, 5 and 6). This leads to 1815 outlier screens, from which we
remove all outlier screens which do not detect targets or only
detect targets at the cost of high yield loss. With the remaining
outlier screens it turned out that seven target devices are not
detectable, i.e. these are not detected by any of the outlier
screens. However, a closer examination of these seven devices
shows that they are so called marginal failures, that is, devices
just outside the limits and close to devices passing the test. In
Figure 1 an example of a test with such marginal failures is
shown. This graph shows test results on a particular test with
the horizontal dashed lines indicating the specification limit.
Such marginal failures are not likely to be detected with outlier
detection (or at high yield loss), but these are most likely
not the problematic devices, since the difference between a
marginal failure just above the limit and a good device just
below the limit seems very arbitrary. In a re-test the outcomes
can be completely opposite due to measurement variations.
Therefore, we also remove those undetectable devices from
the target set.

Figure 1. Example marginal failures

B. Yield loss vs. hit targets

In this subsection we analyze the effect of allowed yield loss
on the number of hit targets. We start without restriction on
yield loss resulting in detection of all targets. Then we restrict
yield loss stepwise until 0%. The results of these experiments
are shown in Figure 2, where we plot the percentage hit
targets and percentage of hit bonus devices versus yield loss
percentage (caused by outlier detection). This graph shows
that with a yield loss of 1.86% we can detect all targets. If
we restrict yield loss to a more acceptable range of something
between 0.5% and 1%, the percentage of hit targets is still
above 90%. Also, 84% of the targets can still be detected if
we do not allow yield loss. We also see the percentage of
detected bonus devices is slightly increasing if we increase
yield loss. This is because we also maximize the number of
detected bonus devices as a side objective (after hit targets is
maximized and yield loss is minimized). In Figure 3 a similar
graph is shown. In this graph we use the selected screens of
Figure 2 and apply these on the evaluation dataset. So the
selected tests of each datapoint in Figure 2 correspond with
the datapoints in Figure 3. It is surprising that the percentage
hit targets remains quite constant between 84 and 89 % for

!

!

most datapoints. However, the percentage of detected bonus
devices increases if yield loss increases.

Figure 2. Results Training

Figure 3. Results Evaluation

C. Missed devices

In this subsection we analyze the missed target devices in
more detail. We use the results of our method in which we
restrict yield loss to 0.5% per wafer. Then, with a selection
of 29 screens, we miss 14 targets in the training set. It
turns out that 11 of these 14 missed devices are marginal
failures, i.e devices that are just outside the limits, whereas
there are several pass devices just on the other side of the
limits. Detection of the remaining three devices costs too much
yield loss with the allowed tolerance settings, because the
distribution of the test in which these devices fail has a quite
long tail. These devices could be detected with less yield loss
if we would allow a higher tolerance setting in this test.

In the evaluation set the number of missed targets rises to
39. However, if we look at these in more detail, 16 of them are
again marginal failures, 2 are missed on the same test as the 3
missed targets in the training set and could be easily detected
if a higher tolerance was used. Furthermore, 10 missed targets
seem to fail on some tests due to a touchdown problem, rather
than they are real failures, since those 10 missed targets are
all on three (quad-site) touchdowns. Summarizing, we have
11 clearly failing missed devices left, which should have been
detected.

D. Yield loss

In this subsection we analyze the yield loss in more detail.
Note that those yield loss devices are most important from
outlier detection perspective. Although our approach can be
used for test time reduction, our main objective was to select
tests for outlier detection. Hence, in practice all specification
tests are still executed and all target devices are still rejected.
In addition, outlier detection is applied on the selected tests,
which will cause some additional yield loss. We use the same
29 selected outlier screens as in the previous subsection, in
which we restrict yield loss per wafer to 0.5%. This selection
results in a yield loss of 90 (0.3%) devices in the training
set and 180 (0.6%) in the evaluation set. Note that the total
yield loss in the training set is somewhat lower than 0.5%,
because the yield loss restriction is applied per wafer. In Table
I we show the percentage of the yield loss of the four outlier
screens that cause most yield loss (96% in total) in the training
set. Surprisingly, those four screens also cause most yield loss
in the evaluation set, although the percentage is decreased to
80%.

Outlier screen 26 is responsible for around 50% of the yield
loss, both in the training as in the evaluation dataset. A closer
examination shows that this large yield loss is caused by a
distribution with a rather long tail in which approximately
40% of those tail devices is either a bonus or target device.
Therefore, this test is selected since it is able to detect a
large number of target and bonus devices at the cost of a
yield loss that remains within the total yield loss constraint. It
is interesting to investigate if this deviating behavior of the
devices in the tails of the distribution is an indication for
lower reliability. The same pattern we see in outlier screen
7, which also causes 20% respectively 14% of the total yield
loss in training and evaluation. Outlier screen 6 causes around
10% yield loss in training and evaluation, in the training set
all those yield loss devices turned out to be devices in the
tail of the distribution, i.e. not really deviating from the other
devices, but only at the borders. So, probably the tolerance
of this outlier screen should be increased. Indeed, inspection
on the evaluation set shows that again mostly tail devices are
detected, but also 5 clearly outlying devices which also would
have been found with an increased tolerance. Finally, outlier
screen 9 causes 9% of the yield loss in training and evaluation.
However, this outlier screen is applied on a test with very
tight limits. It is probably better to execute this test just with
specification limits such that all devices failing this tests are
still found. Note that all the above described behavior already
could be found by quickly analyzing the results on the training
dataset. So, this also shows that with a quick analysis of the
results on the training dataset, we can apply some manual
changes if necessary, in order to decrease yield loss in the
evaluation dataset.

Furthermore, it is surprising that in the evaluation dataset
more yield loss devices turned out to be clear outliers on
visual inspection (around 10%). In Figure 4, an example of
this is shown. Here, we plot the results of one test for the

!

!

Outlier screen %YL training %YL evaluation
26 59% 47%
7 20% 14%
6 9% 10%
9 9% 9%

rest 3% 20%

Table I
PERCENTAGE OF TOTAL YIELD LOSS

evaluation set, where the horizontal black lines indicate the
specification limits. All detected outliers are marked with a
circle; the red datapoints are the failing devices; green points
are the clearly outlying pass devices and the blue points are the
more disputable tail devices. In the training data all yield loss
devices are in the tails, but no clearly outlying pass devices
are found. Apparently, the test selection in the training set
is really fitted to find only failures and limit yield loss as
much as possible. However, the selected tests contain useful
information to find outliers in the evaluation set. An open
question remains if we have found the most important outliers,
which will be topic of further research. Furthermore, the fact
that only 10% of the yield loss are clearly outlying devices,
whereas the other 90% are the more disputable devices in the
tails, is also an indication to perform some additional analysis
in order to filter only the real outliers.

Figure 4. Example Outliers

V. CONCLUSION

In this paper we have presented a framework which can be
used for selecting tests for outlier detection. We also applied
this framework in a specific case and presented some results.
In the evaluation dataset, our method was able to detect 89%
of the target devices, with only 29 outlier screens, at the
cost of 0.6% additional yield loss. Furthermore, most of the
missed devices turned out to be marginal failures. Among the
yield loss devices, around 10% are clearly outlying devices,
the other 90% are tail devices. Also, the yield loss in the
evaluation dataset can be controlled by analyzing the results
in the training set. Note that potential use of our method is
not limited to test selection for outlier detection. Our method
can also be used to gain quick insight in which tests have
high prediction power in explaining failures, which then can
be used as a way to apply test time reduction.

In the previous section we already touched upon a few
issues, which could be improved in future research. First,
we adjusted the definition of our target set; devices which
we could not find with outlier detection we removed with
justification that those devices are marginal failures. Also most
missed devices are marginal failures. So, for better validation
of our method we need ways to quantify the distinction
between marginal failures and real outlying failures. The same
holds for the devices passing all specification limits. Some of
them are clearly outlying on some tests, those are the devices
we would like to detect as much as possible. At the moment,
our approach does not include an incentive to find these, which
we also saw in the results in the training set. This might also
help in answering the question if all (or most) outliers are
found by the selected outlier screens. If data is available,
it might be very interesting to include burn-in failures or
customer returns in the target set and investigate if these could
be found with the presented approach.

A second problem might be the potentially large number
of outlier screens, especially if multiple outlier detection
methods are considered with several parameters to set. The
ILP approach we used, is certainly not able to handle a
large number of outlier screens, but also for other solution
approaches it might help to limit the number of outlier screens.

Finally, as we already mentioned, it also may be worthwhile
to implement a two-stage outlier detection approach: First
make a rough classification of suspect and good devices, than
analyze the suspect devices in more detail to find the real
outliers. In that way, we can allow more yield loss in the first
step, meaning that it is more likely to find all outliers.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support for
this research of AgentschapNL and the province Overijssel
(Pieken in de Delta). Furthermore, we would like to thank
Stefan Eichenberger from NXP and Patrick Zwegers and Kees
Visser from Salland Engineering for providing data and giving
valuable comments.

REFERENCES

[1] P. O’Neill, “Statistical Test: A New Paradigm to Improve Test Effective-
ness and Efficiency,” in ITC, pp. 1–10, 2007.

[2] R. Madge, M. Rehani, and K. Cota, “Statistical Post-Processing at
Wafersort - An Alternative to Burn-in and a Manufacturable Solution
to Test Limit Setting for Sub-micron Technologies,” in VTS, pp. 69–74,
IEEE, 2002.

[3] E. Yilmaz, S. Ozev, and K. Butler, “Adaptive Test Flow for Mixed-
Signal/RF Circuits Using Learned Information from Device Under Test,”
in ITC, pp. 1–10, IEEE, 2010.

[4] D. Dramanac, N. Sumikawa, L. Winemberg, L. Wang, and M. Abadir,
“Multidimensional Parametric Test Set Optimization of Wafer Probe Data
for Predicting in Field Failures and Setting Tighter Test Limits,” in DATE,
IEEE, 2011.

[5] P. Drineas and Y. Makris, “Independent Test Sequence Compaction
through Integer Programming,” in ICCD, IEEE, 2003.

[6] B. Kruseman, B. Tasic, C. Hora, J. Dohmen, H. Hashempour, M. van
Beurden, and Y. Xing, “Defect Oriented Testing for Analog/Mixed-Signal
Devices,” in ITC, pp. 1–10, IEEE, 2011.

[7] H. C. M. Bossers, J. L. Hurink, and G. J. M. Smit, “Online Univariate
Outlier Detection in Final Test: A Robust Rolling Horizon Approach,” in
ETS, IEEE, 2011.

!

!

