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Abstract. Grid monitoring requires analysis of large amounts of log
files across multiple domains. An approach is described for automated
extraction of job-flow information from large computer grids, using soft-
ware agents and genetic computation. A prototype was created as a first
step towards communities of agents that will collaborate to learn log-file
structures and exchange knowledge across organizational domains.
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1 Introduction

Grid infrastructures are distributed and dynamic computing environments that
are owned and used by a large number of individuals and organizations. The
EGEE [1] grid for instance builds on the collective efforts of over 140 organi-
zations in 50 countries, where each organisation owns and manages part of the
grid. In such environments, computational power and resources are shared to
process jobs. A job is a computation task launched by a client to be handled by
the grid. This job is pointed to a resource by a scheduler and then executed on
multiple resources in different parts of the grid, supported by different cluster
organizations.

Operational management of grids is challenging. There are many components
and interactions, resources may join and leave any time, resources are heteroge-
neous and distributed across organizations, and the components undergo contin-
uous improvements and changing of standards [2]. The collaborative and often
dynamic settings of grids requires an intelligent information management system
that is not only flexible and extensible but also able to relate information from
different organizational domains.

A rich source of information for managing grids are system log-files. Log files
can be used for a number of things, such as performance analysis, security man-
agement, and user profiling [3]. In grids, log files are used to analyse network
paths and job flows.

Today, system managers in grids use a variety of tools to monitor the status
of the grid, such as Monalisa, Nagios, BDII, and RGMA. However, these tools
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are typically restricted to the boundaries of a single organizational domain. An
organisational domain in this case refers to a cluster organisation that owns and
maintains a hardware cluster of the grid.

In practice, grid log-files are often analysed manually by local domain adminis-
trators. The main reason for this is that the log-files not only contain information
about jobs but also other entries related to for instance system performance and
security. Job-flow analysis therefore requires specific knowledge about the rele-
vant entries related to job processing and the way in which they are structured.
This makes job-flow analysis a complex task for administrators, especially when
administrators from different domains have to work together to retrace errors in
job processing [2].

Figure 1 illustrates collaboration between grid administrators. Each domain
contains log files (manifests) with sometimes different structures. Retrieving the
executed path of a job and finding the reason of failure is done manually by do-
main administrators. Using his or her domain knowledge, administrators scan the
manifests for regions of interest (ROIs). An ROI is, for example, an IP address
or a unique job identifier. Some administrators make use of regular expression to
represent ROIs that match log entries related to jobs. He or she then manually
creates an information extraction pattern to extract rich information from the
manifests. This information extraction pattern is specific to his or her domain
due to the differences in log-file structures across domains. Defining ROIs and do-
main specific patterns for information extraction is challenging and makes error
tracing in grids a complex and time-consuming task, which often requires com-
munication between domain administrators to exchange their domain knowledge
to achieve a cross domain overview.

Fig. 1. Schematic representation of collaboration between grid administrators in dif-
ferent domains

2 Approach

Error tracing in grids could be optimized profoundly if administrators would be
able to automatically exchange domain knowledge and then automatically incor-
porate this acquired knowledge into a new and improved pattern for information-
extraction from the manifests within their domain.
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In the current study, a prototype was created that integrated methodologies
from multi-agent technology [4], data mining, and knowledge discovery, known as
agent mining [5]. Agent mining has shown a high potential to enhance collabora-
tion performance and tackling of errors and exceptions in distributed computing
environments, such as grids and clouds [6].

The current prototype incorporated techniques from agent-based data min-
ing, where agents collaborated inside a multi-agent system (MAS) to optimize
information retrieval and gathering of information across distributed nodes in
the grid by means of distributed learning [7]. Each agent inside the MAS located
and refined ROIs inside log files using domain knowledge and created a domain
specific pattern for information extraction, called a corpus. The term corpus
stems from text mining, a research area that focuses on the identification and
extraction of relevant features inside manifests. In text mining, unstructured or
semi-structured data is first transformed into a structured intermediate format.
This structured format -or corpus- can then be queried to extract data from
manifests [8]. By exchanging their knowledge, the agents learned from one an-
other to achieve higher levels of data abstraction. The goal of the current study
was to investigate whether such an approach has the potential to support domain
administrators in grids during error tracing.

Figure 2 shows the scope of the prototype. Manifests containing log data
from actual grids were used as data. During preprocessing, initial domain knowl-
edge was acquired about the manifests based on a priori knowledge from system
administrators. This knowledge consisted of domain knowledge and structure
knowledge. Domain knowledge contained a list of attributes that the agent as-
sumed to be of relevance in the log file, the ROIs. These are the data patterns
the agent would search for in the log file. These attributes were called descriptive

Fig. 2. Scope of the prototype
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attributes (DA). DAs were represented by regular expressions, as shown in table
1. Structure knowledge contained a collection of concepts that serve as building
blocks to construct the regular expressions.

Table 1. Examples of DAs and ROIs in domain knowledge

DA/ROI Log-file line example

TIME\pPunct*\s*({\w+ \s*:}*) TIME: Sun Dec 7 04:02:09 2008

PID\pPunct*\s*(\w1,) PID: 125690

Domain- and structure knowledge were used by an algorithm to locate the
ROIs within the manifest, construct a regular expression to represent each ROI,
and create a corpus. Finally, the constructed ROIs were federated between the
software agents.

Genetic computation was used to construct the corpus. Genetic algorithms
use Darwin’s principle of natural selection, along with analogs of recombination
(crossover), mutation, gene duplication, gene deletion, and mechanisms of devel-
opmental biology [9]. A genetic algorithm follows an evolutionary path towards a
solution. These solutions are represented by chromosomes made up of individual
elements called genes. Genes encode specific kinds of information. Populations
of chromosomes (i.e. possible solutions) evolve into new generations of chromo-
somes by means of recombination (crossover) and mutation. A genetic algorithm
typically has the following logic [10]:

1. Create a population of random chromosomes.
2. Test each chromosome for how well it fits the solution.
3. Assign each chromosome a fitness score.
4. Select the chromosomes with the highest fitness scores and allow them to

survive to a next generation.
5. Create a new chromosome by using genes from two parent chromosomes

(crossover).
6. Mutate some genes in the new chromosome.

Steps 2 to 6 are repeated until a certain condition is met, or when a maximum
number of generations is reached.

After construction of the corpus, the agents federated domain knowledge to
other agents inside the MAS, who in turn incorporated these new ROI definitions
inside their domain knowledge and used them to create a new corpus to read
manifests. The JADE framework was used to create a MAS. JADE is an Open-
Source, Java-based framework, and one of the most widespread agent-oriented
middleware in use today [11].

3 Prototype

Figure 3 shows a schematic representation of the scope of a single agent. Each
element of the figure is explained in the next paragraphs.
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Fig. 3. Representation of the elements within the scope of a single agents

The used data were manifests that contained original log data from the EGEE
grid, provided by the National Institute for Nuclear and High energy physics
(NIKHEF).

The solution domain in figure 3 represents the agent’s pre-knowledge of the
manifest: its assumptions about the manifest’s structure and interesting parts.
The solution domain consists of domain knowledge and structure knowledge.
Domain knowledge and structure knowledge together provide the building blocks
for an agent to construct a corpus. The corpus was a collection of ROIs ordered
in a sequence that has the highest fit on a reoccurring pattern in the manifest.

The solution of genetic computation was a chromosome that represented a
corpus that fitted a data pattern inside the manifest. The chromosomes consisted
of elements from structure knowledge and domain knowledge, which formed the
genes within the chromosome. Each chromosome represented a potential corpus.
The size of chromosome was a fixed size, which was set before run-time. The
corpus was represented by a directed graph as shown in figure 4. Directed graph
G is

G = (N,E)

where N is the set of nodes and E is the set of edges. The edge set E is a subset
of the cross product (N ∗ N). Each element (u,v) in E is an edge joining node
u to node v. A node v is neighbour of node u if edge (u,v) is in E.

An (N ∗N) adjacency matrix (table 2) represented the adjacency of vertices
within the corpus. So a chromosome consisted of multiple adjacency-matrix in-
dex numbers to represent the graph, and the index numbers referred to a directed
edge where the node was an ROI. Index number 1 meant node 2 is connected to
node 1 where node 2 is the parent node of node 1. A root node was defined as
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Fig. 4. Example of a directed graph, representing a corpus

a starting point for the corpus (in this case PID). In sum, first a root node was
defined as a starting point for the graph. Next, the adjacency index numbers
were translated into a graph of regular expressions.

Table 2. Example of an adjacency matrix. Parent node 2 has child node 3.

u / v Node 1 Node 2 Node 3

Node 1 0 1 2

Node 2 3 4 5

Node 3 6 7 8

The genetic algorithm fitted each graph (chromosome) onto the manifest,
where the root node was taken as the starting point of the graph. After a fit
of the root node it tried to fit the first child node on each following line of the
manifest. After a match, the next child node was fitted, and so on. This recursive
process was repeated until the function reached the end of the manifest or until
the root node fitted again. The latter was taken as a re-occurrence of the pattern.

A function ScoreGraph was used to return the longest path, or fit of nodes, be-
tween two root nodes. The ScoreGraph function returned the best path including
recursion of the directed graph (chromosome), and was defined as

ScoreGraph = argmax(followedpaths)

When the whole manifest was covered and scored -by fitting the graph- the total
score was summed. A fitness score was calculated, where n was the fit of a root
node, with k = 1 summing the scores of ScoreGraph.

FitnessScore =
∑n

k=1 ScoreGraphk
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For optimizing to the shortest path description, the Occam’s razor [12] principle
was used. For every gene-space in the chromosome that was not filled, a bonus
of 0.1 was added to the fitness score of the chromosome. As such, argmax tried
to create the longest description possible, while Occam’s razor principle tried to
create the shortest possible description. Together these combined forces resulted
in a complete, as well as shortest path description. This created a chromosome
that represented the shortest reoccurring data pattern in the manifest, given the
knowledge from the solution domain.

Precision and recall were used as evaluation measures for validating an ROI.
Precision is a measure of exactness or fidelity meaning nothing but the truth:

Precision = |TP |+|FP |
|TP |

Recall is the probability that a (randomly selected) relevant item is retrieved in
a search.

Recall = |TP |
|TP |+|FN |

The true positives (TP) represented the number of detected correct matches,
false positives (FP) were the number of falsely detected matches, false negatives
(FN) represented the number of unidentified data that were in fact real matches,
and true negatives (TN) were the number of unidentified data that were not
matches.

First, the genetic algorithm was tested using the manifest as input data, which
contained 524 lines of entries. The amount of TPs within the manifest was known
before hand, and consisted of 151 TPs.

The fitness function used a random mutation operator. A random mutation
operator means a new random mutation rate was created for each evolution and
applied to the current generation of chromosomes. Chromosome size and popula-
tion size were manipulated. Six configurations were tested, and al configurations
were tested 5 times (runs) over 300 evolutions. In this case the mutation operator
was randomized every evolution:

1. Chromosome size = 11 (equal to the ultimate adjacencies),
population size = 50

2. Chromosome size = 11 (equal to the ultimate adjacencies),
population size = 100

3. Chromosome size = 15, population size = 50
4. Chromosome size = 15, population size = 100
5. Chromosome size = 20, population size = 50
6. Chromosome size = 20, population size = 100

3.1 Multi-agent System

The prototype was tested using several agents that had limited knowledge about
a log file. The goal of the prototype was to show that agents could learn from
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one another by exchanging domain knowledge and structure knowledge. In the
current setting, four agents were given the same log file to analyse while holding
a different set of DAs.

Each agent was given the location of the manifest and contained a JADE
behaviour to analyse the manifest. The genetic algorithm was implemented in
the JADE agents. The prototype uses a minimal vocabulary (JADE ontology)
for communication between agents, which consisted of corpusscore, score, da,
name, expression, ihavescore, and ihaveda.

CorpusScore was the internal fitness score of each agent. Score was the score
received from other agents. DA was an ROI, name was the name of the DA, and
expression was the regular expression to represent the DA. IhaveScore was an
attribute that indicated that an agent had a corpusScore, and finally IhaveDA
was an attribute to indicate than an agent had one or more DAs.

Figure 5 shows the interaction between two agents. The prototype was tested
using four agents located on two different machines. Each agent had different
DAs but all had the same root node. Each agent built a corpus every 5 minutes
and exchanged DAs according to the sequence diagram in figure 5. After an
agent was created it first located and opened the manifest. Next, it created a
corpus using genetic computation and its solution domain. When an agent suc-
cessfully created a corpus with a fitness score on the manifest, the agent would
broadcasts its fitness score to the other agents. When the incoming score (re-
ceived from other agents) exceeded its own, the agent would broadcast a request
for DAs. The agent with the highest score would respond with a IhaveDA that
contained its DAs. Next, the requesting agent would add the DAs to its domain
knowledge.

Fig. 5. Sequence diagram agent mining
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4 Results

Table 3 shows the results of genetic computation with a random mutation. The
max hit score was 151, and the bonus score for the shortest description was added
to find the optimal corpus. In the case of chromosome size 20 the optimal score
was 151.9 because 9 adjacencies should then be empty within the chromosome.

Results show that when the chromosome size was equal to the size of the optimal
adjacencies (in this case 11) the optimal corpus was not found. A chromosome
length of 15 required a lower number of generations to reach the optimal corpus
than a chromosome size of 11 and 20. The precision score was always 1 in this test.
This was because of the fact that ROIs were implemented as regular expressions.
Regular expressions have a hard fit, which decreases the chance of FPs.

Two out of six configurations never reached the optimal corpus: chromosome
size 11 with a population of 50 and 100. The parameter configuration of chromo-
some size 11 and population size 50 reached 144.1 two times. So the corpus graph
score had 144 fit points, and one allele in the chromosome remained empty. This
resulted in the additional bonus score of 0.1. The optimal score was 151 and
all the alleles in the chromosome should be filled. Results show that the maxi-
mum fitness score was reached at an average of 90 evolutions, with an average
fitness score of 140. With a population size of 100 and chromosome size of 11,
the average highest fitness score was 141.3, which was reached after an average
of 25 generations. It suggested that a higher population size resulted in a higher
fitness score compared to a population of 50. In addition, the highest score was
also reached at an earlier stage of evolution. With a population of 50, an average
of 140 evolutions was needed to reach the highest score, and with a population
of 100 the result was an average of 25 evolutions. A population of 100 reached its
maximum score 115 evolutions sooner, compared to a population of 50. These
results suggest that using a chromosome size equal to its optimal adjacencies (in
this case 11, known from the manifest) did not result in the optimal corpus, and
tended to reach local optimal solutions.

Using the parameters of chromosome size 15 and population 50 resulted in an
average evolution number of 116 before reaching its average maximum fitness
score of 150. During 4 out of 5 runs the optimal corpus was found. With a
population size 100, the average fitness score was approximately 149 and the
average evolution number was approximately 40, and 3 out of 5 runs reached
the optimal corpus.

A chromosome size of 20 and population of 50 resulted in the optimal corpus
during all runs of the experiment. In this case the average evolutions (resulting
in a maximum score) was 201.6. Both cases resulted in a recall and precision of
1. When the population was set to 100 the average of evolutions that reached
its maximum fitness score was approximately 99.

Results suggested that doubling the chromosome size reduced the chance of
local optima solutions. Also, a higher starting population seemed to reduce the
number of evolutions required to reach the optimal corpus. In this experiment
chromosome size 20 and population 100 showed the best result for acquiring the
optimal corpus (without respect to computation time).



Agent-Mining of Grid Log-Files: A Case Study 175

Table 3. Genetic computation result with a random mutation
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11 50 1 79.0 137.2 37 NO 1 0.907

11 50 2 99.1 144.1 101 NO 1 0.954

11 50 3 72.0 130.3 23 NO 1 0.861

11 50 4 89.0 137.1 261 NO 1 0.907

11 50 5 99.0 144.1 25 NO 1 0.954

15 50 1 96.0 151.4 56 YES 1 1

15 50 2 85.1 151.4 76 YES 1 1

15 50 3 106.0 151.4 94 YES 1 1

15 50 4 96.0 151.4 279 YES 1 1

15 50 5 106.0 144.5 73 NO 1 0.954

11 100 1 99.0 144.1 18 NO 1 0.954

11 100 2 89.0 144.1 26 NO 1 0.954

11 100 3 89.1 144.1 21 NO 1 0.954

11 100 4 106.0 144.1 30 NO 1 0.954

11 100 5 99.0 130.3 27 NO 1 0.861

15 100 1 106.0 151.4 32 YES 1 1

15 100 2 113.0 151.4 28 YES 1 1

15 100 3 99.0 144.5 65 NO 1 0.954

15 100 4 99.0 144.5 38 NO 1 0.954

15 100 5 113.0 151.4 35 YES 1 1

20 50 1 106.0 151.9 274 YES 1 1

20 50 2 106.0 151.9 225 YES 1 1

20 50 3 103.1 151.9 197 YES 1 1

20 50 4 113.0 151.9 200 YES 1 1

20 50 5 96.0 151.9 112 YES 1 1

20 100 1 113.0 151.9 121 YES 1 1

20 100 2 116.1 151.9 95 YES 1 1

20 100 3 113.0 151.9 132 YES 1 1

20 100 4 120.1 151.9 63 YES 1 1

20 100 5 116.1 151.9 82 YES 1 1
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The prototype illustrated that agents were able to learn from each other. Over
time each of the four agents was able to build identical and optimal corpora,
because they shared all the DAs known in the agent network.

5 Discussion

A MAS prototype was created to exchange domain knowledge between agents.
This exchanged knowledge was then used by each agent to create a corpus for
information retrieval from log-file manifests. The aim of the prototype was to
investigate whether such an approach has the potential to support domain ad-
ministrators in grids during error tracing.

The created prototype was able to successfully exchange knowledge between
agents. Each agent was then able to use this knowledge to create an optimal
corpus for information retrieval. The prototype allowed extraction of data from
log-files even when the structure of the log-files changes over time, and new or
changed domain knowledge can be introduced and shared easily among agents.
The prototype therefore illustrated collaborative learning and the automatic
integration of knowledge for reading manifests, and showed the potential to
support information retrieval in a cross-domain volatile environment.

The prototype represented a first step towards communities of agents that
will collaborate to learn log-file structures and exchange knowledge across or-
ganizational domains. Some limitations of the prototype will have to addressed
in follow-up research. For instance, the current prototype was successful when
analysing log files that were similar in structure and contained similar ROIs. Fu-
ture work will have to address comparison of log-files in different cluster organi-
sations, which contain different entry orders as well as ROIs that are different in
nature. The latter would require semantic translation and comparison between
domain knowledge of cluster organisations. For instance PID in one cluster do-
main may be represented as ID in another. The matching of ROIs on a semantic
level was outside the scope of the current prototype.

Finally, the current study did not address scalability, deployment, and over-
head of the prototype in a production cluster. While the JADE framework is
known for its scalability and deployment in distributed systems [11] the genetic
computation that was used could potentially increase overhead. Impact on sys-
tem performance and optimization should be addressed in future work.

Acknowledgements. This study was performed within Collaborative Network
Solutions (CNS), an expertise group at Logica, in collaboration with NIKHEF.
The study was funded by the VL-e project (www.vl-e.org).

References

1. EGEE: EGEE Homepage, http://public.eu-egee.org/
2. Mulder, W., Jacobs, C.: Grid management support by means of collaborative learn-

ing agents. In: Proceedings of the 6th International Conference Industry Session
on Grids Meets Autonomic Computing, pp. 43–50. ACM (2009)

http://public.eu-egee.org/


Agent-Mining of Grid Log-Files: A Case Study 177

3. Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Com-
munications of the ACM 55, 55–61 (2012)

4. Russell, S., Norvig, P.: Artificial Intelligence: A modern approach, 3rd edn.
Prentice-Hall, New Jersey (2009)

5. Cao, L., Gorodetsky, V., Mitkas, P.A.: Agent Mining: The Synergy of Agents and
Data Mining. IEEE Intelligent Systems 24(3), 64–72 (2009)

6. Cao, L.: Data Mining and Multi-agent Integration (edited). Springer (2009)
7. Cao, L., Weiss, G., Yu, P.S.: A Brief Introduction to Agent Mining. Journal of

Autonomous Agents and Multi-Agent Systems 25, 419–424 (2012)
8. Feldman, R., Sanger, J.: The text mining handbook: advanced approaches in ana-

lyzing unstructured data. Cambridge University Press (2007)
9. Koza, J.R., Keane, M.A., Streeter, M.J., Adams, T.P., Jones, L.W.: Invention and

creativity in automated design by means of genetic programming. Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing 18, 245–269 (2004)

10. Conrad, E.: Detecting Spam with Genetic Regu-
lar Expressions. SANS Institute Reading Room (2007),
http://www.giac.org/certified_professionals/practicals/GCIA/0.793

11. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. Wiley (2007)

12. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Infor-
mation Processing Letters 24, 377–380 (1987)

http://www.giac.org/certified_professionals/practicals/GCIA/0.793

	Agent-Mining of Grid Log-Files: A Case Study
	Introduction
	Approach
	Prototype
	Multi-agent System

	Results
	Discussion
	References




