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Abstract. We present the results of research of limiting adversarial
budget in attack games, and, in particular, in the failure-free attack
tree models presented by Buldas-Stepanenko in 2012 and improved in
2013 by Buldas and Lenin. In the previously presented models attacker’s
budget was assumed to be unlimited. It is natural to assume that the
adversarial budget is limited and such an assumption would allow us to
model the adversarial decision making more close to the one that might
happen in real life. We analyze three atomic cases – the single atomic
case, the atomic AND, and the atomic OR. Even these elementary cases
become quite complex, at the same time, limiting adversarial budget
does not seem to provide any better or more precise results compared
to the failure-free models. For the limited model analysis results to be
reliable, it is required that the adversarial reward is estimated with high
precision, probably not achievable by providing expert estimations for
the quantitative annotations on the attack steps, such as the cost or the
success probability. It is doubtful that it is reasonable to face this com-
plexity, as the failure-free model provides reliable upper bounds, being
at the same time computationally less complex.

1 Introduction

The failure-free models [2,3] provide reliable utility upper bounds, however this
results in systems that might be over-secured. It has not been studied how much
extra cost the upper-bound oriented methods cause. We present the intermediate
results of researching the model assuming that the adversarial budget is limited
and compare the results of analysis using adaptive strategies with limited budget
to the analysis results of the failure-free model, in which the adversary is not
limited in any way. The adversarial limitation is the only limitation applied to
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the adversary, all other assumptions and concepts are identical to the failure-free
model.

The assumption that the adversarial budget is limited is natural, as this is
what happens in reality. Limited budget models the adversarial strategic decision
making in a better way, which is more close to the one likely to be observed in
real life and the research on the adaptive strategies with limited budget is an
important research area in quantitative security analysis based on attack trees.

We analyze three cases: the atomic attack case, the atomic AND, and the
atomic OR analyzing the effect of limiting adversarial budget in fully-adaptive
strategies [2,3]. We show that the atomic attack case and the atomic AND case
do not provide whatsoever better or more reliable results, compared to the ex-
isting failure-free models. The atomic AND case might provide more precise
result, but in this case analysts must estimate the adversarial reward with the
required precision, which in real-life scenarios might be less than e1. If they
fail to do that, the results of such an analysis are unreliable. In practice, it is
doubtful that analysts would be able to come up with such precise estimations.
Even if such precise estimations existed, the model would not provide reliable
results, as there is still margin for human mistake and in case analysts might
overlook the estimations provided to such parameters as cost of the attack step,
or the adversarial reward, the results of the analysis would not be reliable. On
the contrary, the existing failure-free models with unlimited adversarial budget
provide reliable utility upper bounds, despite the fact that this may result in
over-secured systems.

It seems that limited budget makes the model much more complex compared
to the unlimited budget approach. For example, optimal strategies that were
shown to be non-adaptive in the failure-free models [2,3] can be adaptive and
more complex to analyze in the limited budget model. The best move to under-
take in certain states of the game changes bouncing between the attack steps.

Even the elementary cases studied in this paper become quite complex con-
sidering limited budget assumption compared to the corresponding cases in the
failure-free models [2,3]. It is doubtful that the more general case will have a
graceful easy solution to derive optimal strategies. Considering the requirement
to be able to estimate the adversarial reward very precisely it is doubtful that it
is reasonable to face the complexity of the calculations on the limited adaptive
strategies.

The outline of the paper is the following: Section 1 provides a high-level
overview of the problem and briefly outlines the results obtained so far. Sec-
tion 2 describes the work related to the presented approach, Section 3 provides
definitions of terms used throughout the paper. Section 4 describes the effect
of limited budget assumption on the fully-adaptive strategies and the strate-
gic decision making undertaken by the adversary. Finally, Section 5 summarizes
the obtained results, outlines questions still left open, and describes interesting
problems for future research.
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2 Related Work

In this section, we outline the work that has lead to and influenced the develop-
ment of the presented model.

2.1 Schneier Attack Trees’ Concept

The idea of analyzing security using the so-called attack trees was popularized
by Schneier in [7]. The author suggested to use attack trees as a convenient
hierarchical representation of an attack scenario. The analysis implied that the
analysts had to estimate one single parameter they would like to reason about, for
each of the leaves in the attack tree. Then the bottom-up parameter propagation
approach was applied to propagate the results of calculations towards the root
node of the tree, the result of the root node was considered the result of such an
analysis. The suggested bottom-up parameter propagation method allowed to
reason about such parameters like minimal/average/maximal cost of the attack
scenario, likelihood of its success, etc. The analysis relied on an assumption that
the analyzed parameters are mutually independent, which allowed to analyze
them independently of each other and to derive some meaningful conclusions
about the security of the systems based on the obtained results.

2.2 Buldas-Priisalu Model

The model of Buldas et al. [1] is remarkable for introducing the multi-parameter
approach to the quantitative security risk analysis. The model is based on the
assumption of a rational adversary who is always trying to maximize his average
outcome. The authors state that in order to assess security it is sufficient to as-
sess adversarial utility. If the utility is negative or zero, the system is reasonably
secure, as attacking it is not profitable. If the utility is positive, the adversary has
an incentive to attack and attacking is profitable for him. The adversary under-
takes strategic decision-making in accordance with the rationality assumption –
the adversary will start attacking iff it is profitable. Additionally, authors state
that malicious actions are, as a rule, related to criminal behavior and for this
reason they applied economic reasoning in their model which considers the risk
of detection and potential penalties of the adversary. Their model introduced
a novel way to think about security and gave start to multi-parameter quanti-
tative security analysis. Jürgenson et al. have shown that Buldas et al. model
is inconsistent with Mauw-Oostijk foundations [6] and introduced the so-called
parallel model [4] and the serial model [5] which provided more reliable results,
however in both models the adversary did not behave in a fully adaptive way.

2.3 Buldas-Stepanenko Fully Adaptive Model

In the Buldas-Stepanenko fully adaptive model [3] the adversaries behave in a
fully adaptive way launching atomic attack steps in an arbitrary order, depending
on the results of the previous trials. However, the model had force-failure states,
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when the adversary could not continue playing and thus adversarial fully adap-
tive behavior was limited. In their model optimal strategies are non-adaptive and
in some cases, like atomic OR or atomic AND, may be easily derived by calcu-
lating certain invariants. In their failure-free model the adversary was expected
to launch attack steps until success, thus the failure-free model is similar to the
fully adaptive model with the difference that in the failure-free model success
probabilities of the attack steps are equal to 1. The most significant contribu-
tion of the paper [3] is the upper bounds ideology by which the models should
estimate adversarial utility from above, trying to avoid false-positive security
results.

2.4 Improved Failure-Free Model

The improved failure-free model [2] improves the Buldas-Stepanenko failure-free
model [3] by eliminating the force-failure states. In the improved model the ad-
versarial behavior more fully conforms to the upper bounds ideology introduced
in [3] – the adversary may repeat failed attack steps and play on when caught.
It turned out that the elimination of the force failure states has made the model
computationally easier. The authors show that in the new model optimal strate-
gies always exist. Optimal strategies are single-branched BDD-s where the order
of attack steps is irrelevant. Additionally, authors show that finding an optimal
strategy in the new model is NP-complete. Two computational methods were
introduced – the one allowing to compute the precise adversarial utility value,
and the one which allowed to derive the approximated estimation of adversarial
utility upper bound.

3 Definitions

Definition 1 (Derived function). If F (x1, . . . , xm) is a Boolean function and
v ∈ {0, 1}, then by the derived Boolean function F|xj=v we mean the function
F(x1, . . . , xj−1, v, xj+1, . . . , xm) derived from F by the assignment xj := v.

Definition 2 (Constant functions). By 1 we mean a Boolean function that
is identically true and by 0 we mean a Boolean function that is identically false.

Definition 3 (Satisfiability game). By a satisfiability game we mean a single-
player game in which the player’s goal is to satisfy a monotone Boolean function
F (x1, x2, . . . , xk) by picking variables xi one at a time and assigning xi = 1.
Each time the player picks the variable xi he pays some amount of expenses
Ei ∈ R, sometimes also modelled as a random variable. With a certain probability
pi the move xi succeeds. Function F representing the current game instance is
transformed to its derived form F|xi=1 and the next game iteration starts. The
game ends when the condition F ≡ 1 is satisfied and the player wins the prize
P ∈ R, or when the player stops playing. With probability 1 − pi the move xi

fails. The player may end up in a different game instance represented by the
derived Boolean function F|xi≡0 in the case of a game without move repetitions,
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and may end up in the very same instance of the game F in the case of a game
with repetitions. Under certain conditions with a certain probability the game
may end up in a forced failure state, i.e. if the player is caught and this implies
that he cannot continue playing, i.e. according to the Buldas-Stepanenko model
[3]. The rules of the game are model-specific and may vary from model to model.
Thus we can define three common types of games:

1. SAT Game Without Repetitions - the type of a game where an adversary can
perform a move only once.

2. SAT Game With Repetitions - the type of a game where an adversary can
re-run failed moves again an arbitrary number of times.

3. Failure-Free SAT Game - the type of a game in which all success probabilities
are equal to 1. It is shown in [2] that any game with repetitions is equivalent
to a failure-free game (Thm. 5).

Definition 4 (Satisfiability game with limited budget). By a satisfiability
game with limited budget we mean the SAT game with move repetitions in which
the current state of the game is described by the Boolean function F(x1, . . . , xk)
and the budget λ – ⟨F , λ⟩. Every move xi made by the player changes the state
of the game. If xi succeeded, the game moves into the state ⟨F|xi=1, λ− Ci⟩ and
if xi has failed, the new state of the game is ⟨F|xi=0, λ− Ci⟩, where Ci is the cost
of xi. The game ends if the player has satisfied the Boolean function F ≡ 1 and
reached the state ⟨1, λ⟩ thus winning the game, or when the player has reached
the state ⟨F , λ⟩ in the case of which the expenses of every possible move Ei > λ
and F has not been satisfied, meaning the loss of the game.

Definition 5 (Line of a game). By a line of a satisfiability game we mean
a sequence of assignments γ = ⟨xj1 = v1, . . . , xjk = vk⟩ (where vj ∈ {0, 1}) that
represent the player’s moves, and possibly some auxiliary information. We say
that γ is a winning line if the Boolean formula xi1 ∧ . . .∧xik ⇒ F (x1, . . . , xn)
is a tautology, where F is a Boolean function of the satisfiability game.

Definition 6 (Strategy). By a strategy S for a game G we mean a rule that
for any line γ of G either suggests the next move xjk+1 or decides to give up.

Strategies can be represented graphically as binary decision diagrams (bdds).

Definition 7 (Line of a strategy). A line of a strategy S for a game G is the
smallest set L of lines of G such that (1) ⟨⟩ ∈ L and (2) if γ ∈ L, and S suggests
xj as the next move to try, then ⟨γ, xj = 0⟩ ∈ L and ⟨γ, xj = 1⟩ ∈ L.

Definition 8 (Branch). A branch β of a strategy S for a game G is a line γ
of S for which S does not suggest the next move. By BS we denote the set of all
branches of S.

For example, all winning lines of S are branches.

Definition 9 (Expenses of a branch). If β = ⟨xi1=v1 , . . . , xik=vk⟩ is a branch
of a strategy S for G, then by expenses ϵG (S,β) of β we mean the sum E i1 +
. . .+ E ik where by E ij we mean the mathematical expectation of Eij .
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Definition 10 (Prize of a branch). The prize PG (S,β) of a branch β of a
strategy S is P if β is a winning branch, and 0 otherwise.

Definition 11 (Utility of a strategy). By the utility of a strategy S in a
game G we mean the sum: U (G,S) =

∑
β∈BS

Pr (β) · [PG (S,β) − ϵG (S,β)]. For

the empty strategy U (G, ∅) = 0.

Definition 12 (Prize and Expenses of a strategy). By the expenses E (G,S)
of a strategy S we mean the sum

∑
β∈BS

Pr (β) · ϵG (S,β). The prize P (G,S) of S

is
∑

β∈BS

Pr (β) · PG (S,β).

It is easy to see that U (G,S) = P (G,S) − E (G,S).

Definition 13 (Utility of a satisfiability game). The utility of a SAT game
G is the limit U (G) = sup

S
U (G,S) that exists due to the bound U (G,S) ! P.

Definition 14 (Optimal strategy). By an optimal strategy for a game G we
mean a strategy S for which U (G) = U (G,S).

It has been shown that for satisfiability games optimal strategies always exist [2].

4 Limiting Adversarial Budget in the Improved
Failure-Free Model

In this paper we focus on the fully adaptive adversarial strategies assuming
that the adversarial budget is limited. Budget limitation is the only limitation
used, compared to the improved failure-free model [2]. Adversaries still behave
in a fully adaptive way and are allowed to launch failed attack steps again in
any order, until the budget gets so small that no attack steps can be launched.
When the budget decreases by a considerable amount, monetary limitation starts
effecting possible strategic choices of the attacker – possible set of choices reduces
(the adversary may launch only some subset of the attack steps) and eventually,
this subset becomes an empty set. It turns out that the optimal strategy depends
on the amount of the monetary resource available to the adversary.

In the improved failure-free model the state of the game is represented by the
Boolean function F . If the attack step has failed, the adversary finds himself in
the very same state of the game F . Due to this non-adaptive strategies always
exist in the set of optimal strategies of the game.

This is not always the case when we consider budget limitations – in general,
optimal strategies are adaptive, except for some certain sets of parameters in
case of which optimal strategies are non-adaptive. When we consider budget
limitations the state of the game is represented by the Boolean function F and
the budget λ. We denote the utility in a certain game state ⟨F , λ⟩ with Uλ(F).
When an attack step fails, the adversary finds himself in an another state of the
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game represented by Uλ−C(F), where C is the cost of the failed attack step. The
relation between the utility upper bound U∞(F) in [2] and the utility Uλ(F)
given budget λ is the following:

U∞(F) = lim
λ→∞

Uλ(F) .

In some certain cases optimal strategies are non-adaptive, but in general they
are not. This makes computations reasonably complex. When the adversarial
budget increases, his utility increases as well and approaches the adversarial
utility upper bound in the improved failure-free model [2]. It turns out that in the
case of a reasonably big budget the complexity added by the budget limitation
does not add any value nor give any additional benefits, as the difference between
the utility in the model with budget limitations and the utility upper bound
becomes negligible.

In this paper we focus on the three elementary games – the single attack
case, the atomic AND and the atomic OR game and show the effect of budget
limitations in these games. Even these elementary cases become quite complex
when taking budget limitations into account. It becomes doubtful if the prac-
tical application of the model with budget limitations is efficient and reliable.
Using complex computational procedures we face the risk to make the model
inapplicable for the practical cases, while the negligible deviation between the
results of the model with budget limitations and the one without them in case
of a reasonably big budget (which is the expected case in real-life scenarios) and
much less complex and more efficient computations induces us to give preference
to the model without budget limitations, despite the fact that it overestimates
adversarial power and capabilities for the cases when the adversarial budget is
reasonably small.

4.1 Single Atomic Attack Case

In case the adversary may choose from a single available choice, he will continue
launching the attack step until it succeeds, or as long as the budget allows it.
Such a strategy may be represented in the form of a single-branched bdd as in
Fig. 1:

X

Uλ(X )

X

Uλ−CX (X )

. . . X

Uλ−k·CX (X )

X X X

Fig. 1. An adaptive strategy suggesting to iterate attack step X until it succeeds or as
long as the adversarial budget allows to launch the attack step

In accordance with the strategy, the adversary launches an attack step X with
cost C and success probability p. If it succeeds, the adversary has accomplished
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the attack and has won the game. If X fails, the adversary finds himself in another
state of the game ⟨X , λ− C⟩. Thus, adversarial utility may be expressed in the
form of the relation (1):

Uλ(X ) = max
{
0, U(X ) + (1− p) · Uλ−C(X )

}
. (1)

It can be seen (see Fig. 2) that the adversarial utility changes in the points where
the budget is multiples of the cost of the attack step. In case the adversarial
budget is less than the cost of the attack step, the adversary cannot launch a
single attack step and thus his utility is 0. The optimal strategy in this case
is an empty strategy – the attacker will be better off not trying to attack. In
case the budget exceeds the cost of the attack step, the utility grows with each
subsequent trial to launch an attack step, as every subsequent trial increases the
likelihood of success that the attack step will succeed. Thus, adversarial utility
asymptotically approaches the utility upper bound in the model without budget
limitations.

0 C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C
λ

Uλ(X )

U∞(X )

Uλ(X )

Fig. 2. Single atomic attack case

The utility value that the adversary may achieve, given budget λ, may be
expressed in the form of equation (2):

Uλ(X ) =

[
P − C

p

]
·
[
1− (1− p)⌊

λ
C ⌋

]
= U∞(X )

[
1− (1− p)⌊

λ
C ⌋

]
, (2)

where U∞(X ) is the utility upper bound [2].

Comparison with the Improved Failure-Free Model

We will investigate the case when the improved failure-free model analysis result
states that the system is insecure, while the budgeted model result states that
the system is secure.
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According to the improved failure-free model the adversarial utility U∞ (X ) =
P − C

p . The system is secure in case P ! C
P and insecure in case P > C

P .

{
U∞(X ) = P − C

p > 0

Uλ(X ) =
[
P − C

p

] [
1− (1− p)⌊

λ
C ⌋

]
! 0

(3)

It can be seen that the condition (3) can be reached only when the adversary
has no resources to attack (λ < C). Thus limiting adversarial budget does not
provide more trustworthy nor more reliable results compared to the improved
failure-free model in case of single atomic attack games. If in the case of some
positive budget λ the adversarial utility is positive, it will be less or equal to
zero in the model with budget limitations only if λ < C. In other words, if the
system is insecure in the improved failure-free model, it will also be insecure
in the model with budget limitations for any adversarial budget, sufficient to
launch the attack step at least once.

4.2 Two Attack Steps

In the case of atomic games of 2 possible attack steps Xi and Xj and correspond-
ing costs CXi

and CXj
, the adversarial utility changes in the so-called lattice points

which are the projections of points (n CXi
,m CXj

) in two-dimensional Euclidean
space into one-dimensional space using the formula Li = n CXi

+m CXj
, where

n ∈
{
1, 2, . . . ,

⌊
λ

CXi

⌋}
, m ∈

{
1, 2, . . . ,

⌊
λ

CXj

⌋}
, ∀i : Li ! λ (see Fig. 3). In

the case of three attack steps the utility changes in the projections of points in
three-dimensional space into one-dimensional space. Thus with the increase in
the amount of possible attack steps the lattice argument space becomes more
complex.

It can be shown that the distance between the two adjacent lattice points has
a lower bound.

Theorem 1. If the relation of attack step costs may be expressed in terms of a
rational fraction (a fraction of two rational numbers, corresponding cost values

may be irrational)
CXi
CXj

= p
q , then the distance between two adjacent lattice points

Li and Li+1 will be not less than
CXj

q .

Proof. The distance δ between the two adjacent lattice points Li and Li+1 may
be expressed as

δ = |(n− n′)CXi
+ (m−m′)CXj

| = | (n− n′)p+ (m−m′)q︸ ︷︷ ︸
α∈Z

| ·
CXj

q

=

{
0 , if α = 0,

"
CXj

q , if α ̸= 0.

⊓.
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If the ratio of the attack step costs is irrational, lattice points appear with
increasing frequency eventually positioning infinitely close to each other. In real
life we can expect the costs to be rational (it would be difficult to estimate an
irrational value for the cost parameter) and for this reason the above mentioned
bound exists in the practical cases.

6 12 18 24 30
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Uλ(F)

U∞(F)

Uλ(F)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

λ0

Fig. 3. Projections of the lattice points in the two-dimensional space into the one-
dimensional space

Atomic OR Case

In the case of an atomic OR game in order to win it is sufficient that any of
the two attack steps, X = {Xi, Xj} succeeds. The initial state of the game is
⟨Xi ∨ Xj , λ⟩ and the subset of available attack steps to launch is {Xi,Xj}. In
each state of the game the player may choose to launch any attack step from



Limiting Adversarial Budget in Quantitative Security Assessment 165

the subset of available attack steps, or to discontinue playing. The attacker
launches an attack step Xk from this set. If Xk succeeded the game moves into
the state ⟨1, λ− Ck⟩, where Ck is the cost of the launched attack step, and
the player has won the game. If the attack has failed, the game moves into
the state ⟨Xi ∨ Xj , λ− Ck⟩ and the game goes on while Ek ! λ. At some point
the current λ will reduce the set of available attacks to one (cheapest) attack,
and eventually, the set of possible attacks becomes an empty set. Upon reaching
the state in which Ek > λ and the Boolean function of the game has not been
satisfied – the player has lost the game.

Adversarial utility may be expressed in the form of the relation (4):

Uλ(Xi ∨ Xj) = max

⎧
⎪⎨

⎪⎩

0 ,

U(Xi) + (1− pXi
) Uλ−CXi (Xi ∨ Xj) ,

U(Xj) + (1− pXj
) Uλ−CXj (Xi ∨ Xj) .

(4)

In certain cases under certain conditions the optimal strategy in the atomic
OR case is non-adaptive and suggests to repeat one of the attacks independently
of the current state of the game. We will bring an example of such a case.

Theorem 2. If the costs of the attacks are equal, the attack having greater suc-
cess probability will be best to try in every state of the game.

Proof. Assume that CXi
= CXj

= C. The utility of the game may be expressed
in the form of

Uλ(Xi ∨Xj) = max

⎧
⎪⎨

⎪⎩

0 ,

U(Xi) + (1− pXi
) · Uλ−C(Xi ∨ Xj) ,

U(Xj) + (1 − pXj
) · Uλ−C(Xi ∨ Xj) .

Optimal strategy will suggest to try attack Xi if

U(Xi) + (1− pXi
) · Uλ−C(Xi ∨ Xj) > U(Xj) + (1− pXj

) · Uλ−C(Xi ∨Xj) (5)

Solving inequality (5) we reach condition pXi
> pXj

. ⊓.

Algorithm 4.1 outlines the recursive procedure to calculate maximal adver-
sarial utility in the atomic OR game given budget λ according to (4).

We show how the best move changes in the atomic OR game, depending on
the current budget λ demonstrating it by several examples:

The first example (Fig. 4) shows that the best move bounces between the two
attack steps when the budget is rather small, and sticks to one attack step later
on. By ∅ we mean that the best move is not to start attacking at all.

The second example (Fig. 5) demonstrates the case when both of the attack
steps are equally good when the budget is rather small and thus there is no
difference for the attacker whether to launch attack step Xi or to launch attack
step Xj . But when the budget increases, the adversary has a clear preference for
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Algorithm 4.1. Maximal utility of the atomic OR case with the given
budget

Input: Attack step Xi cost i cost
Input: Attack step Xi probability i pr
Input: Attack step Xj cost j cost
Input: Attack step Xj probability j pr
Input: Prize of the game prize
Input: Budget budget
Output: Maximal adversarial utility value (a real number)

1 Procedure AtomicOr (i cost, i pr, j cost, j pr, prize, budget)
2 if budget is less than i cost and j cost then
3 return (0)
4 i utility := -i cost + i pr · prize
5 j utility := -j cost + j pr · prize
6 if budget is greater than i cost then
7 ui = i utility + (1-i pr) · AtomicOr (i cost, i pr, j cost, J pr, prize,

budget-i cost)
8 if ui is negative then
9 ui := 0

10 if budget is greater than j cost then
11 uj = j utility + (1-j pr) · AtomicOr (i cost, i pr, j cost, j pr, prize,

budget-j cost)
12 if uj is negative then
13 uj := 0

14 if ui is not less than uj then
15 maximal utility := ui

16 else
17 maximal utility := uj

18 return (maximal utility)

0 2 3 4 5 6 7 8 9 10

∅ Xi Xj Xi Xj Xj Xj Xj Xj λ

Fig. 4. Atomic OR case with parameters CXi
= 2, pXi

= 0.3, CXj
= 3, pXj

=

0.48, P rize = 30

one attack over the other one. By = we mean that launching attack step Xi is
as good as launching attack step Xj .

The third example (Fig. 6) demonstrates the case when the costs of the attacks
are irrational, but their relation may be expressed in terms of a fraction of
rational numbers. It can be seen that the best move to undertake in a certain
state of the game between attack steps Xi and Xj .

The next example (Fig. 7) demonstrates that there are cases where the optimal
strategy is non-adaptive and iterates one single attack step Xj .
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0 2 4 6 8 10 12 14 16 18

∅ = = Xj Xj Xj Xj Xj Xj λ

Fig. 5. Atomic OR case with parameters CXi
= 2, pXi

= 0.05, CXj
= 6, pXj

=

0.9, P rize = 30
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Fig. 6. Atomic OR case with parameters CXi
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√
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Fig. 7. Atomic OR case with parameters CXi
=

√
2, pXi

= 0.1, CXj
=

√
2

3 , pXj
=

0.38, P rize = 30

Comparison with the Improved Failure-Free Model

We will show that the case when the improved failure-free model analysis result
states that the system is insecure, while the budgeted model result states that
the system is secure is impossible. Lets consider adversarial budget I for which
the following inequalities hold:

UI(Xi ∨ Xj) > 0 , (6)

UI−C(Xi ∨ Xj) ! 0 , (7)

where C is the cost of any of the atomic attacks. Assuming I is greater than the
costs of attacks Xi and Xj :

UC(Xi ∨ Xj) ! 0 . (8)

Let Xk with cost C and probability p be the optimal move in the considered state
of the game. In this case:

UI(Xi ∨Xj) = UC(Xi ∨ Xj) + (1− p) · UI−C(Xi ∨Xj) . (9)

As UI−C(Xi ∨ Xj) ! 0 by (7) and UC(Xi ∨ Xj) ! 0 by (8), it contradicts with
the initial assumption UI(Xi ∨ Xj) > 0. Thus it seems that there is no point in
limiting adversarial budget in the elementary OR case.

Atomic AND Case

In the case of atomic AND game in the initial state of the game the adversary
has to choose either to launch the attack step Xi, or to launch Xj or not to start
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playing. If the adversary has chosen to launch attack Xi and it has failed, the
game moves into the state

〈
Xi ∧ Xj , λ− CXi

〉
. If Xi succeeded, the game moves

into the state
〈
Xi ∧ Xj |Xi=1, λ− CXi

〉
which is identical to

〈
Xj , λ− CXi

〉
. In this

case, the attacker has the following choices: either to launch the remaining attack
Xj (if λ is sufficient for it), or to discontinue playing the game. If Xj succeeds,

the game moves into the state
〈
1, λ− CXi

− CXj

〉
and the adversary has won

the game. In case Xj fails, the game moves into the state
〈
Xj , λ− CXi

− CXj

〉

and the game continues until the budget λ is sufficient to continue playing.
Adversarial utility may be expressed in the form of the relation (10).

Uλ(Xi∧Xj) = max

⎧
⎪⎨

⎪⎩

0

−CXi
+ pXi

Uλ−CXi (Xj) + (1−pXi
) Uλ−CXi (Xi∧Xj)

−CXj
+ pXj

Uλ−CXj (Xi) + (1−pXj
) Uλ−CXj (Xi∧Xj)

(10)

where (according to (2)):

Uλ−CXi (Xj) = U∞(Xj)

⎡

⎣1− (1− pXj
)

⌊
λ−CXi
CXj

⌋⎤

⎦ ,

Uλ−CXj (Xi) = U∞(Xi)

[
1− (1− pXi

)

⌊λ−CXj
CXi

⌋]
.

In the atomic AND game the positive utility may not be achieved immediately
by the adversary. We call the minimal value of the adversarial budget, sufficient
to achieve positive utility the adversarial utility budget lower bound, which can
be computed as:

λ0 = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 ,

[
log(1−pXj

)

[
1−

CXi
pXi

U∞(Xj)

]]
· CXj

+ CXi
,

[
log(1−pXi

)

[
1−

CXj

pXj
U∞(Xi)

]]
· CXi

+ CXj
.

(11)

Algorithm 4.2 outlines the recursive procedure to calculate maximal adver-
sarial utility in the atomic AND game given budget λ according to (10).

We show how the best move changes in the atomic AND game, depending on
the current budget λ demonstrating it by several examples

The first example (Fig. 8) shows that there are certain sets of parameters
which make the adversary indifferent in whether to launch attack step Xi or
attack step Xj in every state of the game.

The second example (Fig. 9) demonstrates the case when the best move
bounces between attack step Xi and attack step Xj . In some states of the game
both of the attack steps are equally optimal to launch.
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Algorithm 4.2. Maximal utility of the atomic AND case with the given
budget

Input: Attack step Xi cost i cost
Input: Attack step Xi probability i pr
Input: Attack step Xj cost j cost
Input: Attack step Xj probability j pr
Input: Prize of the game prize
Input: Budget budget
Output: Maximal adversarial utility value (a real number)

1 Procedure AtomicAnd (i cost, i pr, j cost, j pr, prize, budget)
2 if budget is less than the sum of i cost and j cost then
3 return (0)

4 i inf := prize− i cost
i pr

5 j inf := prize− j cost
j pr

6 i rep := i inf ·
[
1− (1− j pr)

⌊
budget-i cost

j cost

⌋]

7 j rep := j inf ·
[
1− (1− i pr)⌊

budget-j cost
i cost ⌋

]

8 ui = -i cost + i pr · j rep + (1-i pr) · AtomicAnd (i cost, i pr, j cost, j pr, prize,
budget-i cost)

9 if ui is negative then
10 ui := 0
11 uj = -j cost + j pr · i rep + (1-j pr) · AtomicAnd (i cost, i pr, j cost, j pr, prize,

budget-j cost)
12 if uj is negative then
13 uj := 0
14 if ui is not less than uj then
15 maximal utility := ui
16 else
17 maximal utility := uj

18 return (maximal utility)

0 2 4 6 8 10 12 14 16 18 20

∅ ∅ ∅ ∅ = = = = = =
λ

Fig. 8. Atomic AND case with parameters CXi
= 2, pXi

= 0.05, CXj
= 6, pXj

=

0.9, P rize = 30

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

∅ ∅ ∅ ∅ Xi Xi Xj Xi Xj Xi = Xi Xi Xi λ

Fig. 9. Atomic AND case with parameters CXi
= 2, pXi

= 0.3, CXj
= 3, pXj

=

0.48, P rize = 30
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The third example (Fig. 10) demonstrates the case when the costs of the
attacks are irrational, but their relation may be expressed in terms of a fraction
of rational numbers. It can be seen that with the given parameters optimal
strategy will suggest to iterate attack step Xj and thus the optimal strategy is
non-adaptive.
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Fig. 10. Atomic AND case with parameters CXi
=

√
2, pXi

= 0.8, CXj
=

√
2

2 , pXj
=

0.45, P rize = 30.

The next example (Fig. 11) demonstrates the case when the optimal strategy is
adaptive and the best move to undertake in a certain state of the game alternates
between attack step Xi and attack step Xj .
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Fig. 11. Atomic AND case with parameters CXi
=

√
2, pXi

= 0.1, CXj
=
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3 , pXj
=

0.38, P rize = 30

Comparison with the Improved Failure-Free Model

We will investigate the case when the improved failure-free model analysis result
states that the system is insecure, while the budgeted model result states that
the system is secure. According to the improved failure-free model the adversarial

utility U∞ (Xi ∧Xj) = P−
CXi
pXi

−
CXj

pXj

. The system is secure in case P ! CXi
pXi

+
CXj

pXj

and insecure in case P >
CXi
pXi

+
CXj

pXj

.

Let the adversarial budget λ suffice to launch m attack steps in total and
the adversarial strategy may be the one as shown in Fig. 12 and for the sake of
simplicity lets assume that CXi

= CXj
= C and pXi

= pXj
= p.

Adversarial utility may in this case be computed as shown in (12).

Um×C(Xi∧Xj) =

[
U∞(Xj)−

C
p

] [
1−(1−p)m−1]−(m−1)(1−p)m−1 [p U∞(Xj)]

(12)

=

[
P− 2C

p

] [
1−(1−p)m−1]−(m−1)(1−p)m−1 [pP−C]
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Fig. 12. An adaptive strategy consisting of two attack steps Xi and Xj , with adversarial
budget λ

According to the budgeted model the strategy is not profitable for an attacker,
while the improved failure-free model states that the strategy is profitable if:

2C
p

< P ! 2C
p

· 1− [1 + C(m− 1)] (1 − p)m−1

1 − [1 + p(m− 1)] (1− p)m−1
. (13)

Inequality (13) shows the interval for the value of prize within which the result
of the limited budget model and result of the improved failure-free models differ.
We will show what happens to the results of the analysis of both models in the
broader view.

2C
p

2C
p · 1−[1+C(m−1)](1−p)m−1

1−[1+p(m−1)](1−p)m−1

U∞(Xi ∧ Xj) = 0 Uλ(Xi ∧ Xj) = 0U∞(Xi ∧ Xj) < 0

Uλ(Xi ∧ Xj) < 0

U∞(Xi ∧ Xj) > 0

Uλ(Xi ∧ Xj) < 0

U∞(Xi ∧ Xj) > 0

Uλ(Xi ∧ Xj) > 0
P

Profit accuracy bounds

Fig. 13. Comparison of the improved failure-free model to the limited budget model

Thus, Fig. 13 shows that if prize is less than 2C
p then the system is secure

according to both models. If prize is greater than 2C
p · 1−[1+C(m−1)](1−p)m−1

1−[1+p(m−1)](1−p)m−1 then
the system is insecure according to both models. Only when the prize is between
2C
p and 2C

p · 1−[1+C(m−1)](1−p)m−1

1−[1+p(m−1)](1−p)m−1 the limited budget model may produce result
different from the result of the improved failure-free model.
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We have experimented with various parameters and observed that the prize
interval (13) becomes negligibly small – less than 1 e. In practice, as a rule, it
is practically impossible to estimate the value of the protected assets with the
precision of less than e1 and for this reason we think that the limited budget
model may produce false-positive results in case analysts are unable to estimate
prize with required precision and this makes us give preference to the failure-free
models which provides reliable utility upper bounds.

Table 1 demonstrates an example of such calculations. It can be seen that
already with rather small increase in budget (approximately 3 times greater
than the costs of the attack steps) the prize must be estimated with precision
less than e1 in order to ensure reliability of the results.

The first column in a table describes the monetary budget of the adversary.
The second column describes the interval for possible prize values, the column
named span shows the length of such an interval. Precision is the length of
uncertainty interval divided by mean value.

5 Conclusions and Future Research

We have analyzed the 3 kinds of elementary games – the single attack game, the
atomic OR and the atomic AND, assuming that the adversarial budget is limited.
In the result of limiting adversarial budget the model and computations become
reasonably complex that makes it doubtful that this approach is applicable for
real-life case analysis. Additionally, in case of atomic AND we have to be able to
estimate the prize parameter quite precisely – if we fail to do that, the analysis
results will be unreliable. In practice it is very hard to estimate the cost of an
asset or information with the desired precision and thus is it doubtful if it is
reasonable to face the complexities of budget limitations and its false positive
results which might happen in the case of AND type games.

The improved failure-free model is, on the contrary, less complex and provides
reliable upper bounds. Due to the fact that when the move fails the player finds
himself in the very same instance of the game results in the existence of non-
adaptive strategies in the set of optimal strategies of the game and the ordering
of the attack steps in non-adaptive optimal strategies is irrelevant. In the model

Table 1. Initial setting: Prize: e30 Cost: e2 Probability: 0.3

Lambda (#) P Domain (e) Span (e) Deviation (e) Precision (%)

2 (13.(3), 28.(8)] 15.(5) ±7.(7) 0.518519
3 (13.(3), 22.4074] 9.07407 ±4.537035 0.302469
4 (13.(3), 19.242] 5.9087 ±2.95435 0.196957
5 (13.(3), 17.4047] 4.07139 ±2.035695 0.135713
6 (13.(3), 16.232] 2.89863 ±1.449315 0.0966211
7 (13.(3), 15.4386] 2.10531 ±1.052655 0.0701772
8 (13.(3), 14.8816] 1.54822 ±0.77411 0.0516073
9 (13.(3), 14.4806] 1.14723 ±0.573615 0.038241
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with budget limitations the subset of non-adaptive strategies exists in the set of
all strategies. Non-adaptive strategies are relatively easy to derive and compute.
One of the open questions is to figure out how well the most optimal strategy
from the subset of non-adaptive strategies Uλ

na(G) might approximate the optimal
strategy from the set of all possible strategies Uλ(G). If Uλ

na(G) provides pretty
good approximation to Uλ(G), then there exists infinitely small α such that:

Uλ
na(G) ! Uλ(G) ! α · Uλ

na(G) ! U∞(G) .

If this holds, it might enable calculation of acceptably precise result without
facing the complexity and the computational overhead introduced by the precise
utility calculation routines.

Secondly, it would be interesting to see when the optimal move in certain
states of the game changes by bouncing between the two possible moves thus
following some pattern. Additionally, to verify the hypothesis that this might
happen in the theoretical case when the ratio of the costs of the move is irrational.

The bigger the adversarial budget λ is, the more adversarial utility approaches
the utility upper bound in the improved failure-free model. Optimal strategies
in the improved failure-free model are non-adaptive and do not depend on the
ordering of the attack steps. In the case of big λ optimal strategies are likely
to behave non-adaptively as well in the limited budget model. This means that
optimal move in certain states of the game is likely to bounce changing from one
attack to another, but with increase in λ the optimal move remains the same. It
also means that the utility of various strategies, beginning with different moves,
become closer to each other with the increase in λ and there should exist infinitely
small δ such that

| Uλ(Si)− Uλ(Sj) | ! δ ,

where Si and Sj are the two strategies from the set of all strategies of the game.
The improved failure-free model provides reliable utility upper bounds, how-

ever this results in systems that might be over-secured. It has not been studied
how much extra cost the upper-bound oriented methods cause. The assumption
that the adversarial budget is limited is natural, as this is what happens in re-
ality. Models assuming limited budget model the adversarial strategic decision
making in a better way, which is more close to the one likely to be observed in
real life and the research on the adaptive strategies with limited budget is an
important research area in quantitative security analysis based on attack trees.
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