
Preservation of Correctness During System Reconfiguration in Data

Distribution Service for Real-Time Systems (DDS)

Bogumil Zieba

Thales Nederland B.V,

AWS Department

Haaksbergerstraat 49, Hengelo (O), 7554 PA,

The Netherlands

bogumil.zieba@nl.thalesgroup.com

Marten van Sinderen

University of Twente,

Department of Computer Science, Centre for

Telematics and Information Technology,

PO Box 217, 7500 AE, Enschede,

The Netherlands

m.vansinderen@utwente.nl

Abstract

This paper addresses dynamic reconfiguration of

distributed systems that use a publish/subscribe

(pub/sub) middleware. The objective of dynamic

reconfiguration is to evolve incrementally from one

system configuration to another at run-time in order to

e.g., ensure the reliability of the system. The

correctness notion of a distributed system is introduced

that assures that the system parts that interact with

entities under reconfiguration do not fail because of

reconfiguration. We analyse the OMG specification of

pub/sub systems - DDS (Data Distribution Service for

Real-Time Systems) with respect to its support for the

correctness preservation during reconfiguration. We

notice that the DDS specification defines such an

architecture and behaviour of the pub/sub system that

automatically preserves correctness. This differentiates

the DDS from other middleware technologies that

require that the correctness preservation is guaranteed

on application level or by reconfiguration

manager/controller. We give several examples of

automatic correctness preservation supported by the

DDS.

1. Introduction

The reliance on software systems imposes

restrictions on the possibility of restarting them or

taking them off-line. It is usually not acceptable, e.g.,

for economical or safety reasons, to cause major

interruptions in the service these systems provide. They

have high availability, adaptability and maintainability

requirements and they have to cope with advances in

technology, modifications of their operating

environment and ever-changing human needs [1, 2].

The aim of dynamic reconfiguration is to allow a

system to evolve at run-time [2, 3], as opposed to

design-time, while introducing little (or ideally no)

impact on the system’s execution. In this way, systems

do not have to be taken off-line, rebooted or restarted

to accommodate changes. Performing reconfiguration

on a running system is an intrusive process.

Reconfiguration may imply, for example, addition,

removal, migration or replacement of reconfigurable

entities and interference with ongoing interactions

between entities. Reconfiguration management must

assure that system parts that interact with entities under

reconfiguration do not fail because of reconfiguration

[1, 2].

Publish/subscribe (pub/sub) systems have recently

gained significant attention because their computational

model fits well when dealing with real-time, distributed

data-centric applications [4, 5]. Pub/sub systems

feature a data-centric communication pattern, where

applications publish (supply or stream) large amount of

“data” samples, which are then available to remote

applications that are interested in them. It uses an

interaction model that consists of information

publishers, which publish events to the system and

information subscribers, which subscribe to events of

interest within the system. An event can be seen as a

special message sent by an information publisher and

(implicitly) addressed to the set of information

subscribers, which issued a subscription that matches

the event [6]. A participant may simultaneously publish

events and subscribe to the other events.

DDS (Data Distribution Service for Real-Time

Systems Specification) is a recent OMG (Object

Management Group) specification for interoperable

pub/sub middleware. The purpose of this specification

is to offer standardised interfaces and behaviour of

pub/sub systems [7]. In this paper we analyse the DDS

with respect to its support for the correctness

preservation during reconfiguration.

The rest of the paper is structured as follows. Section 2

presents an overview of the DDS architecture. Section

3 introduces a notation of correctness preservation

during reconfiguration. Section 4 outlines the DDS

systems architecture and behaviour during

reconfiguration with reference to notation presented in

section 3. Section 5 discusses related work. Finally,

section 6 presents our conclusions.

2. Overview of DDS

We focus the analysis of the DDS on one part of the

specification – Data Centric Publish-Subscribe

(DCPS). The DCPS specification covers the lower

level API for applications to communicate with other

applications and the pub/sub infrastructure that is

responsible for efficient events delivery. It consists of

the following entities [7] (figure 2): Domain – creates

a ‘virtual network’ of pub/sub participants. Only

participants that belong to the same domain can

communicate. The domain separates participants

allowing several independent distributed applications

to coexist in the same physical network without

interfering or even being aware of each other (figure 1).

Publisher

Subscriber Subscriber Subscriber

 Data Domain

Domain 1 Domain 2 Domain 3

Publisher Publisher

Fig 1. Domains in the DDS

DomainParticipant – container for participants in the

domain. It acts as a factory for the Publishers,

Subscribers and Topics. Publisher – container for a

group of DataWriters that acts as a factory for them.

QoS (Quality-of-Service) can be assigned to the

Publisher that will be collectively attached to

corresponding DataWriters within the Publisher.

DataWriter– this is the main access point for

applications publishing data samples. Subscriber –

container for a group of DataReader that acts as a

factory for them. QoS can be assigned to the Subscriber

that will be collectively attached to corresponding

DataReaders within the Subscriber. DataReader – the

main access point for applications for receiving data

samples. Topic is the most basic description of the data

to be published and subscribed to. A Topic is identified

by its name, which must be unique in the whole

Domain. In addition, it fully specifies the type of the

data that can be communicated when publishing or

subscribing to the Topic.

The DDS relies on the use of QoS. A QoS is a set of

characteristics that controls some aspects of the

behaviour of the DDS Service. QoS may be associated

with all entities in the system such, as Topic,

DataWriter, DataReader, Publisher, Subscriber and

DomainParticipant.

Data

Writer

Data

Writer

Publisher

Data

Reader

Subscriber

DomainParcicipant

Data

Writer

Publisher

Data

Reader

Subscriber

DomainParcicipant

Topic

Topic

Data Domain

Fig 2. The DDS architecture showing
relationships between entities

3. Correctness preservation during

reconfiguration

For any distributed, middleware-based system

consistency preservation during reconfiguration is a

major issue. A system can become useless in case the

preservation consistency is ignored. The system under

reconfiguration must be left in a “correct” state after

reconfiguration. In order to support the notion of

correctness of a distributed system, three aspects of

correctness requirements are identified [1, 3, 8]:

1) The system must comply with structural integrity

requirements. Structural integrity requirements

constrain the structure of a system in terms of the

relationships between entities and the ways in which

these entities might be put together. For example, in

terms of CORBA it is satisfying the interface definition

of the original object and reference to new

reconfigured object.

2) Entities in a distributed system need to be in

mutually consistent states if they are to interact

successfully with each other. Entities are said to be in

mutually consistent states, if each interaction between

them, on completion, results in a transition between

well-defined and consistent states for the parts

involved. Interactions are the only means by which

entities can affect each other’s state. In order to provide

an example, we can consider that object A invokes an

operation on B. Objects A and B are said to be in

mutually consistent states if A and B have the same

assumptions on the result of the interactions between

them. To be more specific, either both of them perceive

that an invocation has occurred successfully or both of

them perceive that the invocation has failed. Suppose

the change manager decides to replace B by B' after A

initiated an operation invocation on B. For the resulting

system to be in a consistent state, either (i) the

invocation has to be aborted, A is informed and

synchronization is maintained; or (ii) B receives the

request, finishes processing it and sends the response

and then is replaced by B'; or, (iii) B is replaced by B'

and B' has to honour the invocation, by processing the

request and sending a response to A. In case none of

these alternatives occur, A might be kept waiting for a

response forever.

3) The application state invariants are predicates

involving the state of (a subset of) the entities in a

system. The preservation of safety and liveness

properties of a system depends on the satisfaction of

these invariants. For example, let us consider an object

that generates unique identifiers. An application-state

invariant could be “all identifiers generated by the

object are unique within the lifetime of the system”. In

order to preserve this invariant, the new version of the

object must be initialised in a state that prevents it from

generating identifiers that have been already used by

the original object.

4. The DDS support for correctness

preservation during reconfiguration

In this section we present the DDS architecture and

QoS-controlled behaviour with reference to the

notation of correctness preservation, presented in

previous section.

4.1. Structural Integrity Requirement

The following DDS properties: decoupling between

publishers and subscribers, symmetric design of

architecture and QoS-controlled behaviour influence

the accomplishment of structural integrity requirement.

The decoupling, that is the essential characteristic of

any pub/sub system, can be detailed in: Space -

interacting parties do not need to know each other;

Time - parties do not need to be actively participating

in the interaction at the same time; Flow - asynchrony

of the model. Interacting participants do not directly

reference to each other but through the pub/sub

infrastructure, which acts as a broker for

communication. Therefore the responsibility for

realizing the structural integrity requirement is shifted

from application level to pub/sub middleware

infrastructure.

The design of the DDS architecture is symmetric.

That means that in the DDS pub/sub system there are

no centralized, single points of failure or privileged

participants (like e.g., in CORBA - Name Server). The

identical pub/sub middleware infrastructure is run on

every node taking part in a communication. Each node

has a global knowledge of all topics, publishers and

subscribers within the same domain.

4.1.1 QoS-controlled behaviour during subscriber

reconfiguration

The DDS provides QoS policies that determine the

pub/sub system behaviour in case of subscriber

reconfiguration (unavailability). Appointed data

samples to the ‘off-line’ subscriber can be either

discarded or stored for ‘late-joining’ subscribers

(subscribers that do not exist at the moment of data

production, but may appear in future). Such pub/sub

system behaviour may be realized using the following

QoS:

1) Durability QoS - expresses if data should 'outlive'

their writing time. It has the following parameter

values: volatile (publisher does not need to keep any

data samples on behalf of any subscriber that is not

known by the publisher at the time the data sample is

written), transient (keep some samples so that they can

be delivered to any potential ‘late-joining’ subscriber;

it depends on other QoS such as History and Resource

Limits) and persistent (data samples are kept on

permanent storage, so that they can outlive a system

session). 2) History QoS – specifies the total number

of samples that are stored per instance of publisher for

‘late-joining’ subscribers. The maximum number of

instances can be specified in the Resource Limits. 3)

Resource Limits QoS – the amount of resources

reserved for storing data samples. 4) Reliability QoS -

indicates the level of reliability of data delivery. These

levels are ordered, from best_effort (unreliable

delivery, without data retransmission) to reliable (fully

reliable data delivery). Subscriber sends an

acknowledgment of receipt of each data sample. The

DDS durability service stores unacknowledged data

samples for later delivery. We present the use-case of

subscriber reconfiguration in figure 3. The assumptions

are that the subscriber requires reliable data delivery

and data samples have set persistent durability QoS.

DDS on

subscriber side

1

3

6

7

2

DDS infrastrucure

DDS on

publisher side
Subscriber Publisher

4

5

Fig. 3. Use-case of subscriber’s

reconfiguration.

1) The publisher produces data samples that are

delivered to the subscriber. 2) DDS on the publisher

side receives the acknowledgement of each delivered

data sample. 3) The subscriber goes off-line for

reconfiguration e.g., migration from one computer node

to another. 4) The publisher produces data sample, but

the DDS infrastructure at publisher side does not

receive acknowledgments of data delivery. 5) The

durability service at the publisher side stores

unacknowledged data samples on permanent storage. 6)

The reconfiguration finishes and the subscriber resume

operation. It broadcasts a data sample containing its

subscription (DCPSSubscription topic - built-in topic

in DDS). 7) DDS at the publisher side receives the

subscription and it sends out data samples that are

stored on permanent storage.

4.1.2 QoS-controlled behaviour during publisher

reconfiguration

In many mission-critical systems (e.g., Naval

Command and Control Systems) an additional and

redundant publisher is introduced in order to provide

continuous publication of data samples during

reconfiguration of the publisher. It takes over the role

of the ‘main publisher’ for the time of reconfiguration.

The DDS defines the Ownership QoS that determines

ownership of data samples. Certain types of data

samples (defined as Topic) can be either updated

(owned) by many publishers (Ownership value is set to

shared) or by one instance of the publisher (Ownership

value is set to exclusive). When two or more publishers

publish data samples that have exclusive ownership,

data samples from only one of them are delivered and

those from others are discarded. The preferred

publisher (owner of data samples) is determined based

on the parameter value ownership strength. The

publisher with highest value of the ownership strength

is the preferred publisher. The DDS provides the

parameterised mechanism to discover and keep track of

the presence of publishers in the domain. It allows

assigning to participants or data samples Liveliness

QoS that enforces entities to send an “alive” signal

every period of time specified by the liveliness value.

This QoS is used by the DDS to determine the owner

of data samples.

A crucial requirement for the pub/sub systems is to

accomplish continuous data publication. We present

the use-case of publisher reconfiguration in figure 4.

Data samples have set exclusive ownership. A second

publisher is introduced in order to take over the role of

the ‘main publisher’ for the reconfiguration time. Both

of them publish identical data samples.

Publisher1 Subscriber DDS infr. Publisher2

1
3

5

‘alive’ signal message

4

6

2

7

8

Fig. 4. Use-case of publisher reconfiguration

1) The DDS infrastructure delivers data samples from

publisher 1. 2) The DDS infrastructure discards data

samples from publisher 2 due to the higher value of

ownership strength of publisher 1. 3) The

reconfiguration of the publisher 1 starts. 4) The DDS

infrastructure does not receive ‘alive’ signals from

publisher 1 and establishes publisher 2 as the owner of

data samples. Data samples from publisher 2 are

accepted and delivered to the subscriber. 5) Publisher 1

resumes operation. 6) The DDS infrastructure receives

the ‘alive’ signal from publisher 1 and re-establishes it

as the data owner due to the higher value of the

ownership strength. 7) Data samples from publisher 1

are delivered. 8) Data samples from publisher 2 are

discarded.

4.2 Mutually consistent state requirement

A design of effective distributed applications, that

uses the pub/sub communication model, shall take into

account the type of data flow that those applications

exchange. For example, the signal data flow generated

by real-time sensors has the following properties:

values may change continuously, have short

persistence, is time-critical (updates are useless when

they are old), idempotent (repeated updates are

acceptable), last-is-best (new information is more

important than a missed sample). Another example of a

data flow is the command data flow that requires

instructions to be delivered in a sequence, reliable and

precisely-once [9]. The differentiation between the

properties of data flows requires dealing differently

with the mutual state consistency problem. One

approach is to tolerate some data samples to be lost

during subscriber reconfiguration since retransmissions

are useless, like in the example of signal data flow.

Another approach is to strongly enforce each data

sample delivery and order of delivery. Therefore in this

case the publisher retransmits all undelivered data

samples after subscriber reconfiguration. The system

designer, through assignment of the Reliability QoS to

different entities (DataReader, DataWriter and Topic),

determines the behaviour of the DDS pub/sub system in

case of a participant’s unavailability. The reliability

QoS set to value reliable automatically enforces

mutually state consistency (see example in figure 3).

4.3. Application State Invariants

The pub/sub communication model creates the

illusion of a shared “global data space” populated by

data samples that applications in distributed nodes can

access via simple read write operation (see figure 5).

The DDS introduces the notation of data objects that

are data samples uniquely identified by: Topic

(introduced in the previous section) ; Key – the field in

the message that uniquely determines this message

within the Topic

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Read

Read

Read

Write

Write

Write

Global Data Space

Data

Object

Data

Object

Data

Object

Data

Object

Fig. 5. The pub/sub system presented as

“global data space”.

For example, table 1 presents the Topic Track. The

first field is the key field that uniquely determines this

message.

Table 1 The example of track topic definition
Struct Track {
Longtrack id //key
position pos; }

If two or more data objects share the same key value,

the more recent instance overwrites the other. If no key

field is defined, no fields indicate uniqueness and all

the data objects are overwriting each other.

Applications periodically or state-change-driven

publish/subscribe their internal state to the “global data

space” as data objects. The state of the system consists

of a collection of data objects codified as the most

current values representing the state of each application

in the system. The values of data object, representing

the state of the system, are not stored on one node, but

distributed across the system. Because the system state

is distributed, an application that goes on-line can

publish/subscribe to its most recent internal state from

the DDS infrastructure (figure 6). 1) A participant

saves/writes its internal state to DDS infrastructure. 2)

The participant goes off-line for reconfiguration. 3)

Reconfiguration finishes and the participant resumes its

operation. 4) The participant loads/reads its internal

state from DDS.

Publisher/

Subscriber

DDS

1

2

3 4

Fig. 6. Applications save/load their internal

state to/from the DDS infrastructure.

5. Related Work

An alternative approach for reconfiguration in

pub/sub middleware is presented in [10.] The dynamic

reconfiguration is defined informally as the ability to

rearrange the routes traversed by events in response to

changes in the topology of the network of dispatchers

and to do this without interrupting the normal system

operation. This is contrary to our approach in which we

assume changes in the components allocation in the

fixed topology of the network. The Lira infrastructure

for managing dynamic reconfiguration applies and

extends the concepts of network management to

component-based, distributed software systems [11].

Lira is designed to perform component-level

reconfigurations through Reconfiguration Agents

associated with individual components and the latter

through a hierarchy of managers. Reconfiguration

Agents are programmed on a component-by-

component basis to respond to reconfiguration requests

appropriate for that component. Managers embody the

logic for monitoring the state of one or more

components, and for determining when and how to

execute re-configuration activities [11]. The taken

approach does not discuss anything about: the

correctness preservation, state consistency during

reconfiguration, the impact of reconfiguration

infrastructure on the system performance, and

components reliability.

6. Conclusions

In this paper we analysed the DDS specification

with respect to its support for the correctness

preservation during reconfiguration. The analysis

considered three aspects of correctness, as presented in

[1]: structural integrity, mutually consistent state and

application state invariants. The DDS pub/sub

architecture and QoS-controlled behaviour

automatically ensure correctness preservation during

reconfiguration. This differentiates the DDS from other

middleware technologies that require that the

correctness preservation is guaranteed on application

level or by a reconfiguration manager/controller e.g.,

like in the [3]. This makes the DDS specification well

suited for a dynamic environment, where dynamic

reconfiguration and automatic discovery of participants

are major concerns. Unlike Jini, CORBA and other

client-server technologies, the DDS does not rely on

centralized nodes e.g., name servers and is therefore

highly resilient to partial failures in the network.

However, we notice that the DDS architecture is based

on broadcast messages and a ‘global knowledge’

assumption, which may be a reason of scalability

problems, when applied to large-scale networks.

A partial evaluation of this research may be found

in [12]. In that paper, we propose a new dynamic

reconfiguration service for a pub/sub middleware that

enables dynamic reallocation of components in order to

achieve predictable and reliable system behaviour and

fulfil deployment requirements. We have built a

prototype that validates our research on existing DDS

conformant pub/sub system implementations

(Splice2v2 from Thales Naval Nederland).

Acknowledgment

This work was partly supported by European Research

Programme: Marie Curie Host Fellowship under

contract number- HPMI-CT-2002-00221.

This work was partly supported by the European Union

under the E-Next Project FP6-506869.

We want to thank colleagues at Thales Nederland for

the valuable comments and their advices regarding this

research: Erik Hendriks and Wojciech Mlynarczyk.

References

[1] Moazami-Goudarzi K. - Consistency preserving

dynamic reconfiguration of distributed systems. PhD thesis,

Imperial College, London, March 1999.

[2] Kramer J, Magee J. - Dynamic configuration for

distributed systems. IEEE Transactions on Software

Engineering 11(4), pp. 424-436, April 1985.

[3] Wegdam M. – Dynamic Reconfiguration and Load

Distribution in Component Middleware. PhD thesis,

University of Twente, CTIT Ph.D-thesis series, No. 03-50,

ISSN 1381-3617; No. 03-5, 26 June 2003.

[4] Pardo-Castellote G. – OMG Data Distribution Service:

Real-Time Publish/Subscribe Becomes a Standard – RTC

Magazine (www.rtcmagazine.com) – January 2005.

[5] Skowronek J., van’t Hag H. - Evolutionary software

development. NATO ESD conference 2001.

[6] Cugola G., Jacobsen H.A - Using Publish/Subscribe

Middleware for Mobile Systems. ACM SIGMOBILE Mobile

Computing and Communications Review archive,;Volume 6

, Issue 4 (October 2002), pp. 25 –33.

[7] Data Distribution Service for Real-Time Systems

Specification - ptc/03-07-07 - May 2003.

[8] Almeida, J.P.A., Wegdam, M., Sinderen, M. van,

Nieuwenhuis, L. - Transparent dynamic reconfiguration for

CORBA. Proceedings of the 3rd International Symposium on

Distributed Objects and Applications (DOA’01), Rome,

Italy, September 17-20, 2001, pp. 197-207.

[9] Pardo-Castellote G., Schneider S., Hamilton M. -

NDDS: The Real-Time Publish-Subscribe Middleware -

White paper - Real-Time Innovations, Inc.

http://www.rti.com.

[10] G. Cugola, G.P.Picco, A.L. Murphy- Towards Dynamic

Reconfiguration of Distributed Publish- Subscribe

Middleware. In Proceedings of the 3rd International

Workshop on Software Engineering and Middleware

(SEM02), co-located with the 24th International Conference

on Software Engineering (ICSE02), May 2002, Orlando

(FL), USA, A. Coen- Porisini and A. van Der Hoek eds.,

Lecture Notes on Computer Science vol. 2596, pp. 187-202,

2003.

[11] M. Castaldi, A. Carzaniga, P. Inverardi, A.L. Wolf –A

Lightweight Infrastructure for Reconfiguring Applications -

B. Westfechtel, A. van der Hoek (Eds.): SCM 2001/2003,

LNCS 2649, pp. 231–244, 2003. Springer-Verlag Berlin

Heidelberg 2003

[12] Zieba B., Glandrup M., Sinderen M. van, Wegdam M. -

Reconfiguration Service for Publish/Subscribe Middleware

(bzieba.info/publications.html).

