
Requirements and Method for Assessment of Service
Interoperability

Stanislav Pokraev1, Dick Quartel2, Maarten W. A. Steen1 and Manfred Reichert2

1 Telematica Instituut, The Netherlands, P.O. Box 589

7500 AN Enschede, The Netherlands
2 Centre for Telematics and Information Technology,

University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
Stanislav.Pokraev@telin.nl, D.A.C.Quartel@ewi.utwente.nl,

Maarten.Steen@telin.nl and M.U.Reichert@ewi.utwente.nl

Abstract. Service interoperability is a major obstacle in realizing the SOA
vision. Interoperability is the capability of multiple, autonomous and
heterogeneous systems to use each other’s services effectively. It is about the
meaningful sharing of functionality and information that leads to the
achievement of a common goal. In this paper we systematically explain what
interoperability means and analyze possible interoperability problems. Further,
we define requirements for service interoperability and present a method to
assess whether a composite system meets the identified requirements.

Keywords: service modeling, service interoperability, formal verification

1 Introduction

The integration of software systems is a major challenge for companies today.
Both organizational forces, such as business process integration (BPI), and
technology drivers, such as the move towards service-oriented architectures (SOA),
put increasing pressure on software engineers to reuse and integrate existing system
services, rather than building new systems from scratch. However, the lack of
interoperability forms a major stumbling block in the integration process. To address
this issue a lot of efforts are currently being invested in standardizing service
description languages and protocols for service interactions such as WSDL, BPEL,
WS-CDL. Unfortunately, these efforts mainly address what we call syntactic
interoperability, whereas semantic interoperability is just starting to be addressed by
initiatives such as the SWSI1 and the WSMO2 working groups.

In this paper we analyze what it means for software systems to be interoperable.
Based on the results of this analysis we identify possible interoperability problems
and define requirements for appropriate solutions. Next, we propose a conceptual
framework for service modeling as well as a method for formally verifying the inter-

1 http://www.swsi.org/
2 http://www.wsmo.org/

operability of an integrated system, starting with an integration goal. The latter
qualification becomes necessary because a composite system has properties that
emerge due to the interaction of its components. Assessing interoperability of such a
system means that one can check if a desired goal (i.e., a number of emerging
properties) can be achieved by the elements of that system in concert.

The paper is organized as follows: Section 2 presents our conceptual framework
for service modeling. Section 3 explains what interoperability means, analyze
possible interoperability problems, and define requirements for service
interoperability. Section 4 presents our method for formal verification whether a
composite system meets the identified interoperability requirements. Section 5 gives
an overview of the state-of-the art and the related work. Finally, Section 6 presents
our conclusions and discusses some future research directions.

2 A Conceptual Framework for Service Modeling

This section presents our conceptual framework for service modeling. The framework
defines concepts and a notation to model interactions between systems from a
communication, behavioral and information perspective. The presented concepts are
generic in that they can be applied in different application domains and at successive
abstraction levels. This helps limiting the number of required concepts. The core
concept in our framework is the interaction concept. It supports a constraint-oriented
style of service specification, which facilitates the addressing of interoperability
requirements by modeling the participation of interacting entities as separate
constraints and by reasoning about satisfiability of the logical conjunction of these
constraints. The conceptual framework is based on earlier work [12][13].

The communication perspective is concerned with modeling the interacting
systems and their interconnection structure. For that purpose we introduce two basic
concepts, namely Entity and Interaction point.

An Entity models the existence of some system, while abstracting from its
properties. An Interaction point models the existence of some mechanism that enables
interaction between two or more systems, while abstracting from the properties of the
mechanism. In general, the interaction mechanism is identified by its location (e.g.,
the combination of an IP address and port number can be used to identify a TCP/UDP
socket).

We adopt Webster’s definition of a system, which defines a system as “a regularly
interacting or interdependent group of items, components or parts, forming a unified
whole”. This definition distinguishes between two system perspectives: an internal
perspective, i.e., the “regularly interacting or interdependent group of items,
components or parts”, and an external perspective, i.e., the “unified whole”. Figure 1
illustrates both perspectives.

System ASystem A

IP1
IP1 System A1

System A1 System A2
System A2……

System A3
System A3

……

External system perspective
(…forming unified whole)

Internal system perspective
(… interacting or interdependent group

of items, components, or parts…)

Interaction pointEntity

A

IP2
IP2

IP3
IP3

IP1
IP1 IP2

IP2

IP3
IP3

Figure 1. Communication perspective

From an external perspective a system is modeled as a single entity (e.g., System A)
having one or more interaction points (e.g., IP1, IP2 and IP3). From an internal
perspective a system is modeled as a structure of interconnected system parts (e.g.,
Systems A1, System A2 and System A3).

The behavioral perspective is concerned with modeling the behavioral properties
of a system, i.e., the activities that are performed by the system as well as the relations
among them. For that purpose we introduce four basic concepts, namely, Action,
Interaction, Interaction contribution and one relation, namely, Causality relation.

An Action represents a unit of activity that either occurs (completes) or does not
occur (complete) during the execution of a system. Furthermore, an action only
represents the activity result (effect) that is established upon completion, and abstracts
from the way this result is achieved.

An Interaction represents a common activity of two or more entities. An
interaction can be considered as a refinement of an action, defining the contribution of
each entity involved in the interaction. Therefore, an interaction inherits the properties
of an action. In addition, an interaction either occurs for all entities that are involved,
or does not occur for any of them. In case an interaction occurs, the same result is
established for all involved entities.

An Interaction contribution represents the participation (or responsibility) of an
entity that is involved in an interaction. An interaction can only occur if each involved
entity can participate. An entity can participate if the causality condition of its
interaction contribution is satisfied (see below). In addition, an interaction
contribution may define constraints on the possible results that can be established in
the interaction. This means that an interaction represents a negotiation among the
involved entities, only defining the potential results of the interaction, while
abstracting from how they are established. We distinguish three basic types of
negotiation between two entities A and B.
• Value checking: entity A proposes a single value x as interaction result and entity

B proposes a single value y. The interaction can only occur if x = y, in which case
the interaction result is x;

• Value passing: entity A proposes a single value x as interaction result and entity B
accepts a set of values Y. The interaction can only occur if x ∈ Y, in which case
the interaction result is x;

• Value generation: entity A accepts a set of values X as interaction result and
entity B accepts a set of values Y. The interaction can only occur if X ∩ Y ≠∅, in
which case the interaction result is a value from the intersection of X and Y (while
abstracting from the choice of the particular value).

For an action or interaction contribution, say a, a Causality relation defines the
condition that must be satisfied to enable the occurrence of a. Three basic conditions
are distinguished:
• Enabling condition b, which defines that a depends on the occurrence of b, i.e., b

must have occurred before a can occur;
• Disabling condition ¬b, which defines that a depends on the non-occurrence of b,

i.e., b must not have occurred before nor simultaneously with a to allow for the
occurrence of a;

• Start condition √, which defines that a is allowed to occur from the beginning of
the behavior, independent of any other actions or interaction contributions.

Composite system

Composite system

ShipperSellerBuyer

Buy

Buy Ship

Ship ShipBuy

R
ef

in
em

en
t

action
interaction
contributionbehavior interaction enabling

condition
Figure 2. Refinement of an action

The behavioral concepts are illustrated in Figure 2. At the higher abstraction level
action Buy is followed by action Ship. At the lower level the actions are refined by
assigning actors (e.g., Buyer, Seller and Shipper) that contribute to the result of
these actions. Constraints on the results of interactions that systems may define are
discussed later after having introduced the information perspective.

Basic conditions can be combined to represent more complex causality conditions.
For this we provide the AND and the OR operators, which define that a conjunction
and disjunction of conditions must be satisfied, respectively.

The information perspective is concerned with modeling the subject domain of a
system. First, we explain what subject domain is and then we introduce five basic
modeling concepts.

Software systems manage a domain of lexical items. These items represent entities
and phenomena in the real world that are identifiable by the system (e.g., people,
companies or locations). In this context we denote the part of the world that is
identifiable by the systems as subject domain of the system.

Software systems interact with their environment by exchanging messages.
Messages that enter the system request or update the state of its lexical domain.

Messages that leave the system request information about the system’s subject
domain or provide information about the lexical domain of the system.

Messages consist of data that represent property values of entities or phenomena
from the subject domain. The data in the messages have meaning only when
interpreted in terms of the subject domain model of the system.

To model the information perspective we provide five basic concepts, namely
Individual, Class, Property, Result constraint and Causality constraint.

An Individual represents an entity or phenomenon in the subject domain of the
system, e.g., the person “John”, the hospital “Saint Joseph” or the city “London”.

A Class represents an abstract type of entities or phenomena in the subject domain
of the system, e.g., “Patient”, “Hospital” or “City”.

A Property represent possible relations that can exist between entities or
phenomena in the system’s subject domain, e.g., “admitted to”, “is a” or “is located
in”.

A Result constraint models a condition on the result of an action or interaction
contribution that must be satisfied after the occurrence of the action or interaction
contribution.

A Causality constraint models a condition on the results established in causal
predecessors (i.e., actions or interaction contributions) that must be satisfied to enable
the occurrence of an action or interaction contribution.

Figure 3 shows how information concepts are related to interactions.

drSmith freeSlots ?s
[?s > 0]

Patient ?p
Appointment ?a
?a startTime ?t
?a duration ?d
[?d ≤ 1h]

Patient ?p
Appointment ?a
?a startTime ?t
[?t ≤ 10pm]

Result constraint

Class

Property

Causality constraint

Individual

Figure 3. Relating information concepts to an interaction

In the example a system requests an appointment for a patient starting not later
than 10pm. The hospital system accepts any appointments with duration less or equal
than 1 hour. In addition, the interaction can only happen if Dr. Smith (the healthcare
professional responsible for this case) has free slots in his calendar. Indeed, this is a
causality constraint if the individual drSmith has been established as a result of a
preceding (inter)action.

We use Description Logics (DL)[6], more specifically OWL-DL[7] to represent our
information concepts by a concrete formalism. DL ontologies consist of concepts,
roles and individuals. Individuals represent entities of phenomena from the real
world, concepts represent abstract classes of entities or phenomena, and roles
represent relations between entities or phenomena.

A concept can be atomic, i.e., denoted by its name (e.g., Patient, Room or
Hospital) or defined as an expression that contains other concepts, roles and
composition operators such as union or intersection.

Besides concepts, individuals and relations, DL ontologies consist of a set of
axioms specifying the properties of the concepts, roles and individuals. Examples of
such axioms are concept inclusion (C(x) ∧ C ⊆ D → D(x)), role inclusion (R(x, y) ∧
R ⊆ S → S(x, y)), transitive role (R(x, y) ∧ R(y, z) → R(x, z)), etc. For the formal
semantics of OWL-DL we refer to [7].

Putting together the three modeling perspectives yields an integrated service
model. A service is a set of related interactions between the system and its
environment. An example is given in Figure 4a. It shows two interacting behaviors,
representing the behaviors the one of a system and another one of its environment.
These entities can engage in three interactions a, b and c, which are related by
causality relations. The interaction contributions can be adorned with result
constraints and the causality relations with causality constraints respectively. Taken
together, the interactions, their causal relations and the information constraints define
the service between the system and the environment.

Our definition of service does not include a sense of direction. It is an interaction
that models a common activity of two or more entities in which some results (values)
can be established, but abstracts from who takes the initiative or the direction in
which values flow. However, often it is useful to talk about the service that is offered
by a system without having to specify the constraints of the environment. Likewise, it
is also often useful to talk about the service that is requested by an entity without
making assumptions about the constraints of the service provider. These are two
complementary views on a service, which can be obtained by only specifying one
entity’s contributions and constraints (cf. Figure 4b and Figure 4c).

Assumptions

System

Offered
Service

a b

a b

c

c

Environment

System

Service
a b

a b

c

c

a)

Environment

Assumptions

Requested
Service

a b

a b

c

c

b)

c)
Figure 4. Service model

3 Requirements for Interoperability

In our approach we distinguish three different levels of interoperability, namely
syntactic, semantic and pragmatic.

Syntactic interoperability is concerned with ensuring that data from the exchanged
messages are in compatible formats. The message sender encodes data in a message
using syntactic rules, specified in some grammar. The message receiver decodes the
received message using syntactic rules defined in the same or some other grammar.
Syntactic interoperability problems arise when the sender’s encoding rules are
incompatible with the receiver’s decoding rules, which leads to (construction of)
mismatching message parse trees.

Web Services standards address syntactic interoperability by providing XML-
based standards such as SOAP, WSDL and BPEL. XML is a platform-independent
markup language capable of describing both data and data structure. This way,
different systems can parse each other’s messages, check if these messages are well-
formed, and validate if the messages adhere to a specific syntactic schema. In our
approach we adopt XML to deal with syntactic interoperability and only focus on
semantic and pragmatic interoperability.

Semantic interoperability is concerned with ensuring that the exchanged
information has the same meaning for both message sender and receiver. The data in
the messages have meaning only when interpreted in terms of the respective subject
domain models. However, the message sender does not always know the subject
domain model of the message receiver. Depending on its knowledge, the message
sender makes assumptions about the subject domain model of the receiver and uses
this assumed subject domain model to construct a message and to communicate it.
Semantic interoperability problems arise when the message sender and receiver have
a different conceptualization or use a different representation of the entity types,
properties and values from their subject domains. Examples of such differences are
naming conflicts (same representation is used to designate different entities, entity
types or properties, or different representations are used to designate the same entity,
entity type or property), generalization conflicts (the meaning of an entity type or a
property is more general than the meaning of the corresponding entity type or
property), aggregation conflicts (an entity type aggregates two or more
corresponding entity types), overlapping conflicts (an entity type or a property
partially overlaps a corresponding entity type or a property), isomorphism conflicts
(the same entity type or property is defined differently in different subject domain
models), identification conflicts (the same entity is identified by different properties),
entity-property conflicts (an entity type in modeled as a property), etc.

To address the identified semantic conflicts we define the following requirement:
Requirement 1: A necessary condition for the semantic interoperability of two

systems is the existence of a translation function that maps the entity types, properties
and values of the subject domain model of the first system to the respective entity
types, properties and values of the subject domain model of the second system.

Pragmatic interoperability is concerned with ensuring that message sender and
receiver share the same expectation about the effect of the exchanged messages.

When a system receives a messages it changes its state, sends a message back to
the environment, or both[18]. In most cases, messages sent to the system change or
request the system state, and messages sent from the system change or request the
state of the environment. That is, the messages are always sent with some intention
for achieving some desired effect. In most of the cases the effect is realized not only
by a single message but by a number of messages send in some order. Pragmatic
interoperability problems arise when the intended effect differs from the actual effect.

Requirement 2: A necessary condition for pragmatic interoperability of a single
interaction is that at least one result that satisfies the constraints of all contributing
systems can be established.

As said earlier, a service is a set of related interactions between the system and its
environment.

Requirement 3: A necessary condition for pragmatic interoperability of a service is
that Requirement 2 is met for all of its interactions and they can occur in a causal
order, allowed by all participating systems.

The requirements are discussed in more details in the next section.

4 Formal Verification of Service Designs

In this section we present a formal method for checking if a service design meets the
requirements identified in the previous section.

To address Requirement 1 we need a method to establish mappings between
values, concepts and relations from subject domains of the systems being integrated.
This method requires understanding of the meaning of values, concepts and relations
from the respective subject domains and cannot be fully automated. However, tools
exist that use sophisticated heuristic algorithms to discover possible mappings and
provide mechanisms for specifying these mappings. Besides mapping there are two
other relevant approaches: alignment and merging of the subject domain models.
Alignment is the process of making the subject domain models consistent and
coherent with one another while keeping them separate. Merging is the process of
creating a single subject domain model that includes the information from all source
subject domain models.

To address the semantic conflicts identified in the previous section we need a
formal language capable of expressing mappings. In the following we show how
some of the identified problems can be addressed using OWL-DL axioms. In the
explanation below we use the prefixes a: and b: to identify a concept or a relation in
the subject domain model of System A and System B respectively.

 Naming conflicts can be addressed using axioms that assert sameness (e.g.,
a:Medicine ≡ b:Drug) or difference (a:Employee ≠ b:Employee). Aggregation
conflicts can be addressed using axioms that define a new concept as aggregation of
the corresponding concepts (e.g., a:Address ≡ List (b:StreetNo,
b:Street, b:City). Generalization conflicts can be addressed using axioms that
assert the generalization (or specialization) relation between the respective concepts
(a:Human ⊆ b:Patient). Overlapping conflicts can be addressed using axioms

that assert that corresponding concepts are not disjoint (e.g., ¬(a:Man ∩
b:Adult) ⊆ ⊥).

Unfortunately, not all types of mappings can be expressed using OWL. For
example, OWL does not allow for property chaining (e.g., a:hasUncle ≡
b:hasBrother • b:hasFather) and qualified cardinality restrictions
a:SafeBuilding = b:Building ∩ ≥2b:hasStairs.b:FireEscapeStairs
which makes it difficult (in some cases impossible) to deal with isomorphic and
cardinality conflicts. However, some of these issues are being dealt with in the
upcoming version of OWL 1.1.

To address Requirement 2 we define a class as an intersection of the classes that
define the admissible results of an interaction for all participating interaction
contributions, and check if the concept that represents the class is satisfiable.

As said earlier, we use OWL-DL as a representation system for individuals, classes
and properties as well as to define result and causality constraints. This way, we can
describe the subject domains of the system, define classes that represent the
conditions and results of actions and interaction contributions and reason if these
classes can have instances or not.

The basic reasoning task in OWL-DL is subsumption check – a task of checking if
a concept D is more general than a concept C. In other words, subsumption is
checking if the criteria for being individual of type C imply the criteria for being
individual of type D. The concept D is called subsumer and the concept C is called
subsumee. If C subsumes D and D subsumes C, then we can conclude that class C and
D are equivalent.

Checking concept satisfiability is a special case of subsumption reasoning. In this
case the subsumer is the empty concept (⊥). If a concept C is subsumed by the empty
concept we say that the concept C is not satisfiable. This means that no individual can
be of type C.

Requirement 2 is illustrated in Figure 5. In this example, any appointment not
earlier than 10pm with duration no longer that 1 hour is a possible result of the
interaction a.

Hospital
Information

System

Healthcare
professional

a

Patient p
Time t
Duration d

[t ≥ 10pm]

Hospital

Healthcare
Professional

Possible results of the interaction
Any patient, time not before 10pm
and duration no longer than 1 hour

a

Patient p
Time t
Duration d

[d ≤ 1h]

Figure 5. Example of Requirement 2

To check if a composite system meets Requirement 3 we translate a model of a
composite service described in our language to a Coloured Petri Net (CPN)[][]8 9 .
This way we can construct the corresponding occurrence graph and reason about the

dynamic properties of the model. The presented mapping is partially based on
previous work []16 .

A classical Petri Net (PN) consists of a set of places (represented by circles), a set
of transitions (represented by black bars), directed arcs connecting places to
transitions or transitions to places, and markings assigning one or more tokens
(represented by black dots) to some places. CPNs extend the classical PNs by
providing a mechanism for associating a value of a certain type to each token. In
addition, a transition can be enabled only if its input tokens satisfy certain conditions
(guards) and produce output tokens that represent new values (bindings). In this way,
a transition can be seen as a function that maps input values to output values in a
certain context.

An action in our language maps to a transition in terms of PNs. A transition can be
executed when all incoming places contain at least one token. On execution it
consumes a token from all incoming places and produces a token in all outgoing
places. Similar to actions, enabled transitions may execute in parallel. Nets that
correspond to some elementary causality relations from our language are depicted in
Figure 6:

√ a a b a b

a ∧ b c
(AND-join)

a ∨ b c a b ∧ c a b ∨ c
(AND-Split) (OR-Split)

a

a

b

a

b

c

a b a

b c

a b

c

a

b c

(OR-Join)

Figure 6. Mapping to Petri Nets

 As said earlier, the occurrence or the result of an action (or interaction) may
depend on the result of one or more causal predecessors (actions or interactions).
Such dependences can be easily mapped onto guards and bindings in terms of CPNs.
Figure 7 shows an example of the respective mappings.

b

c
a

int x

int y b.x + c.y < 10

x

y

x

y [x+y<10]

b

c
a

int x

int y

x

y

x

y

int z;
[z = b.x+c.y]

z

[z=x+y]

b

c

a

b

c

a

The occurrence of action a depends on the results of actions b and c

The result of action a depends on the results of actions b and c

Figure 7. Mapping to Coloured Petri Nets

The presented mappings allow models expressed in our language to be translated
into CPN and analyzed using existing tools.

To check if the composition from our example meets Requirement 3, we translate
the model to the corresponding CPN using the presented mapping and construct the
occurrence graph of that net. We use the constructed graph to check for the existence
of a marking in which the results defined by the participating systems can be
established. Next, we check if the order of the results establishment meets the
causality constraints of the participating systems. The requirement is illustrated in
Figure 8 and explained in an example below.

Clinical
system

Appointment
System

Healthcare professional

a

a

b

b

c

c

Healthcare professional

a

a

b

b

c

c

Results of the interactions
a - Patient data
b - Appointment data
c - Confirmation

Requested
Service

Offered
Service

Hospital Information
System

Figure 8. Example of Requirement 3

Consider a healthcare professional who wants to refer a patient to a specialist. His
system allows him to send the patient’s clinical data, followed by the appointment
data and finally to receive a confirmation from the hospital information system. I.e.,
the allowed interaction order of the healthcare professional is a, b, c. The hospital
information system can either first receive the patient’s clinical data or the
appointment data. Once it has both it registers the data in the clinical and appointment
systems and sends back a confirmation to the healthcare professional. I.e., the allowed
interaction order of the hospital information system is a, b, c, or b, a, c. In the
example, the systems are interoperable because the order a, b, c meets the constraints
of both the healthcare professional and the hospital information system.

To validate our conceptual framework, we implemented a prototype that checks if
a composite system meets the identified requirements. Our prototype uses Racer[14]
Renew[10] and CPNTools[15].

5 State-Of-the Art and Related work

OWL-S[11] is an OWL ontology for Web Services, aiming at making them computer-
interpretable, to enable automatic service discovery and invocation, i.e., breaking
down interoperability barriers through precise service semantics. For that reason
OWL-S defines a class Service, where all service properties are very general. The idea
is to provide a conceptual basis for building service taxonomies, but it is expected that
taxonomies will be created according to functional and domain-specific needs. A
service has a ServiceProfile. This is a high level description of the service and its
provider. A ServiceProfile describes the functional and non-functional service
properties in a human readable way. The service is formally described by a

ServiceModel. It provides means for describing the data and control flow in case of a
composite service. Finally, a service has a ServiceGrounding, which is a specification
of service access information such as communication protocols, and transport
mechanisms.

IBM together with LSDIS Lab at University Of Georgia has proposed lightweight
approach for adding semantics to Web Service descriptions, WSDL-S[1]. It is based
in the work done in METEOR-S[17]. WSDL-S provides a mechanism to annotate
WSDL service descriptions by providing extension elements such as input, output,
precondition and effect. The intention is to build upon other Semantic Web Services
related efforts. WSDL-S relies on both the WSDL and XML Schema extension
mechanisms to reference external semantic models, without being constrained to a
particular semantic representation language.

The Web Service Modeling Ontology (WSMO) [3] has been proposed as an
alternative for OWL-S. The creators of WSMO argue that OWL-S is only a
formalization of WSDL and BPEL4WS, and that true service semantics require a
much richer ontology. In addition to the WSMO ontology also a Web Service
Modeling Language (WSML) [4] and a Web Service Execution Environment
(WSMX) [5] have been defined. The objective of these specifications is to allow
automatic service discovery, composition, execution and interoperation in the context
of Web and Grid.

The Semantic Web Services Framework [2] is a relatively new initiative, which
addresses interoperability by proposing a language and ontology for specifying the
semantics of Web services. The language consists of two parts, namely, a first order
logic language for describing web services (SWSL-FOL) and a rule-based language
with non-monotonic semantics (SWSL-Rules). SWSL-FOL is used to formally
specify service characteristics whereas SWSL-Rules is used to reason about those
characteristics and execute services. SWSF also defines a formal ontology for
representing service characteristics called First-Order Logic Ontology for Web
Services (FLOWS).

6 Conclusions

The main contributions of this work are the definition of a conceptual framework for
service modeling, the identification of requirements for semantic and pragmatic
interoperability and a method for assessing whether a composite system meets the
identified requirements. We did this by first analyzing and defining what it means for
software systems to be interoperable. We identified three different levels of
interoperability – the syntactic, semantic and pragmatic level – and defined the
requirements for assessing interoperability at each of these levels. Since we feel that
syntactic interoperability is sufficiently addressed by existing standards and
initiatives, we focused on the semantic and pragmatic interoperability requirements.

What makes our work different from the related work in the area is that our method
is based on a new service modeling framework which provides generic concepts that
can be applied in different application domains and at successive abstraction levels.
The key concept in our framework (the concept Interaction) supports a constraint-

oriented style of service specification. This style allows service requestors and
providers to explicitly specify their assumptions about the environment of their
systems. This in turn enables formal verification of the interoperability of the
composite system by checking constraint satisfiability.

Our approach combines the precise, but abstract, definition of the behavior of
services and their compositions with a formal definition of the information being
exchanged between services. Once we have specified services in this formalism, we
are able to apply a combination of a formal logic reasoner and a formal behavior
analysis tool to verify the semantic and the pragmatic interoperability of a given set of
services.

There are a number of issues that we still need to address to make our method more
practical.

First, we cannot assume that existing services are specified using our modeling
notation. Therefore, we are working on providing mappings from existing service
description languages and tools for the (semi)-automatic transformations of service
models from descriptions in WSDL and BPEL.

Second, we plan to investigate ways of presenting the verification results back into
the original models. Currently, the outcome of applying our method is a yes/no-
answer. However, it is not very satisfactory to find out that a particular composition
of services is not interoperable. In that case more feedback is required as to the cause
of the interoperability problem.

Finally, we would like to investigate ways to (semi)-automatically derive
mediators capable of solving detected semantic and pragmatic interoperability
problems. Such mediators should implement mappings between the information and
behavioral models to overcome semantic and pragmatic interoperability problems.

Acknowledgments. The presented work has been done in the Freeband
Communication project A-Muse (http://a-muse.freeband.nl). Freeband
Communication (http://www.freeband.nl) is sponsored by the Dutch government
under contract BSIK 03025.We would like to thank Henk Jonkers, Patrick Strating
and Rogier Brussee from the Telematica Instituut, the Netherlands for their valuable
comments on this work.

References

1. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A., Verma,
K. Web Service Semantics - WSDL-S. W3C Member Submission 7 November 2005,
Version 1.0, http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/

2. Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Su, J., Tabet, S. Semantic Web Services
Framework (SWSF) Overview, W3C Member Submission 9 September 2005,
http://www.w3.org/Submission/SWSF/

3. Bruijn, J. de, Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D.,
Scicluna, J., Stollberg, M. Web Service Modeling Ontology (WSMO), W3C Member
Submission 3 June 2005, http://www.w3.org/Submission/WSMO/

4. Bruijn, J. de, Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher, R.,
Polleres, A., Predoiu, L. Web Service Modeling Language (WSML), W3C Member
Submission 3 June 2005, http://www.w3.org/Submission/WSML/

5. Bussler, C., Cimpian, E., Fensel, D., Gomez, J. M., Haller, A., Haselwanter, T.,
Kerrigan, M., Mocan, A., Moran, M., Oren, E., Sapkota, B., Toma, I., Viskova, J.,
Vitvar, T., Zaremba, M. Web Service Execution Environment (WSMX), W3C
Member Submission 3 June 2005, http://www.w3.org/Submission/WSMX/

6. Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge University Press,
2003. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521781760

7. Dean, M (eds.), Schreiber, G.(eds.), Bechhofer, S., van Harmelen, F., Hendler, J.,
Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., Stein, L. A. OWL Web
Ontology Language Reference, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/owl-ref/

8. Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science, Springer-
Verlag, 1992. ISBN: 3-540-60943-1.

9. Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 2, Analysis Methods. Monographs in Theoretical Computer Science,
Springer -Verlag, 1994. ISBN: 3 -540-58276-2

10. Kummer, O., Wienberg, F., Duvigneau, M., Köhler, M., Moldt, D., Rölke, H. Renew
- The Reference Net Workshop. In Veerbeek, E. (editor), Tool Demonstrations. 24th
International Conference on Application and Theory of Petri Nets (ATPN 2003).
International Conference on Business Process Management (BPM 2003)., pages 99-
102.

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K. OWL-S: Semantic Markup for Web Services W3C Member Submission 22
November 2004, http://www.w3.org/Submission/OWL-S/

12. Quartel, D.A.C., Dijkman R.M., Sinderen van M. J. Methodological support for
service-oriented design with ISDL. In: Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC 2004), New York City, NY,
USA, 2004.

13. Quartel, D.A.C., Ferreira Pires, L., Sinderen, van M. J. On Architectural Support for
Behaviour Refinement in Distributed Systems Design. In: Journal of integrated
design and process science online, 06(01) ISNN 1092-0617.

14. Racer Systems, Racer Reasoner, http://www.racer-systems.com/, 2005
15. Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M., Qvortrup, J. F., Stissing, M. S.,

Westergaard, M., Christensen, S., Jensen, K. CPN Tools for Editing, Simulating, and
Analysing Coloured Petri Net, In: Proceedings of the 24th International Conference
on Applications and Theory of Petri Nets (ICATPN 2003), Eindhoven, The
Netherlands, June 23-27, 2003, pages 450-462. Volume 2679 of Lecture Notes in
Computer Science / Wil M. P. van der Aalst and Eike Best (Eds.) Springer-Verlag,
June 2003.

16. Sinderen, M. J. van, Ferreira Pires, L., Vissers, C. A., Katoen, J.P. A design model
for open distributed processing systems. Computer Networks and ISDN Systems,
Vol. 27, 1995, pp. 1263-1285. ISSN 0169-7552.

17. Verma, K., Gomadam, K., Sheth, A., Miller, J., Wu, Z. The METEOR-S Approach
for Configuring and Executing Dynamic Web Processes", Technical Report . Date: 6-
24-05.

18. Wieringa, R. J. Design Methods for Reactive Systems: Yourdon, Statemate, and the
UML. Morgan Kaufmann, 2003. http://www.mkp.com/dmrs

